Skip to main content
Log in

Larger in-plane upper critical field and superconducting diode effect observed in topological superconductor candidate InNbS2 nanoribbons

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, the coexistence of topology and superconductivity has garnered considerable attention. Specifically, the dimensionality of these materials is crucial for the realization of topological quantum computation. However, the naturally grown materials, especially with one-dimensional feature that exhibits the coexistence of topology and superconductivity, still face challenges in terms of experimental realization and scalability, which hinders the fundamental research development and the potential to revolutionize quantum computing. Here, we report the first experimental synthesis of quasi-one-dimensional InNbS2 nanoribbons that exhibit the coexistence of topological order and superconductivity via a chemical vapor transport method. Especially, the in-plane upper critical field of InNbS2 nanoribbons exceeds the Pauli paramagnetic limit by more than 2.2 times, which can be attributed to the enhanced spin-orbit coupling and the weakened interlayer interaction between the NbS2 layers induced by the insertion of In atoms, making InNbS2 exhibit spin-momentum locking similar to that of monolayer NbS2. Moreover, for the first time, we report the superconducting diode effect in a quasi-one-dimensional superconductor system without any inherent geometric imperfections. The measured maximum efficiency is manifested as 14%, observed at μ0H ≈ ±60 mT, and we propose that the superconducting diode effect can potentially be attributed to the presence of the nontrivial topological band. Our work provides a platform for studying exotic phenomena in condensed matter physics and potential applications in quantum computing and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sohn, E.; Xi, X. X.; He, W. Y.; Jiang, S. W.; Wang, Z. F.; Kang, K. F.; Park, J. H.; Berger, H.; Forró, L.; Law, K. T. et al. An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe2. Nat. Mater. 2018, 17, 504–508.

    Article  CAS  PubMed  Google Scholar 

  2. Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2016, 12, 92–97.

    Article  CAS  Google Scholar 

  3. Wang, E. Y.; Ding, H.; Fedorov, A. V.; Yao, W.; Li, Z.; Lv, Y. F.; Zhao, K.; Zhang, L. G.; Xu, Z. J.; Schneeloch, J. et al. Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 2013, 9, 621–625.

    Article  CAS  Google Scholar 

  4. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  CAS  Google Scholar 

  5. Li, Y. P.; Wu, Z. X.; Zhou, J. G.; Bu, K. L.; Xu, C. C.; Qiao, L.; Li, M. C.; Bai, H.; Ma, J.; Tao, Q. et al. Enhanced anisotropic superconductivity in the topological nodal-line semimetal InxTaS2. Phys. Rev. B 2020, 102, 224503.

    Article  CAS  Google Scholar 

  6. Adam, M. L.; Liu, Z. F.; Moses, O. A.; Wu, X. J.; Song, L. Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2. Nano Res. 2021, 14, 2613–2619.

    Article  CAS  Google Scholar 

  7. Bian, G.; Chang, T. R.; Sankar, R.; Xu, S. Y.; Zheng, H.; Neupert, T.; Chiu, C. K.; Huang, S. M.; Chang, G. Q.; Belopolski, I. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 2016, 7, 10556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao, W. S.; Zhu, M. C.; Chen, D.; Liang, X.; Wu, Y. L.; Zhu, A. K.; Han, Y. Y.; Li, L.; Liu, X.; Zheng, G. L. et al. Evidences of topological surface states in the nodal-line semimetal SnTaS2 nanoflakes. ACS Nano 2023, 17, 4913–4921.

    Article  CAS  PubMed  Google Scholar 

  9. Vaitiekėnas, S.; Winkler, G. W.; Van Heck, B.; Karzig, T.; Deng, M. T.; Flensberg, K.; Glazman, L. I.; Nayak, C.; Krogstrup, P.; Lutchyn, R. M. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 2020, 367, eaav3392.

    Article  PubMed  Google Scholar 

  10. Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 2010, 82, 180516.

    Article  Google Scholar 

  11. Nilsson, J.; Akhmerov, A. R.; Beenakker, C. W. J. Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 2008, 101, 120403.

    Article  PubMed  Google Scholar 

  12. Oreg, Y.; Refael, G.; von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 2010, 105, 177002.

    Article  PubMed  Google Scholar 

  13. Gaidamauskas, E.; Paaske, J.; Flensberg, K. Majorana bound states in two-channel time-reversal-symmetric nanowire systems. Phys. Rev. Lett. 2014, 112, 126402.

    Article  PubMed  Google Scholar 

  14. Lai, Y. H.; Sau, J. D.; Sarma, S. D. Presence versus absence of end-to-end nonlocal conductance correlations in Majorana nanowires: Majorana bound states versus Andreev bound states. Phys. Rev. B 2019, 100, 045302.

    Article  CAS  Google Scholar 

  15. Mao, L.; Gong, M.; Dumitrescu, E.; Tewari, S.; Zhang, C. W. Hole-doped semiconductor nanowire on top of an s-wave superconductor: A new and experimentally accessible system for Majorana fermions. Phys. Rev. Lett. 2012, 108, 177001.

    Article  PubMed  Google Scholar 

  16. Prada, E.; San-Jose, P.; de Moor, M. W. A.; Geresdi, A.; Lee, E. J. H.; Klinovaja, J.; Loss, D.; Nygård, J.; Aguado, R.; Kouwenhoven, L. P. From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires. Nat. Rev. Phys. 2020, 2, 575–594.

    Article  CAS  Google Scholar 

  17. Das, A.; Ronen, Y.; Most, Y.; Oreg, Y.; Heiblum, M.; Shtrikman, H. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 2012, 8, 887–895.

    Article  CAS  Google Scholar 

  18. Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012, 336, 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  19. Hess, H. F.; Robinson, R. B.; Dynes, R. C.; Valles, J. M. J.; Waszczak, J. V. Scanning-tunneling- microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 1989, 62, 214–216.

    Article  CAS  PubMed  Google Scholar 

  20. Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 1962, 9, 266–267.

    Article  Google Scholar 

  21. Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

    Article  CAS  Google Scholar 

  22. Zhang, H. X.; Rousuli, A.; Zhang, K. N.; Luo, L. P.; Guo, C. G.; Cong, X.; Lin, Z. Z.; Bao, C. H.; Zhang, H. Y.; Xu, S. N. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 2022, 18, 1425–1430.

    Article  CAS  Google Scholar 

  23. de la Barrera, S. C.; Sinko, M. R.; Gopalan, D. P.; Sivadas, N.; Seyler, K. L.; Watanabe, K.; Taniguchi, T.; Tsen, A. W.; Xu, X. D.; Xiao, D. et al. Tuning Ising superconductivity with layer and spinorbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427.

    Article  PubMed  PubMed Central  Google Scholar 

  24. He, J. J.; Tanaka, Y.; Nagaosa, N. A phenomenological theory of superconductor diodes. New J. Phys. 2022, 24, 053014.

    Article  CAS  Google Scholar 

  25. Wu, H.; Wang, Y. J.; Xu, Y. F.; Sivakumar, P. K.; Pasco, C.; Filippozzi, U.; Parkin, S. S. P.; Zeng, Y. J.; McQueen, T.; Ali, M. N. The field-free Josephson diode in a van der Waals heterostructure. Nature 2022, 604, 653–656.

    Article  CAS  PubMed  Google Scholar 

  26. Bauriedl, L.; Bäuml, C.; Fuchs, L.; Baumgartner, C.; Paulik, N.; Bauer, J. M.; Lin, K. Q.; Lupton, J. M.; Taniguchi, T.; Watanabe, K. et al. Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 2022, 13, 4266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, E. Z.; Xu, X.; Zou, Y. C.; Ai, L. F.; Dong, X.; Huang, C.; Leng, P. L.; Liu, S. S.; Zhang, Y. D.; Jia, Z. H. et al. Nonreciprocal superconducting NbSe2 antenna. Nat. Commun. 2020, 11, 5634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wakatsuki, R.; Saito, Y.; Hoshino, S.; Itahashi, Y. M.; Ideue, T.; Ezawa, M.; Iwasa, Y.; Nagaosa, N. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 2017, 3, e1602390.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wu, Y. S.; Wang, Q.; Zhou, X.; Wang, J. H.; Dong, P.; He, J. D.; Ding, Y. F.; Teng, B. L.; Zhang, Y. W.; Li, Y. F. et al. Nonreciprocal charge transport in topological kagome superconductor CsV3Sb5. npj Quantum Mater. 2022, 7, 105.

    Article  CAS  Google Scholar 

  30. Pal, B.; Chakraborty, A.; Sivakumar, P. K.; Davydova, M.; Gopi, A. K.; Pandeya, A. K.; Krieger, J. A.; Zhang, Y.; Date, M.; Ju, S. L. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 2022, 18, 1228–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Z. C.; Huang, L. H.; Wang, J. Josephson diode effect in topological superconductor. arXiv preprint arXiv: 2311.09009, 2023.

  32. de Picoli, T.; Blood, Z.; Lyanda-Geller, Y.; Väyrynen, J. I. Superconducting diode effect in quasi-one-dimensional systems. Phys. Rev. B 2023, 107, 224518.

    Article  CAS  Google Scholar 

  33. Du, Y. P.; Bo, X. Y.; Wang, D.; Kan, E. J.; Duan, C. G.; Savrasov, S. Y.; Wan, X. G. Emergence of topological nodal lines and type-II Weyl nodes in the strong spin-orbit coupling system InNbX2 (X = S, Se). Phys. Rev. B 2017, 96, 235152.

    Article  Google Scholar 

  34. Bian, G.; Chang, T. R.; Zheng, H.; Velury, S.; Xu, S. Y.; Neupert, T.; Chiu, C. K.; Huang, S. M.; Sanchez, D. S.; Belopolski, I. et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys. Rev. B 2016, 93, 121113.

    Article  Google Scholar 

  35. Chen, D. Y.; Wu, Y. L.; Jin, L.; Li, Y. K.; Wang, X. X.; Duan, J. X.; Han, J. F.; Li, X.; Long, Y. Z.; Zhang, X. M. et al. Superconducting properties in a candidate topological nodal line semimetal SnTaS2 with a centrosymmetric crystal structure. Phys. Rev. B 2019, 100, 064516.

    Article  CAS  Google Scholar 

  36. Yang, X. H.; Yu, T. H.; Xu, C. C.; Wang, J. L.; Hu, W. H.; Xu, Z. K.; Wang, T.; Zhang, C.; Ren, Z.; Xu, Z. A. et al. Anisotropic superconductivity in the topological crystalline metal Pb1/3TaS2 with multiple Dirac fermions. Phys. Rev. B 2021, 104, 035157.

    Article  CAS  Google Scholar 

  37. Wan, P. H.; Zheliuk, O.; Yuan, N. F. Q.; Peng, X. L.; Zhang, L.; Liang, M. P.; Zeitler, U.; Wiedmann, S.; Hussey, N. E.; Palstra, T. T. M. et al. Orbital Fulde-Ferrell-Larkin-Ovchinnikov state in an Ising superconductor. Nature 2023, 619, 46–51.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, H.; Huang, X. W.; Lin, J. H.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F. C.; Zeng, Q. S.; Zhou, J. D.; Yu, P. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 394.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Blum, Y.; Tsukernik, A.; Karpovski, M.; Palevski, A. Oscillations of the superconducting critical current in Nb-Cu-Ni-Cu-Nb junctions. Phys. Rev. Lett. 2002, 89, 187004.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Z. Y.; Cheon, C. Y.; Tripathi, M.; Marega, G. M.; Zhao, Y. F.; Ji, H. G.; Macha, M.; Radenovic, A.; Kis, A. Superconducting 2D NbS2 grown epitaxially by chemical vapor deposition. ACS Nano 2021, 15, 18403–18410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hunte, F.; Jaroszynski, J.; Gurevich, A.; Larbalestier, D. C.; Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D. Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields. Nature 2008, 453, 903–905.

    Article  CAS  PubMed  Google Scholar 

  42. Hu, R. W.; Lauritch-Kullas, K.; O’Brian, J.; Mitrovic, V. F.; Petrovic, C. Anisotropy of electrical transport and superconductivity in metal chains of Nb2Se3. Phys. Rev. B 2007, 75, 064517.

    Article  Google Scholar 

  43. Wawro, A. Superconductivity in Ni/Pb modulated films. J. Low Temp. Phys. 1994, 94, 351–359.

    Article  CAS  Google Scholar 

  44. Soto, F.; Berger, H.; Cabo, L.; Carballeira, C.; Mosqueira, J.; Pavuna, D.; Toimil, P.; Vidal, F. Electric and magnetic characterization of NbSe2 single crystals: Anisotropic superconducting fluctuations above Tc. Phys. C: Supercond. 2007, 460–462, 789–790.

    Article  Google Scholar 

  45. Onabe, K.; Naito, M.; Tanaka, S. Anisotropy of upper critical field in superconducting 2H–NbS2. J. Phys. Soc. Japan 1978, 45, 50–58.

    Article  CAS  Google Scholar 

  46. Fang, L.; Wang, Y.; Zou, P. Y.; Tang, L.; Xu, Z.; Chen, H.; Dong, C.; Shan, L.; Wen, H. H. Fabrication and superconductivity of NaxTaS2 crystals. Phys. Rev. B 2005, 72, 014534.

    Article  Google Scholar 

  47. Klemm, R. A.; Luther, A.; Beasley, M. R. Theory of the upper critical field in layered superconductors. Phys. Rev. B 1975, 12, 877–891.

    Article  Google Scholar 

  48. Gurevich, A. Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 2003, 67, 184515.

    Article  Google Scholar 

  49. Yang, H. Y.; Zhou, Y. H.; Li, L. Y.; Chen, Z.; Zhang, Z. Y.; Wang, S. Y.; Wang, J.; Chen, X. L.; An, C.; Zhou, Y. et al. Pressure-induced superconductivity in quasi-one-dimensional semimetal Ta2PdSe6. Phys. Rev. Mater. 2022, 6, 084803.

    Article  CAS  Google Scholar 

  50. Zhou, N.; Xu, X. F.; Wang, J. R.; Yang, J. H.; Li, Y. K.; Guo, Y.; Yang, W. Z.; Niu, C. Q.; Chen, B.; Cao, C. et al. Controllable spinorbit coupling and its influence on the upper critical field in the chemically doped quasi-one-dimensional Nb2PdS5 superconductor. Phys. Rev. B 2014, 90, 094520.

    Article  CAS  Google Scholar 

  51. Bai, H.; Wang, M. M.; Yang, X. H.; Li, Y. P.; Ma, J.; Sun, X. K.; Tao, Q.; Li, L. J.; Xu, Z. A. Superconductivity in tantalum self-intercalated 4Ha-Ta1.03Se2. J. Phys. Condens. Matter 2018, 30, 095703.

    Article  PubMed  Google Scholar 

  52. Prober, D. E.; Schwall, R. E.; Beasley, M. R. Upper critical fields and reduced dimensionality of the superconducting layered compounds. Phys. Rev. B 1980, 21, 2717–2733.

    Article  CAS  Google Scholar 

  53. Huang, M.; Wang, S. S.; Wang, Z. H.; Liu, P.; Xiang, J. X.; Feng, C.; Wang, X. Q.; Zhang, Z. M.; Wen, Z. C.; Xu, H. J. et al. Colossal anomalous hall effect in ferromagnetic van der Waals CrTe2. ACS Nano 2021, 15, 9759–9763.

    Article  CAS  PubMed  Google Scholar 

  54. Cho, C. W.; Lyu, J.; Ng, C. Y.; He, J. J.; Lo, K. T.; Chareev, D.; Abdel-Baset, T. A.; Abdel-Hafiez, M.; Lortz, R. Evidence for the Fulde–Ferrell–Larkin–Ovchinnikov state in bulk NbS2. Nat. Commun. 2021, 12, 3676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Devarakonda, A.; Inoue, H.; Fang, S.; Ozsoy-Keskinbora, C.; Suzuki, T.; Kriener, M.; Fu, L.; Kaxiras, E.; Bell, D. C.; Checkelsky, J. G. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 2020, 370, 231–236.

    Article  CAS  PubMed  Google Scholar 

  56. Hu, X. D.; Ran, Y. Engineering chiral topological superconductivity in twisted Ising superconductors. Phys. Rev. B 2022, 106, 125136.

    Article  CAS  Google Scholar 

  57. Li, Y. P.; Wu, Y.; Xu, C. C.; Liu, N. N.; Ma, J.; Lv, B. J.; Yao, G.; Liu, Y.; Bai, H.; Yang, X. H. et al. Anisotropic gapping of topological Weyl rings in the charge-density-wave superconductor InxTaSe2. Sci. Bull. 2021, 66, 243–249.

    Article  CAS  Google Scholar 

  58. Jeon, K. R.; Kim, J. K.; Yoon, J.; Jeon, J. C.; Han, H.; Cottet, A.; Kontos, T.; Parkin, S. S. P. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 2022, 21, 1008–1013.

    Article  CAS  PubMed  Google Scholar 

  59. Hope, M. K.; Amundsen, M.; Suri, D.; Moodera, J. S.; Kamra, A. Interfacial control of vortex-limited critical current in type-II superconductor films. Phys. Rev. B 2021, 104, 184512.

    Article  CAS  Google Scholar 

  60. Hou, Y. S.; Nichele, F.; Chi, H.; Lodesani, A.; Wu, Y. Y.; Ritter, M. F.; Haxell, D. Z.; Davydova, M.; Ilić, S.; Glezakou-Elbert, O. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 2023, 131, 027001.

    Article  CAS  PubMed  Google Scholar 

  61. Roy, R. Topological Majorana and Dirac zero modes in superconducting vortex cores. Phys. Rev. Lett. 2010, 105, 186401.

    Article  PubMed  Google Scholar 

  62. Yasuda, K.; Yasuda, H.; Liang, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Nagaosa, N.; Kawasaki, M.; Tokura, Y. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 2019, 10, 2734.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  64. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  65. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  66. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  67. Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416.

    Article  CAS  Google Scholar 

  68. Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Innovation Program for Quantum Science and Technology (No. 2021ZD0302800), the National Natural Science Foundation of China (Nos. 52373309 and 12374177), University of Macau Start-up research grant (No. SRG2023-00057-IAPME), and National Synchrotron Radiation Laboratory (No. KY2060000177). This research was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xiang.

Electronic Supplementary Material

12274_2024_6599_MOESM1_ESM.pdf

Larger in-plane upper critical field and superconducting diode effect observed in topological superconductor candidate InNbS2 nanoribbons

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Wang, C., Feng, X. et al. Larger in-plane upper critical field and superconducting diode effect observed in topological superconductor candidate InNbS2 nanoribbons. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6599-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6599-0

Keywords

Navigation