Skip to main content
Log in

Enhanced population of excited single state strategy: irradiation and ultrasound dual-response and host tumor-driven nano-sensitizers construction in triple synergistic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Phototheranostics is an emerging field in synergistic antitumor therapy in which irradiation and sensitizers are combined to produce reactive oxygen species (ROS), bio-images, and high temperatures. All of these are arrived from the energy of sensitizers, which located in excited single state (S1). Undeniably, the decentralization of the S1 population indirectly decreases the effect of each individual treatment. In this study, a strategy was proposed for enhancing the S1 population, and a sensitizer with mitochondrial targeting property, 1,4-indolyl iodinated pyrrolo[3,2-b]pyrrole derivative (2I-TPIS), was assembled into adenosine triphosphate (ATP)-responsive nanoparticles (DPA-2I NPs) to achieve dual responses to irradiation and ultrasonication (US) for application to photo-sonodynamic therapy (PSDT). Compared with monotherapies, 2I-TPIS generated more ROS in PSDT, inducing mitochondrial autophagy and apoptosis, which in turn triggered immunogenic cell death (ICD). Subsequently, DPA-2I NPs were constructed and self-assembled with the chemotherapeutic agents DPA-Cd and 2I-TPIS to achieve a triple synergistic strategy involving chemotherapy (CT) and PSDT. DPA-2I NPs exhibited absolute sensitization, intra-tumoral overexpression of ATP, and disassembly. Importantly, the biosafety and potent antitumor efficiency of the DPA-2I NP-based “PSDT + CT” therapy were revealed using a 4T1 tumor model. The study results provide insights into the design of sensitizers possessing a sufficient S1 population and a highly efficient tumor ablation capacity derived from molecular structural modulation, further enabling triple synergistic antitumor therapies, and expanding the clinical application of sensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, T. W.; Xu, Z.; Chen, H.; Zhen, S. J.; Gu, H.; Zhao, Z. J.; Tang, B. Z. Constructing efficient and photostable photosensitizer with aggregation-induced emission by introducing highly electronegative nitrogen atom for photodynamic therapy. Chem. Eng. J. 2023, 468, 143829.

    Article  CAS  Google Scholar 

  2. Li, X. Z.; Fang, F.; Sun, B.; Yin, C.; Tan, J. H.; Wan, Y. P.; Zhang, J. F.; Sun, P. F.; Fan, Q. L.; Wang, P. F. et al. Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. Nanoscale Horiz. 2021, 6, 177–185.

    Article  CAS  PubMed  Google Scholar 

  3. Fang, S.; Lin, J.; Li, C. X.; Huang, P.; Hou, W. X.; Zhang, C. L.; Liu, J. J.; Huang, S. S.; Luo, Y. X.; Fan, W. P. et al. Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy. Small 2017, 13, 1602580.

    Article  Google Scholar 

  4. Tan, H. S.; Liu, Y. L.; Hou, N.; Cui, S. S.; Liu, B.; Fan, S. S.; Yu, G. P.; Han, C.; Zheng, D. C.; Li, W. Z. et al. Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer. Acta Biomater. 2022, 141, 408–417.

    Article  CAS  PubMed  Google Scholar 

  5. Ma, J. W.; Li, N.; Wang, J. J.; Liu, Z.; Han, Y. L.; Zeng, Y. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms. Exploration 2023, 3, 20220161.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, M. Q.; Deng, J. R.; Su, H. F.; Gu, S. X.; Zhang, J.; Zhong, A. G.; Wu, F. S. Small organic molecule-based nanoparticles with red/near-infrared aggregation- induced emission for bioimaging and PDT/PTT synergistic therapy. Mater. Chem. Front. 2021, 5, 406–417.

    Article  CAS  Google Scholar 

  7. Zhang, Z. J.; Xu, W. H.; Kang, M. M.; Wen, H. F.; Guo, H.; Zhang, P. F.; Xi, L.; Li, K.; Wang, L.; Wang, D. et al. An all-round athlete on the track of phototheranostics: Subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy. Adv. Mater. 2020, 32, 2003210.

    Article  CAS  Google Scholar 

  8. Song, S. L.; Zhao, Y.; Kang, M. M.; Zhang, Z. J.; Wu, Q.; Fu, S.; Li, Y. M.; Wen, H. F.; Wang, D.; Tang, B. Z. Side-chain engineering of aggregation-induced emission molecules for boosting cancer phototheranostics. Adv. Funct. Mater. 2021, 31, 2107545.

    Article  CAS  Google Scholar 

  9. Liu, L. Q.; Wang, X.; Wang, L. J.; Guo, L. Q.; Li, Y. B.; Bai, B.; Fu, F.; Lu, H. G.; Zhao, X. W. One-for-all phototheranostic agent based on aggregation-induced emission characteristics for multimodal imaging-guided synergistic photodynamic/photothermal cancer therapy. ACS Appl. Mater. Interfaces 2021, 13, 19668–19678.

    Article  CAS  PubMed  Google Scholar 

  10. Xu, W. H.; Zhang, Z. J.; Kang, M. M.; Guo, H.; Li, Y. M.; Wen, H. F.; Lee, M. M. S.; Wang, Z. Y.; Kwok, R. T. K.; Lam, J. W. Y. et al. Making the best use of excited-state energy: Multimodality theranostic systems based on second near-infrared (NIR-II) aggregation-induced emission luminogens (AIEgens). ACS Materials Lett. 2020, 2, 1033–1040.

    Article  CAS  Google Scholar 

  11. Li, Y.; Wang, Y. G.; Huang, G.; Gao, J. M. Cooperativity principles in self-assembled nanomedicine. Chem. Rev. 2018, 118, 5359–5391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gil-Garcia, M.; Ventura, S. Multifunctional antibody-conjugated coiled-coil protein nanoparticles for selective cell targeting. Acta Biomater 2021, 131, 472–482.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X.; Wang, J. F.; Wang, J. H.; Zhong, Y.; Han, L. L.; Yan, J. L.; Duan, P. C.; Shi, B. Y.; Bai, F. Noncovalent self-assembled smart gold (III) porphyrin nanodrug for synergistic chemophotothermal therapy. Nano Lett. 2021, 21, 3418–3425.

    Article  CAS  PubMed  Google Scholar 

  14. Sun, C.; Wang, Z. Y.; Yang, K. K.; Yue, L. D.; Cheng, Q.; Ma, Y. L.; Lu, S. Y.; Chen, G. S.; Wang, R. B. Polyamine-responsive morphological transformation of a supramolecular peptide for specific drug accumulation and retention in cancer cells. Small 2021, 17, 2101139.

    Article  CAS  Google Scholar 

  15. Lovegrove, J. T.; Kent, B.; Förster, S.; Garvey, C. J.; Stenzel, M. H. The flow of anisotropic nanoparticles in solution and in blood. Exploration 2023, 3, 20220075.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yao, Q. X.; Gao, S.; Wu, C. L.; Lin, T.; Gao, Y. Enzymatic non-covalent synthesis of supramolecular assemblies as a general platform for bioorthogonal prodrugs activation to combat drug resistance. Biomaterials 2021, 277, 121119.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, X. B.; Kang, J. Y.; Shi, Y. P. Noncovalent dual-locked near-infrared fluorescent probe for precise imaging of tumor via hypoxia/glutathione activation. Anal. Chem. 2022, 94, 6574–6581.

    Article  CAS  PubMed  Google Scholar 

  18. Ma, X. M.; Chen, X. Y.; Yi, Z.; Deng, Z. W.; Su, W.; Chen, G. C.; Ma, L.; Ran, Y. Q.; Tong, Q. L.; Li, X. D. Size changeable nanomedicines assembled by noncovalent interactions of responsive small molecules for enhancing tumor therapy. ACS Appl. Mater. Interfaces 2022, 14, 26431–26442.

    Article  CAS  Google Scholar 

  19. Qi, J.; Duan, X. C.; Liu, W. Y.; Li, Y.; Cai, Y. J.; Lam, J. W. Y.; Kwok, R. T. K.; Ding, D.; Tang, B. Z. Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials 2020, 248, 120036.

    Article  CAS  PubMed  Google Scholar 

  20. Nene, L. C.; Magadla, A.; Nyokong, T. Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity. J. Photoch. Photobio. B Biol. 2022, 235, 112553.

    Article  CAS  Google Scholar 

  21. Zhao, G. Z.; Chen, S. N.; Zheng, J.; Li, C. Y.; Zhong, X. W.; Cao, Y.; Zheng, Y.; Sun, J. C.; Zhu, S. Y.; Chang, S. F. Photo-sonodynamic therapy mediated with OLI_NPs to induce HPV16E7-specific immune response and inhibit cervical cancer in a Tc-1-grafted murine model. J. Photoch. Photobio. B Biol. 2023, 238, 112583.

    Article  CAS  Google Scholar 

  22. Sun, W. J.; Chu, C. C.; Li, S.; Ma, X. Q.; Liu, P. F.; Chen, S. L.; Chen, H. M. Nanosensitier-mediated unique dynamic therapy tactics for effective inhibition of deep tumors. Adv. Drug Delivery Rev. 2023, 192, 114643.

    Article  CAS  Google Scholar 

  23. Yang, Y. R.; Huang, J.; Liu, M.; Qiu, Y. G.; Chen, Q. H.; Zhao, T. J.; Xiao, Z. X.; Yang, Y. Q.; Jiang, Y. T.; Huang, Q. et al. Emerging sonodynamic therapy-based nanomedicines for cancer immunotherapy. Adv. Sci. 2022, 10, 2204365.

    Article  Google Scholar 

  24. Lafond, M.; Yoshizawa, S.; Umemura, S. I. Sonodynamic therapy: Advances and challenges in clinical translation. J. Ultras. Med. 2019, 38, 567–580.

    Article  Google Scholar 

  25. Nanzai, B.; Mochizuki, A.; Wakikawa, Y.; Masuda, Y.; Oshio, T.; Yagishita, K. Sonoluminescence intensity and ultrasonic cavitation temperature in organic solvents: Effects of generated radicals. Ultrason. Sonochem. 2023, 95, 106357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cui, S. S.; Dai, S. X.; Lin, N.; Wu, X. H.; Shi, J. B.; Tong, B.; Liu, P.; Cai, Z. X.; Dong, Y. P. Constructing hypoxia-tolerant and host tumor-enriched aggregation-induced emission photosensitizer for suppressing malignant tumors relapse and metastasis. Small 2022, 18, 2203825.

    Article  CAS  Google Scholar 

  27. Chen, Y. Z.; Ai, W. T.; Guo, X.; Li, Y. W.; Ma, Y. F.; Chen, L. F.; Zhang, H.; Wang, T. X.; Zhang, X.; Wang, Z. Mitochondria-targeted polydopamine nanocomposite with AIE photosensitizer for image-guided photodynamic and photothermal tumor ablation. Small 2019, 15, 1902352.

    Article  Google Scholar 

  28. Li, Y. L.; Zhang, D.; Yu, Y. W.; Zhang, L.; Li, L.; Shi, L. L.; Feng, G. X.; Tang, B. Z. A cascade strategy boosting hydroxyl radical generation with aggregation-induced emission photosensitizers-albumin complex for photodynamic therapy. ACS Nano 2023, 17, 16993–17003.

    Article  CAS  PubMed  Google Scholar 

  29. Hu, W. B.; Zhang, R.; Zhang, X. F.; Liu, J. T.; Luo, L. Halogenated BODIPY photosensitizers: Photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 272, 120965.

    Article  CAS  PubMed  Google Scholar 

  30. Li, P. F.; Shimoyama, D.; Zhang, N.; Jia, Y. W.; Hu, G. F.; Li, C. L.; Yin, X. D.; Wang, N.; Jäkle, F.; Chen, P. K. A new platform of B/N-doped cyclophanes: Access to a π-conjugated block-type B3N3 macrocycle with strong dipole moment and unique optoelectronic properties. Angew. Chem., Int. Ed. 2022, 61, e202200612.

    Article  CAS  Google Scholar 

  31. Li, Y.; Zhuang, J. B.; Lu, Y.; Li, N.; Gu, M. J.; Xia, J.; Zhao, N.; Tang, B. Z. High-performance near-infrared aggregation-induced emission luminogen with mitophagy regulating capability for multimodal cancer theranostics. ACS Nano 2021, 15, 20453–20465.

    Article  CAS  PubMed  Google Scholar 

  32. Huang, Y. Y.; You, X.; Wang, L. N.; Zhang, G. X.; Gui, S. L.; Jin, Y. L.; Zhao, R.; Zhang, D. Q. Pyridinium-substituted tetraphenylethylenes functionalized with alkyl chains as autophagy modulators for cancer therapy. Angew. Chem., Int. Ed. 2020, 59, 10042–10051.

    Article  CAS  Google Scholar 

  33. Amorim, R.; Cagide, F.; Tavares, L. C.; Simões, R. F.; Soares, P.; Benfeito, S.; Baldeiras, I.; Jones, J. G.; Borges, F.; Oliveira, P. J. et al. Mitochondriotropic antioxidant based on caffeic acid AntiOxCIN4 activates Nrf2-dependent antioxidant defenses and quality control mechanisms to antagonize oxidative stress-induced cell damage. Free Radical Biol. Med. 2022, 179, 119–132.

    Article  CAS  Google Scholar 

  34. Zhang, Y. Z.; Wu, Y.; Zhang, M. J.; Li, Z. X.; Liu, B.; Liu, H. F.; Hao, J. F.; Li, X. Y. Synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with other organelles. Cell Death Discov. 2023, 9, 51.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jain, M. V.; Paczulla, A. M.; Klonisch, T.; Dimgba, F. N.; Rao, S. B.; Roberg, K.; Schweizer, F.; Lengerke, C.; Davoodpour, P.; Palicharla, V. R. et al. Interconnections between apoptotic, autophagic and necrotic pathways: Implications for cancer therapy development. J. Cell. Mol. Med. 2013, 17, 12–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gonzalez-Polo, R. A.; Boya, P.; Pauleau, A. L.; Jalil, A.; Larochette, N.; Souquere, S.; Eskelinen, E. L.; Pierron, G.; Saftig, P.; Kroemer, G. The apoptosis/autophagy paradox: Autophagic vacuolization before apoptotic death. J. Cell Sci. 2005, 118, 3091–3102.

    Article  CAS  PubMed  Google Scholar 

  37. Muhsin-Sharafaldine, M. R.; McLellan, A. D. Tumor-derived apoptotic vesicles: With death they do part. Front. Immunol. 2018, 9, 957.

    Article  PubMed  PubMed Central  Google Scholar 

  38. De Nicola, M.; Cerella, C.; D’Alessio, M.; Coppola, S.; Magrini, A.; Bergamaschi, A.; Ghibelli, L. The cleavage mode of apoptotic nuclear vesiculation is related to plasma membrane blebbing and depends on actin reorganization. Ann. N. Y. Acad. Sci. 2006, 1090, 69–78.

    Article  CAS  PubMed  Google Scholar 

  39. Rose, R.; Peschke, N.; Nigi, E.; Gelléri, M.; Ritz, S.; Cremer, C.; Luhmann, H. J.; Sinning, A. Chromatin compaction precedes apoptosis in developing neurons. Commun. Biol. 2022, 5, 797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lamberti, M. J.; Nigro, A.; Casolaro, V.; Rumie Vittar, N. B.; Dal Col, J. Damage-associated molecular patterns modulation by microRNA: Relevance on immunogenic cell death and cancer treatment outcome. Cancers 2021, 13, 2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, Z. B.; Bian, M. L.; Lv, L.; Chang, X. Y.; Wen, Z. F.; Li, F. W.; Lu, Y. L.; Liu, W. K. Tumor-targeting NHC-Au(I) complex induces immunogenic cell death in hepatocellular carcinoma. J. Med. Chem. 2023, 66, 3934–3952.

    Article  CAS  PubMed  Google Scholar 

  42. Song, M.; Cubillos-Ruiz, J. R. Endoplasmic reticulum stress responses in intratumoral immune cells: Implications for cancer immunotherapy. Trends Immunol. 2019, 40, 128–141.

    Article  CAS  PubMed  Google Scholar 

  43. Hou, Z. Y.; Zhou, M.; Ma, Y. Y.; Xu, X. X.; Zhang, Z. Q.; Lai, S. W.; Fan, W. P.; Xie, J. B.; Ju, S. H. Size-changeable nanoprobes for the combined radiotherapy and photodynamic therapy of tumor. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2655–2667.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, L. M.; Wang, K.; Huang, Y. H.; Zhang, H.; Zhou, L.; Li, A.; Sun, Y. Y. Photosensitizer-induced HPV16 E7 nanovaccines for cervical cancer immunotherapy. Biomaterials 2022, 282, 121411.

    Article  CAS  PubMed  Google Scholar 

  45. Yang, H.; Tang, J.; Guo, D.; Zhao, Q. Q.; Wen, J. G.; Zhang, Y. J.; Obianom, O. N.; Zhou, S. W.; Zhang, W.; Shu, Y. Cadmium exposure enhances organic cation transporter 2 trafficking to the kidney membrane and exacerbates cisplatin nephrotoxicity. Kidney Int. 2020, 97, 765–777.

    Article  CAS  PubMed  Google Scholar 

  46. Li, D. S.; Yang, C. L.; Xu, X. M.; Li, S. H.; Luo, G. F.; Zhang, C.; Wang, Z. L.; Sun, D. L.; Cheng, J. Z.; Zhang, Q. H. Low dosage fluorine ameliorates the bioaccumulation, hepatorenal dysfunction and oxidative stress, and gut microbiota perturbation of cadmium in rats. Environ. Pollut. 2023, 324, 121375.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Y. M.; Li, Y. J.; Feng, Q.; Shao, M. H.; Yuan, F. Y.; Liu, F. S. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae. Chemosphere 2020, 248, 126009.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, Y. F.; Tozzi, F.; Chen, J. Y.; Fan, F.; Xia, L.; Wang, J. R.; Gao, G.; Zhang, A. J.; Xia, X. F.; Brasher, H. et al. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res. 2012, 72, 304–314.

    Article  CAS  PubMed  Google Scholar 

  49. Su, Z. H.; Xi, D. M.; Chen, Y. C.; Wang, R.; Zeng, X. L.; Xiong, T.; Xia, X.; Rong, X.; Liu, T.; Liu, W. K. et al. Carrier-free ATP-activated nanoparticles for combined photodynamic therapy and chemotherapy under near-infrared light. Small 2023, 19, 2205825.

    Article  CAS  Google Scholar 

  50. Jeena, M. T.; Jin, S.; Jeong, K.; Cho, Y.; Kim, J. C.; Lee, J. H.; Lee, S.; Hwang, S. W.; Kwak, S. K.; Kim, S. et al. Cancer-selective supramolecular chemotherapy by disassembly-assembly approach. Adv. Funct. Mater. 2022, 32, 2208098.

    Article  CAS  Google Scholar 

  51. Zhang, T. F.; Zhang, J. Y.; Wang, F. B.; Cao, H.; Zhu, D. M.; Chen, X. Y.; Xu, C. H.; Yang, X. Q.; Huang, W. B.; Wang, Z. Y. et al. Mitochondria-targeting phototheranostics by aggregation-induced NIR-II emission luminogens: Modulating intramolecular motion by electron acceptor engineering for multi-modal synergistic therapy. Adv. Funct. Mater. 2022, 32, 2110526.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the National Natural Science Foundation of China (Nos. U23A2089, 22205159, and 22103055), Natural Science Foundation of Tianjin (No. 21JCQNJC01450), and Science and Technology Plans of Tianjin (Nos. 22ZYJDSS00070 and 21ZYJDJC00050). The authors also thank the Analytical & Testing Center of Tiangong Univertisy for NMR spectrometer and Transmission Electron Microscope.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pai Liu or Yi Liu.

Electronic Supplementary Material

12274_2024_6595_MOESM1_ESM.pdf

Enhanced population of excited single state strategy: irradiation and ultrasound dual-response and host tumor-driven nano-sensitizers construction in triple synergistic therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tian, M., Yang, T. et al. Enhanced population of excited single state strategy: irradiation and ultrasound dual-response and host tumor-driven nano-sensitizers construction in triple synergistic therapy. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6595-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6595-4

Keywords

Navigation