Skip to main content
Log in

Pt single atoms coupled with Ru nanoclusters enable robust hydrogen oxidation for high-performance anion exchange membrane fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The sluggish reaction kinetics of alkaline hydrogen oxidation reaction (HOR) is one of the key challenges for anion exchange membrane fuel cells (AEMFCs). To achieve robust alkaline HOR with minimized cost, we developed a single atom-cluster multiscale structure with isolated Pt single atoms anchored on Ru nanoclusters supported on nitrogen-doped carbon nanosheets (Pt1-Ru/NC). The well-defined structure not only provides multiple sites with varied affinity with the intermediates but also enables simultaneous modulation of different sites via interfacial interaction. In addition to weakening Ru–H bond strength, the isolated Pt sites are heavily involved in hydrogen adsorption and synergistically accelerate the Volmer step with the help of Ru sites. Furthermore, this catalyst configuration inhibits the excessive occupancy of oxygen-containing species on Ru sites and facilitates the HOR at elevated potentials. The Pt1-Ru/NC catalyst exhibits superior alkaline HOR performance with extremely high activity and excellent CO-tolerance. An AEMFC with a 0.1 mg·cmPGM−2 loading of Pt1-Ru/NC anode catalyst achieves a peak powder density of 1172 mW·cm−2, which is 2.17 and 1.55 times higher than that of Pt/C and PtRu/C, respectively. This work provides a new catalyst concept to address the sluggish kinetics of electrocatalytic reactions containing multiple intermediates and elemental steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.

    Article  CAS  PubMed  Google Scholar 

  2. Yao, Z. C.; Tang, T.; Jiang, Z.; Wang, L.; Hu, J. S.; Wan, L. J. Electrocatalytic hydrogen oxidation in alkaline media: From mechanistic insights to catalyst design. ACS Nano 2022, 16, 5153–5183.

    Article  CAS  PubMed  Google Scholar 

  3. Xiao, F.; Wang, Y. C.; Wu, Z. P.; Chen, G. Y.; Yang, F.; Zhu, S. Q.; Siddharth, K.; Kong, Z. J.; Lu, A. L.; Li, J. C. et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 2021, 33, 2006292.

    Article  CAS  Google Scholar 

  4. Wang, Y. D.; Meyer, Q.; Tang, K. N.; McClure, J. E.; White, R. T.; Kelly, S. T.; Crawford, M. M.; Iacoviello, F.; Brett, D. J. L.; Shearing, P. R. et al. Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning. Nat. Commun. 2023, 14, 745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pan, Z. F.; An, L.; Zhao, T. S.; Tang, Z. K. Advances and challenges in alkaline anion exchange membrane fuel cells. Prog. Energy Combust. Sci. 2018, 66, 141–175.

    Article  Google Scholar 

  6. Zhao, R. P.; Yue, X.; Li, Q. H.; Fu, G. T.; Lee, J. M.; Huang, S. M. Recent advances in electrocatalysts for alkaline hydrogen oxidation reaction. Small 2021, 17, 2100391.

    Article  CAS  Google Scholar 

  7. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  8. Yang, Z. L.; Lai, W. C.; He, B. L.; Wang, J.; Yu, F. F.; Liu, Q. H.; Liu, M. C.; Zhang, S. G.; Ding, W.; Lin, Z. Q. et al. Tailoring interfacial chemistry of defective carbon-supported Ru catalyst toward efficient and co-tolerant alkaline hydrogen oxidation reaction. Adv. Energy Mater. 2023, 13, 2300881.

    Article  CAS  Google Scholar 

  9. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

    Article  CAS  Google Scholar 

  10. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

    Article  CAS  Google Scholar 

  11. Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Int. Mater. 2024, 3, 74–86.

    Google Scholar 

  12. Lu, S. Q.; Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2017, 139, 5156–5163.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, M.; Li, G.; Yan, W.; Wu, Z. Z.; Zheng, Z. P.; Zhang, X. B.; Wang, Q. X.; Du, G. F.; Liu, D. Y.; Xie, Z. X. et al. Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 2022, 12, 2103336.

    Article  CAS  Google Scholar 

  14. Zhan, C. H.; Xu, Y.; Bu, L. Z.; Zhu, H. Z.; Feng, Y. G.; Yang, T.; Zhang, Y.; Yang, Z. Q.; Huang, B. L.; Shao, Q. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 2021, 12, 6261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamo, E. R.; Singh, R. K.; Douglin, J. C.; Chen, S. A.; Ben Hassine, M.; Carbo-Argibay, E.; Lu, S. F.; Wang, H. N.; Ferreira, P. J.; Rosen, B. A. et al. Carbide-supported ptru catalysts for hydrogen oxidation reaction in alkaline electrolyte. ACS Catal. 2021, 11, 932–947.

    Article  CAS  Google Scholar 

  16. Ni, W. Y.; Meibom, J. L.; Hassan, N. U.; Chang, M.; Chu, Y. C.; Krammer, A.; Sun, S. L.; Zheng, Y. W.; Bai, L. C.; Ma, W. C. et al. Synergistic interactions between ptru catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nat. Catal. 2023, 6, 773–783.

    Article  CAS  Google Scholar 

  17. Wang, S. P.; Fu, L. H.; Huang, H. P.; Fu, M.; Cai, J. L.; Lyu, Z. X.; Wang, Q. X.; Kuang, Q.; Xie, Z. X.; Xie, S. F. Local oxidation induced amorphization of 1.5-nm-thick Pt-Ru nanowires enables superactive and co-tolerant hydrogen oxidation in alkaline media. Adv. Funct. Mater. 2023, 33, 2304125.

    Article  CAS  Google Scholar 

  18. Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high Co tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

    Article  CAS  Google Scholar 

  19. Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 5708–5711.

    Article  CAS  Google Scholar 

  20. Liu, W.; Lyu, K. J.; Xiao, L. T.; Lu, J.; Zhuang, L. Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media. Electrochim. Acta 2019, 327, 135016.

    Article  CAS  Google Scholar 

  21. Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Pt-Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect. Energy Environ. Sci. 2015, 8, 177–181.

    Article  CAS  Google Scholar 

  22. Zhu, S. Q.; Qin, X. P.; Xiao, F.; Yang, S. L.; Xu, Y.; Tan, Z.; Li, J. D.; Yan, J. W.; Chen, Q.; Chen, M. S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718.

    Article  CAS  Google Scholar 

  23. Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched RuxFe3−xO4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, X. Y.; Xiao, X. Z.; Chen, J.; Liu, Y. F.; Pan, H. G.; Sun, W. P.; Gao, M. X. Toward the fast and durable alkaline hydrogen oxidation reaction on ruthenium. Energy Environ. Sci. 2022, 15, 4511–4526.

    Article  CAS  Google Scholar 

  25. You, S. H.; Jung, S. M.; Kim, K. S.; Lee, J.; Park, J.; Jang, H. Y.; Shin, S.; Lee, H.; Back, S.; Lee, J. et al. Enhanced durability of automotive fuel cells via selectivity implementation by hydrogen spillover on the electrocatalyst surface. ACS Energy Lett. 2023, 8, 2201–2213.

    Article  CAS  Google Scholar 

  26. Li, H.; Wang, X.; Gong, X.; Liu, C.; Ge, J. J.; Song, P.; Xu, W. L. “One stone three birds” of a synergetic effect between Pt single atoms and clusters makes an ideal anode catalyst for fuel cells. J. Mater. Chem. A 2023, 11, 14826–14832.

    Article  CAS  Google Scholar 

  27. Xue, Y. R.; Shi, L.; Liu, X. R.; Fang, J. J.; Wang, X. D.; Setzler, B. P.; Zhu, W.; Yan, Y. S.; Zhuang, Z. B. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, B. X.; Zhang, B. H.; Zhao, G. Q.; Wang, J. M.; Liu, D. Q.; Chen, Y. P.; Xia, L. X.; Gao, M. X.; Liu, Y. F.; Sun, W. P. et al. Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium. Nat. Commun. 2022, 13, 5894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, X. B.; Xia, L. X.; Zhao, G. Q.; Zhang, B. X.; Chen, Y. P.; Chen, J.; Gao, M. X.; Jiang, Y. Z.; Liu, Y. F.; Pan, H. G. et al. Fast and durable alkaline hydrogen oxidation reaction at the electron-deficient ruthenium–ruthenium oxide interface. Adv. Mater. 2023, 35, 2208821.

    Article  CAS  Google Scholar 

  30. Li, Y. B.; Yang, C. Y.; Yue, J. C.; Cong, H. J.; Luo, W. Polymorphism-interface-induced work function regulating on Ru nanocatalyst for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 2023, 33, 2211586.

    Article  CAS  Google Scholar 

  31. Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 72, 441–446.

    Article  Google Scholar 

  32. Chen, L. G.; Liang, X.; Wang, D. S.; Yang, Z. B.; He, C. T.; Zhao, W.; Pei, J. J.; Xue, Y. R. Platinum-ruthenium single atom alloy as a bifunctional electrocatalyst toward methanol and hydrogen oxidation reactions. ACS Appl. Mater. Interfaces 2022, 14, 27814–27822.

    Article  CAS  PubMed  Google Scholar 

  33. Ding, J. J.; Sun, X. X.; Wang, Q.; Li, D. S.; Li, X. Y.; Li, X. X.; Chen, L.; Zhang, X.; Tian, X. Y.; Ostrikov, K. Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation. J. Alloys Compd. 2021, 873, 159871.

    Article  CAS  Google Scholar 

  34. Chen, Y. J.; Li, J.; Wang, N.; Zhou, Y. N.; Zheng, J.; Chu, W. Plasma-assisted highly dispersed Pt single atoms on Ru nanoclusters electrocatalyst for pH-universal hydrogen evolution. Chem. Eng. J. 2022, 448, 137611.

    Article  CAS  Google Scholar 

  35. Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv. Energy Mater. 2018, 8, 1701476.

    Article  Google Scholar 

  36. Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

    Article  CAS  Google Scholar 

  37. Wang, X. N.; Zhao, L. M.; Li, X. J.; Liu, Y.; Wang, Y. S.; Yao, Q. F.; Xie, J. P.; Xue, Q. Z.; Yan, Z. F.; Yuan, X. et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 2022, 13, 1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamai, R.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Oxygen-tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction. Angew. Chem., Int. Ed. 2016, 55, 13184–13188.

    Article  CAS  Google Scholar 

  39. Stühmeier, B. M.; Damjanović, A. M.; Rodewald, K.; Gasteiger, H. A. Selective anode catalyst for the mitigation of start-up/shut-down induced cathode degradation in proton exchange membrane fuel cells. J. Power Sources 2023, 558, 232572.

    Article  Google Scholar 

  40. Men, Y. N.; Wu, D. A.; Hu, Y. C.; Li, L.; Li, P.; Jia, S. F.; Wang, J. B.; Cheng, G. Z.; Chen, S. L.; Luo, W. Understanding alkaline hydrogen oxidation reaction on pdniruirrh high-entropy-alloy by machine learning potential. Angew. Chem., Int. Ed. 2023, 62, e202217976.

    Article  CAS  Google Scholar 

  41. Cai, J. L.; Zhang, X.; Lyu, Z. X.; Huang, H. P.; Wang, S. P.; Fu, L. H.; Wang, Q. X.; Yu, X. F.; Xie, Z. X.; Xie, S. F. Host-guest ensemble effect on dual-Pt atom-on-Rh nanosheets enables high-efficiency and anti-CO alkaline hydrogen oxidation. ACS Catal. 2023, 13, 6974–6982.

    Article  CAS  Google Scholar 

  42. Gao, L. J.; Wang, Y.; Li, H. B.; Li, Q. H.; Ta, N.; Zhuang, L.; Fu, Q.; Bao, X. H. A nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions. Chem. Sci. 2017, 8, 5728–5734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cong, Y. Y.; Chai, C. X.; Zhao, X. W.; Yi, B. L.; Song, Y. J. Pt0.25Ru0.75/N-C as highly active and durable electrocatalysts toward alkaline hydrogen oxidation reaction. Adv. Mater. Interfaces 2020, 7, 2000310.

    Article  CAS  Google Scholar 

  44. Chen, N. J.; Wang, H. H.; Kim, S. P.; Kim, H. M.; Lee, W. H.; Hu, C.; Bae, J. Y.; Sim, E. S.; Chung, Y. C.; Jang, J. H. et al. Poly (fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat. Commun. 2021, 12, 2367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dang, Y. L.; Wu, T. L.; Tan, H. Y.; Wang, J. L.; Cui, C.; Kerns, P.; Zhao, W.; Posada, L.; Wen, L. Y.; Suib, S. L. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 2021, 14, 5433–5443.

    Article  CAS  Google Scholar 

  46. Cai, C.; Liu, K.; Zhu, Y. M.; Li, P. C.; Wang, Q. Y.; Liu, B.; Chen, S. Y.; Li, H. J. W.; Zhu, L.; Li, H. M. et al. Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202113664.

    Article  CAS  Google Scholar 

  47. Wang, J. M.; Zhang, B. X.; Guo, W.; Wang, L.; Chen, J.; Pan, H. G.; Sun, W. P. Toward electrocatalytic methanol oxidation reaction: Longstanding debates and emerging catalysts. Adv. Mater. 2023, 35, 2211099.

    Article  CAS  Google Scholar 

  48. Pang, B. B.; Jia, C. Y.; Wang, S. C.; Liu, T.; Ding, T.; Liu, X. K.; Liu, D.; Cao, L. L.; Zhu, M. Z.; Liang, C. H. et al. Self-optimized ligand effect of single-atom modifier in ternary Pt-based alloy for efficient hydrogen oxidation. Nano Lett. 2023, 23, 3826–3834.

    Article  CAS  PubMed  Google Scholar 

  49. Li, F.; Han, G. F.; Jeon, J. P.; Shin, T. J.; Fu, Z. P.; Lu, Y. L.; Baek, J. B. Surface electronic modulation with hetero-single atoms to enhance oxygen evolution catalysis. ACS Nano 2021, 15, 11891–11897.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based singleatom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.

    Article  Google Scholar 

  51. Song, X. M.; Zhang, X. G.; Deng, Y. L.; Nan, Z. A.; Song, W. S.; Wang, Y. J.; Lü, L. Z.; Jiang, Q. R.; Jin, X.; Zheng, Y. P. et al. Improving the hydrogen oxidation reaction rate of Ru by active hydrogen in the ultrathin Pd interlayer. J. Am. Chem. Soc. 2023, 145, 12717–12725.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52171224 and 92261119). J. M. W. acknowledges support from Zhejiang Province Postdoctoral Science Foundation (No. ZJ2022003) and China Postdoctoral Science Foundation (No. 2023M733020). The authors thank the staff of beamline BL11B at the Shanghai Synchrotron Radiation Facility and the staff at Photoemission End-station (BL10B) in the National Synchrotron Radiation Laboratory (NSRL) for their support in XAS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongbin Zhuang or Wenping Sun.

Electronic Supplementary Material

12274_2024_6604_MOESM1_ESM.pdf

Pt single atoms coupled with Ru nanoclusters enable robust hydrogen oxidation for high-performance anion exchange membrane fuel cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, B., Zheng, X. et al. Pt single atoms coupled with Ru nanoclusters enable robust hydrogen oxidation for high-performance anion exchange membrane fuel cells. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6604-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6604-7

Keywords

Navigation