Skip to main content
Log in

Regulation of aqueous electrolyte interface via electrolyte strategies for uniform zinc deposition

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous zinc ion batteries (AZIBs), renowned for their high theoretical energy density, safety, cost-effectiveness and eco-friendliness, offer immense potential in the realm of energy storage and conversion, finding applications in renewable energy and portable devices. However, the development of AZIBs still faces several challenges related to the electrochemical behavior of zinc anodes in aqueous electrolytes, primarily zinc dendrite formation, which emphasize the critical need for a fundamental understanding of the interfacial phenomena between the electrode and electrolyte. This review focuses on the three models: the electric double layer (EDL) model, the solvation structure model, and the Zn/electrolyte interface model. They guide the design of the electrolyte system in AZIBs. These models provide a comprehensive understanding of the interactions between the electrode, electrolyte, and the solvated ions in the system. By optimizing the salt types, salt concentrations, solvents and additives based on these models, it is possible to enhance the performance of AZIBs, including their energy density, cycle life, and safety. The review also highlights recent research progress in electrolyte modification of AZIBs for understanding battery behavior, along with perspectives for the direction of further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poizot, P.; Dolhem, F. Clean energy new deal for a sustainable world: From non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 2011, 4, 2003–2019.

    Article  CAS  Google Scholar 

  2. Zhong, W.; Zhang, J. H.; Li, Z. M.; Shen, Z. Y.; Zhang, S. C.; Wang, X. Y.; Lu, Y. Y. Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries. Green Chem. Eng. 2023, 4, 264–284.

    Article  Google Scholar 

  3. Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

    Article  CAS  Google Scholar 

  4. She, L. N.; Cheng, H.; Yuan, Z. Y.; Shen, Z. Y.; Wu, Q.; Zhong, W.; Zhang, S. C.; Zhang, B.; Liu, C. W.; Zhang, M. C. et al. Rechargeable aqueous zinc-halogen batteries: Fundamental mechanisms, research issues, and future perspectives. Adv. Sci. 2024, 11, 2305061.

    Article  CAS  Google Scholar 

  5. Cheng, H.; Zhang, S. C.; Guo, W. X.; Wu, Q.; Shen, Z. Y.; Wang, L. L.; Zhong, W.; Li, D.; Zhang, B.; Liu, C. W. et al. Hydrolysis of solid buffer enables high-performance aqueous zinc ion battery. Adv. Sci. 2024, 11, 2307052.

    Article  CAS  Google Scholar 

  6. Duan, G. S.; Wang, Y.; Sun, L. L.; Bao, Z. A.; Luo, B.; Zheng, S. N.; Ye, Z. Z.; Huang, J. Y.; Lu, Y. Y. Atomic pinning of trace additives induces interfacial solvation for highly reversible Zn metal anodes. ACS Nano 2023, 17, 22722–22732.

    Article  CAS  PubMed  Google Scholar 

  7. Olbasa, B. W.; Fenta, F. W.; Chiu, S. F.; Tsai, M. C.; Huang, C. J.; Jote, B. A.; Beyene, T. T.; Liao, Y. F.; Wang, C. H.; Su, W. N. et al. High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl. Energy Mater. 2020, 3, 4499–4508.

    Article  CAS  Google Scholar 

  8. Yi, Z. H.; Chen, G. Y.; Hou, F.; Wang, L. Q.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2003065.

    Article  CAS  Google Scholar 

  9. Zhu, Y. P.; Cui, Y.; Alshareef, H. N. An anode-free Zn-MnO2 battery. Nano Lett. 2021, 21, 1446–1453.

    Article  CAS  PubMed  Google Scholar 

  10. Fan, X. Y.; Yang, H.; Feng, B.; Zhu, Y. Q.; Wu, Y.; Sun, R. B.; Gou, L.; Xie, J.; Li, D. L.; Ding, Y. L. Rationally designed In@Zn@In trilayer structure on 3D porous Cu towards high-performance Zn-ion batteries. Chem. Eng. J. 2022, 445, 136799.

    Article  CAS  Google Scholar 

  11. Zeng, L.; He, J.; Yang, C. Y.; Luo, D.; Yu, H. B.; He, H. N.; Zhang, C. H. Direct 3D printing of stress-released Zn powder anodes toward flexible dendrite-free Zn batteries. Energy Stor. Mater. 2023, 54, 469–477.

    Google Scholar 

  12. Liu, B. T.; Wang, S. J.; Wang, Z. L.; Lei, H.; Chen, Z. T.; Mai, W. J. Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 2020, 16, 2001323.

    Article  CAS  Google Scholar 

  13. Mu, Y. B.; Li, Z.; Wu, B. K.; Huang, H. D.; Wu, F. H.; Chu, Y. Q.; Zou, L. F.; Yang, M.; He, J. F.; Ye, L. et al. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 2023, 14, 4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, X. J.; Li, W.; Hu, S. S.; Akhmedov, N. G.; Reed, D.; Li, X. L.; Liu, X. B. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy 2022, 98, 107269.

    Article  CAS  Google Scholar 

  15. Gao, L.; Qin, L.; Wang, B.; Bao, M. D.; Cao, Y. W.; Duan, X. D.; Yang, W. Y.; Yang, X. D.; Shi, Q. Highly-efficient and robust Zn anodes enabled by sub-1-µm zincophilic CrN coatings. Small, in press, DOI: https://doi.org/10.1002/smll.202308818.

  16. Ren, Q. Q.; Tang, X. Y.; Zhao, X. C.; Wang, Y.; Li, C. H.; Wang, S.; Yuan, Y. F. A zincophilic interface coating for the suppression of dendrite growth in zinc anodes. Nano Energy 2023, 109, 108306.

    Article  CAS  Google Scholar 

  17. Guo, Z. K.; Fan, L. S.; Zhao, C. Y.; Chen, A. S.; Liu, N. N.; Zhang, Y.; Zhang, N. Q. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 2022, 34, 2105133.

    Article  CAS  Google Scholar 

  18. Zhang, Y.; Yang, G.; Lehmann, M. L.; Wu, C. S.; Zhao, L. H.; Saito, T.; Liang, Y. L.; Nanda, J.; Yao, Y. Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett. 2021, 21, 10446–10452.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X.; Feng, K. Q.; Sang, B. Y.; Li, G. J.; Zhang, Z. C. Y.; Zhou, G. W.; Xi, B. J.; An, X. G.; Xiong, S. L. Highly reversible zinc metal anodes enabled by solvation structure and interface chemistry modulation. Adv. Energy Mater. 2023, 13, 2301670.

    Article  CAS  Google Scholar 

  20. Fang, Y.; Xie, X. S.; Zhang, B. Y.; Chai, Y. Z.; Lu, B. A.; Liu, M. K.; Zhou, J.; Liang, S. Q. Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 2022, 32, 2109671.

    Article  CAS  Google Scholar 

  21. Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

    Article  CAS  Google Scholar 

  22. Lu, H. F.; Zhang, D.; Jin, Q. Z.; Zhang, Z. L.; Lyu, N. W.; Zhu, Z. J.; Duan, C. X.; Qin, Y.; Jin, Y. Gradient electrolyte strategy achieving long-life zinc anodes. Adv. Mater. 2023, 35, 2300620.

    Article  CAS  Google Scholar 

  23. An, Y. L.; Tian, Y.; Zhang, K.; Liu, Y. P.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 2021, 31, 2101886.

    Article  CAS  Google Scholar 

  24. Wang, R.; Ma, Q. W.; Zhang, L. H.; Liu, Z. X.; Wan, J. D.; Mao, J. F.; Li, H. B.; Zhang, S. L.; Hao, J. N.; Zhang, L. et al. An aqueous electrolyte regulator for highly stable zinc anode under −35 to 65 °C. Adv. Energy Mater. 2023, 13, 2302543.

    Article  CAS  Google Scholar 

  25. Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, S. Q.; Nian, Q. S.; Zheng, L.; Xiong, B. Q.; Wang, Z. H.; Shen, Y. B.; Ren, X. D. Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes. J. Mater. Chem. A 2021, 9, 22347–22352.

    Article  CAS  Google Scholar 

  27. Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

    Article  CAS  PubMed  Google Scholar 

  28. Dong, D. J.; Wang, T. R.; Sun, Y.; Fan, J.; Lu, Y. C. Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 2023, 6, 1474–1484.

    Article  Google Scholar 

  29. Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y.; Wang, J. L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem., Int. Ed. 2019, 58, 2760–2764.

    Article  CAS  Google Scholar 

  31. Qiu, H. Y.; Du, X. F.; Zhao, J. W.; Wang, Y. T.; Ju, J. W.; Chen, Z.; Hu, Z. L.; Yan, D. P.; Zhou, X. H.; Cui, G. L. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 2019, 10, 5374.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Qiu, M. J.; Sun, P.; Wang, Y.; Ma, L.; Zhi, C. Y.; Mai, W. J. Aniontrap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202210979.

    Article  CAS  Google Scholar 

  33. Yuan, L. B.; Hao, J. N.; Kao, C. C.; Wu, C.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 2021, 14, 5669–5689.

    Article  CAS  Google Scholar 

  34. Luo, J. R.; Xu, L.; Zhou, Y. J.; Yan, T. R.; Shao, Y. Y.; Yang, D. Z.; Zhang, L.; Xia, Z.; Wang, T. H.; Zhang, L. et al. Regulating the inner helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202302302.

    Article  CAS  Google Scholar 

  35. Cui, P.; Hu, J. G.; Luo, Y. Q.; Zhu, P. F.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Trace tea polyphenols enabling reversible dendrite-free zinc anode. J. Colloid Interface Sci. 2022, 624, 450–459.

    Article  CAS  PubMed  Google Scholar 

  36. Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y.; Zeng, X. H.; Huang, H. J.; Xie, D. M.; Sun, J. Y.; Zhao, J. C.; Rui, Y. C.; Wang, J. G.; Yuwono, J. A.; Mao, J. F. Manipulating the solvation structure and interface via a bio-based green additive for highly stable Zn metal anode. Small Methods, in press, DOI: https://doi.org/10.1002/smtd.202300804.

  38. Li, X. Q.; Xiang, J.; Liu, H.; Wang, P. F.; Chen, C.; Gao, T. T.; Guo, Y. Q.; Xiao, D.; Jin, Z. Y. Molecularly modulating solvation structure and electrode interface enables dendrite-free zinc-ion batteries. J. Colloid Interface Sci. 2024, 654, 476–485.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y.; An, Y. K.; Wu, L.; Sun, J. G.; Xiong, F. Y.; Tang, H.; Chen, S. L.; Guo, Y.; Zhang, L.; An, Q. Y. et al. Interfacial chemistry modulation via amphoteric glycine for a highly reversible zinc anode. ACS Nano 2023, 17, 552–560.

    Article  CAS  PubMed  Google Scholar 

  40. Lebègue, E. Allen J. Bard, Larry R. Faulkner, Henry S. White: Electrochemical methods: Fundamentals and applications, 3rd edition, wiley. Transit. Met. Chem. 2023, 48, 433–436.

    Article  Google Scholar 

  41. Zhang, M. K.; Cai, J.; Chen, Y. X. On the electrode charge at the metal/solution interface with specific adsorption. Curr. Opin. Electrochem. 2022, 36, 101161.

    Article  CAS  Google Scholar 

  42. Wu, J. Z. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 2022, 122, 10821–10859.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, L.; Li, D. M.; Xie, X.; Ji, D. D.; Li, L. W.; Li, L.; He, Z. X.; Lu, B. A.; Liang, S. Q.; Zhou, J. Electric double layer design for Zn-based batteries. Energy Storage Mater. 2023, 62, 102932.

    Article  Google Scholar 

  44. Huang, J. Zooming into the inner helmholtz plane of Pt(111)-aqueous solution interfaces: Chemisorbed water and partially charged ions. JACS Au 2023, 3, 550–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sudnitsyn, I. I.; Smagin, A. V.; Shvarov, A. P. The theory of Maxwell-Boltzmann-Helmholtz-Gouy about the double electric layer in disperse systems and its application to soil science (on the 100th anniversary of the paper published by Gouy). Eurasian Soil Sci. 2012, 45, 452–457.

    Article  Google Scholar 

  46. Chapman, D. L. A contribution to the theory of electrocapillarity. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1913, 25, 475–481.

    Article  Google Scholar 

  47. Stern, O. Zur theorie der elektrolytischen doppelschicht. Z. Elektrochem. Angew. Phys. Chem. 1924, 30, 508–516.

    CAS  Google Scholar 

  48. Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501.

    Article  CAS  PubMed  Google Scholar 

  49. Frumkin, A.; Damaskin, B.; Grigoryev, N.; Bagotskaya, I. Potentials of zero charge, interaction of metals with water and adsorption of organic substances-I. Potentials of zero charge and hydrophilicity of metals. Electrochim. Acta 1974, 19, 69–74.

    Article  CAS  Google Scholar 

  50. Cao, J.; Zhang, D. D.; Zhang, X. Y.; Zeng, Z. Y.; Qin, J. Q.; Huang, Y. H. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 2022, 15, 499–528.

    Article  CAS  Google Scholar 

  51. Miao, L. C.; Guo, Z. P.; Jiao, L. F. Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries. Energy Mater. 2023, 3, 300014.

    CAS  Google Scholar 

  52. Gao, S. S.; Zhang, Z.; Mao, F. F.; Liu, P. G.; Zhou, Z. Advances and strategies of electrolyte regulation in Zn-ion batteries. Mater. Chem. Front. 2023, 7, 3232–3258.

    Article  CAS  Google Scholar 

  53. Li, X. M.; Wang, X. Y.; Ma, L. T.; Huang, W. Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 2022, 12, 2202068.

    Article  CAS  Google Scholar 

  54. Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. J. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem., Int. Ed. 2021, 60, 18247–18255.

    Article  CAS  Google Scholar 

  55. Li, C.; Shyamsunder, A.; Hoane, A. G.; Long, D. M.; Kwok, C. Y.; Kotula, P. G.; Zavadil, K. R.; Gewirth, A. A.; Nazar, L. F. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 2022, 6, 1103–1120.

    Article  CAS  Google Scholar 

  56. Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

    Article  CAS  PubMed  Google Scholar 

  57. Xing, Z. H.; Huang, C. D.; Hu, Z. L. Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 2022, 452, 214299.

    Article  CAS  Google Scholar 

  58. Wang, D. H.; Li, Q.; Zhao, Y. W.; Hong, H.; Li, H. F.; Huang, Z. D.; Liang, G. J.; Yang, Q.; Zhi, C. Y. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 2022, 12, 2102707.

    Article  CAS  Google Scholar 

  59. Geng, Y. F.; Pan, L.; Peng, Z. Y.; Sun, Z. F.; Lin, H. C.; Mao, C. W.; Wang, L.; Dai, L.; Liu, H. D.; Pan, K. M. et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 2022, 51, 733–755.

    Article  Google Scholar 

  60. Miao, L. C.; Wang, R. H.; Xin, W. L.; Zhang, L.; Geng, Y. H.; Peng, H. L.; Yan, Z. C.; Jiang, D. T.; Qian, Z. F.; Zhu, Z. Q. Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries. Energy Storage Mater. 2022, 49, 445–453.

    Article  Google Scholar 

  61. Li, Y. H.; Yao, H.; Liu, X. J.; Yang, X. T.; Yuan, D. Roles of electrolyte additive in Zn chemistry. Nano Res. 2023, 16, 9179–9194.

    Article  CAS  Google Scholar 

  62. Chang, N. N.; Li, T. Y.; Li, R.; Wang, S. N.; Yin, Y. B.; Zhang, H. M.; Li, X. F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527–3535.

    Article  CAS  Google Scholar 

  63. Ma, L.; Pollard, T. P.; Zhang, Y.; Schroeder, M. A.; Ding, M. S.; Cresce, A. V.; Sun, R. M.; Baker, D. R.; Helms, B. A.; Maginn, E. J. et al. Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem., Int. Ed. 2021, 60, 12438–12445.

    Article  CAS  Google Scholar 

  64. Afanasyev, B. N.; Akulova, Y. P.; Kotlyar, M. M. Dependence of the energy of surface-active substances/metal interaction on their ionization potentials. Evaluation of hydrophilicity of metal. J. Solid State Electrochem. 1997, 1, 68–76.

    Article  CAS  Google Scholar 

  65. Du, H. R.; Dong, Y. H.; Li, Q. J.; Zhao, R. R.; Qi, X. Q.; Kan, W. H.; Suo, L. M.; Qie, L.; Li, J.; Huang, Y. H. A new zinc salt chemistry for aqueous zinc-metal batteries. Adv. Mater. 2023, 35, 2210055.

    Article  CAS  Google Scholar 

  66. Li, P.; Wang, Y. Q.; Xiong, Q.; Hou, Y.; Yang, S.; Cui, H. L.; Zhu, J. X.; Li, X. L.; Wang, Y. B.; Zhang, R. et al. Manipulating coulombic efficiency of cathodes in aqueous zinc batteries by anion chemistry. Angew. Chem., Int. Ed. 2023, 62, e202303292.

    Article  CAS  Google Scholar 

  67. Huang, J. H.; Guo, Z. W.; Ma, Y. Y.; Bin, D.; Wang, Y. G.; Xia, Y. Y. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 2019, 3, 1800272.

    Article  Google Scholar 

  68. Jiang, H.; Tang, L. T.; Fu, Y. K.; Wang, S. T.; Sandstrom, S. K.; Scida, A. M.; Li, G. X.; Hoang, D.; Hong, J. J.; Chiu, N. C. et al. Chloride electrolyte enabled practical zinc metal battery with a near-unity coulombic efficiency. Nat. Sustain. 2023, 6, 806–815.

    Article  Google Scholar 

  69. Kasiri, G.; Trócoli, R.; Bani Hashemi, A.; La Mantia, F. An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 2016, 222, 74–83.

    Article  CAS  Google Scholar 

  70. Wang, L. J.; Zhang, Y.; Hu, H. L.; Shi, H. Y.; Song, Y.; Guo, D.; Liu, X. X.; Sun, X. Q. A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 2019, 11, 42000–42005.

    Article  CAS  PubMed  Google Scholar 

  71. Xu, X. N.; Song, M.; Li, M.; Xu, Y.; Sun, L. M.; Shi, L. L.; Su, Y. Q.; Lai, C.; Wang, C. A novel bifunctional zinc gluconate electrolyte for a stable Zn anode. Chem. Eng. J. 2023, 454, 140364.

    Article  CAS  Google Scholar 

  72. Zhang, Q.; Ma, Y. L.; Lu, Y.; Li, L.; Wan, F.; Zhang, K.; Chen, J. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 2020, 11, 4463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Clarisza, A.; Bezabh, H. K.; Jiang, S. K.; Huang, C. J.; Olbasa, B. W.; Wu, S. H.; Su, W. N.; Hwang, B. J. Highly concentrated salt electrolyte for a highly stable aqueous dual-ion zinc battery. ACS Appl. Mater. Interfaces 2022, 14, 36644–36655.

    Article  CAS  PubMed  Google Scholar 

  74. Huang, J. Q.; Chi, X. W.; Wu, J.; Liu, J. J.; Liu, Y. High-concentration dual-complex electrolyte enabled a neutral aqueous zinc-manganese electrolytic battery with superior stability. Chem. Eng. J. 2022, 430, 133058.

    Article  CAS  Google Scholar 

  75. Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

    Article  CAS  Google Scholar 

  76. Olbasa, B. W.; Huang, C. J.; Fenta, F. W.; Jiang, S. K.; Chala, S. A.; Tao, H. C.; Nikodimos, Y.; Wang, C. C.; Sheu, H. S.; Yang, Y. W. et al. Highly reversible Zn metal anode stabilized by dense and anion-derived passivation layer obtained from concentrated hybrid aqueous electrolyte. Adv. Funct. Mater. 2022, 32, 2103959.

    Article  CAS  Google Scholar 

  77. Han, J.; Mariani, A.; Zarrabeitia, M.; Jusys, Z.; Behm, R. J.; Varzi, A.; Passerini, S. Zinc-ion hybrid supercapacitors employing acetate-based water-in-salt electrolytes. Small 2022, 18, 2201563.

    Article  CAS  Google Scholar 

  78. Li, T. C.; Lim, Y.; Li, X. L.; Luo, S. Z.; Lin, C. J.; Fang, D. L.; Xia, S. W.; Wang, Y.; Yang, H. Y. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 2022, 12, 2103231.

    Article  CAS  Google Scholar 

  79. Meng, C.; He, W. D.; Kong, Z.; Liang, Z. Y.; Zhao, H. P.; Lei, Y.; Wu, Y. Z.; Hao, X. P. Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries. Chem. Eng. J. 2022, 450, 138265.

    Article  CAS  Google Scholar 

  80. Hu, Q.; Hu, J. S.; Li, L.; Ran, Q. W.; Ji, Y. Y.; Liu, X. Q.; Zhao, J. X.; Xu, B. G. In-depth study on the regulation of electrode interface and solvation structure by hydroxyl chemistry. Energy Storage Mater. 2023, 54, 374–381.

    Article  Google Scholar 

  81. Wang, Y.; Wang, T. R.; Bu, S. Y.; Zhu, J. X.; Wang, Y. B.; Zhang, R.; Hong, H.; Zhang, W. J.; Fan, J.; Zhi, C. Y. Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat. Commun. 2023, 14, 1828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen, Z. Y.; Mao, J. L.; Yu, G. P.; Zhang, W. D.; Mao, S. L.; Zhong, W.; Cheng, H.; Guo, J. Z.; Zhang, J. H.; Lu, Y. Y. Electrocrystallization regulation enabled stacked hexagonal platelet growth toward highly reversible zinc anodes. Angew. Chem., Int. Ed. 2023, 62, e202218452.

    Article  CAS  Google Scholar 

  83. Li, M.; Wang, X. P.; Hu, J. S.; Zhu, J. X.; Niu, C. J.; Zhang, H. Z.; Li, C.; Wu, B. K.; Han, C. H.; Mai, L. Q. Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem., Int. Ed. 2023, 62, e202215552.

    Article  CAS  Google Scholar 

  84. Zhuang, W. M.; Chen, Q. W.; Hou, Z.; Sun, Z. Z.; Zhang, T. X.; Wan, J. Y.; Huang, L. M. Examining concentration-reliant Zn deposition/stripping behavior in organic alcohol/sulfones-modified aqueous electrolytes. Small 2023, 19, 2300274.

    Article  CAS  Google Scholar 

  85. Xie, C. L.; Liu, S. F.; Wu, H.; Zhang, Q.; Hu, C.; Yang, Z. F.; Li, H. H.; Tang, Y. G.; Wang, H. Y. Weak solvent chemistry enables stable aqueous zinc metal batteries over a wide temperature range from −50 to 80 °C. Sci. Bull. 2023, 68, 1531–1539.

    Article  CAS  Google Scholar 

  86. Ming, F. W.; Zhu, Y. P.; Huang, G.; Emwas, A. H.; Liang, H. F.; Cui, Y.; Alshareef, H. N. Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 2022, 144, 7160–7170.

    Article  CAS  PubMed  Google Scholar 

  87. Liu, L. Y.; Lu, H. Y.; Han, C.; Chen, X. F.; Liu, S. C.; Zhang, J. K.; Chen, X. H.; Wang, X. Y.; Wang, R.; Xu, J. T. et al. Salt anion amphiphilicity-activated electrolyte cosolvent selection strategy toward durable Zn metal anode. ACS Nano 2023, 17, 23065–23078.

    Article  CAS  PubMed  Google Scholar 

  88. Wang, J. W.; Zhu, Q. N.; Li, F.; Chen, J. C.; Yuan, H.; Li, Y. M.; Hu, P. F.; Kurbanov, M. S.; Wang, H. Low-temperature and highrate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chem. Eng. J. 2022, 433, 134589.

    Article  CAS  Google Scholar 

  89. Huang, Z. M.; Li, Z. Z.; Wang, Y. D.; Cong, J. L.; Wu, X. L.; Song, X. H.; Ma, Y. X.; Xiang, H. F.; Huang, Y. H. Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 2023, 8, 372–380.

    Article  CAS  Google Scholar 

  90. You, C. L.; Wu, R. Y.; Yuan, X. H.; Liu, L. L.; Ye, J. L.; Fu, L. J.; Han, P.; Wu, Y. P. An inexpensive electrolyte with double-site hydrogen bonding and a regulated Zn2+ solvation structure for aqueous Zn-ion batteries capable of high-rate and ultra-long low-temperature operation. Energy Environ. Sci. 2023, 16, 5096–5107.

    Article  CAS  Google Scholar 

  91. Li, M. Y.; Feng, X.; Yin, J. Y.; Cui, T. Y.; Li, F. X.; Chen, J. Z.; Lin, Y. Y.; Xu, X.; Ding, S. J.; Wang, J. H. Regulating the solvation structure with N,N-dimethylacetamide co-solvent for highperformance zinc-ion batteries. J. Mater. Chem. A 2023, 11, 25545–25554.

    Article  Google Scholar 

  92. Wu, W. B.; Liang, Y. H.; Li, D. P.; Bo, Y. Y.; Wu, D.; Ci, L. J.; Li, M. Y.; Zhang, J. H. A competitive solvation of ternary eutectic electrolytes tailoring the electrode/electrolyte interphase for lithium metal batteries. ACS Nano 2022, 16, 14558–14568.

    Article  CAS  PubMed  Google Scholar 

  93. Lin, X. D.; Zhou, G. D.; Robson, M. J.; Yu, J.; Kwok, S. C. T.; Ciucci, F. Hydrated deep eutectic electrolytes for high-performance Zn-ion batteries capable of low-temperature operation. Adv. Funct. Mater. 2022, 32, 2109322.

    Article  CAS  Google Scholar 

  94. Yang, Y. Q.; Liang, S. Q.; Lu, B. A.; Zhou, J. Eutectic electrolyte based on N-methylacetamide for highly reversible zinc-iodine battery. Energy Environ. Sci. 2022, 15, 1192–1200.

    Article  CAS  Google Scholar 

  95. Wang, S. H.; Liu, G. X.; Wan, W.; Li, X. Y.; Li, J.; Wang, C. Acetamide-caprolactam deep eutectic solvent-based electrolyte for stable Zn-metal batteries. Adv. Mater. 2024, 36, 2306546.

    Article  CAS  Google Scholar 

  96. Wang, J.; Qiu, H. Y.; Zhang, Q. W.; Ge, X. S.; Zhao, J. W.; Wang, J. Z.; Ma, Y. L.; Fan, C.; Wang, X. J.; Chen, Z. et al. Eutectic electrolytes with leveling effects achieving high depth-of-discharge of rechargeable zinc batteries. Energy Storage Mater. 2023, 58, 9–19.

    Article  Google Scholar 

  97. Lu, X. J.; Hansen, E. J.; He, G. J.; Liu, J. Eutectic electrolytes chemistry for rechargeable Zn batteries. Small 2022, 18, 2200550.

    Article  CAS  Google Scholar 

  98. Zhu, C. H.; He, X. Y.; Shi, Y.; Wang, Z. K.; Hao, B. J.; Chen, W. H.; Yang, H.; Zhang, L. F.; Ji, H. Q.; Liu, J. et al. Strong replaces weak: Design of H-bond interactions enables cryogenic aqueous Zn metal batteries. ACS Nano 2023, 17, 21614–21625.

    Article  PubMed  Google Scholar 

  99. Huang, C.; Zhao, X.; Hao, Y. S.; Yang, Y. J.; Qian, Y.; Chang, G.; Zhang, Y.; Tang, Q. L.; Hu, A. P.; Chen, X. H. Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes. Energy Environ. Sci. 2023, 16, 1721–1731.

    Article  CAS  Google Scholar 

  100. Hu, B.; Wang, Y.; Qian, X. H.; Chen, W.; Liang, G. J.; Chen, J. Y.; Zhao, J.; Li, W. Q.; Chen, T.; Fu, J. J. Colloid electrolyte with weakly solvated structure and optimized electrode/electrolyte interface for zinc metal batteries. ACS Nano 2023, 17, 12734–12746.

    Article  CAS  PubMed  Google Scholar 

  101. Cao, J.; Zhang, D. D.; Chanajaree, R.; Yue, Y. L.; Zhang, X. Y.; Yang, X. L.; Cheng, C.; Li, S.; Qin, J. Q.; Zhou, J. et al. Highly reversible Zn metal anode with low voltage hysteresis enabled by tannic acid chemistry. ACS Appl. Mater. Interfaces 2023, 15, 45045–45054.

    Article  CAS  PubMed  Google Scholar 

  102. Huang, C.; Zhao, X.; Liu, S.; Hao, Y. S.; Tang, Q. L.; Hu, A. P.; Liu, Z. X.; Chen, X. H. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 2021, 33, 2100445.

    Article  CAS  Google Scholar 

  103. Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.

    Article  CAS  Google Scholar 

  104. Wang, K.; Qiu, T.; Lin, L.; Liu, F. M.; Zhu, J. Q.; Liu, X. X.; Sun, X. Q. Interface solvation regulation stabilizing the Zn metal anode in aqueous Zn batteries. Chem. Sci. 2023, 14, 8076–8083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cao, H.; Zhang, X. Q.; Xie, B.; Huang, X. M.; Xie, F. Y.; Huo, Y.; Zheng, Q. J.; Zhao, R. Y.; Hu, Q.; Kang, L. et al. Unraveling the solvation structure and electrolyte interface through carbonyl chemistry for durable and dendrite-free Zn anode. Adv. Funct. Mater. 2023, 33, 2305683.

    Article  CAS  Google Scholar 

  106. Wang, Y.; Huang, H. J.; Xie, D. M.; Wang, H.; Zhao, J. C.; Zeng, X. H.; Mao, J. F. Sulfolane as an additive to regulate Zn anode in aqueous Zn-ion batteries. J. Alloys Compd. 2023, 966, 171655.

    Article  CAS  Google Scholar 

  107. Hao, Y. S.; Huang, C.; Yang, Y. J.; Qian, Y.; Chang, G.; Zhang, Y.; Hu, A. P.; Tang, Q. L.; Chen, X. H. Hybrid electrolyte engineering enables reversible Zn metal anodes at ultralow current densities. J. Power Sources. 2023, 584, 233631.

    Article  CAS  Google Scholar 

  108. Gao, Y.; Wang, M. S.; Wang, H.; Li, X. P.; Chu, Y. W.; Tang, Z. C.; Feng, Y. L.; Wang, J. Q.; Pan, Y.; Ma, Z. Y. et al. Kinetic and thermodynamic synergy of organic small molecular additives enables constructed stable zinc anode. J. Energy Chem. 2023, 84, 62–72.

    Article  CAS  Google Scholar 

  109. Liu, H.; Xin, Z. J.; Cao, B.; Xu, Z. J.; Xu, B.; Zhu, Q. Z.; Yang, J. L.; Zhang, B.; Fan, H. J. Polyhydroxylated organic molecular additives for durable aqueous zinc battery. Adv. Funct. Mater. 2024, 34, 2309840.

    Article  CAS  Google Scholar 

  110. Li, C. Z. S.; Gou, Q. Z.; Tang, R.; Deng, J. B.; Wang, K. X.; Luo, H. R.; Cui, J. Y.; Geng, Y.; Xiao, J. X.; Zheng, Y. J. et al. Electrolyte modulation of biological chelation additives toward a dendrite-free Zn metal anode. J. Phys. Chem. Lett. 2023, 14, 9150–9158.

    Article  CAS  PubMed  Google Scholar 

  111. Qiu, M. J.; Sun, P.; Cui, G. F.; Mai, W. J. Chaotropic polymer additive with ion transport tunnel enable dendrite-free zinc battery. ACS Appl. Mater. Interfaces 2022, 14, 40951–40958.

    Article  CAS  PubMed  Google Scholar 

  112. Nian, Q. S.; Wang, J. Y.; Liu, S.; Sun, T. J.; Zheng, S. B.; Zhang, Y.; Tao, Z. L.; Chen, J. Aqueous batteries operated at −50 °C. Angew. Chem., Int. Ed. 2019, 58, 16994–16999.

    Article  CAS  Google Scholar 

  113. Huang, X. M.; Li, Q. P.; Zhang, X. Q.; Cao, H.; Zhao, J. X.; Liu, Y.; Zheng, Q. J.; Huo, Y.; Xie, F. Y.; Xu, B. G. et al. Critical triple roles of sodium iodide in tailoring the solventized structure, anode-electrolyte interface and crystal plane growth to achieve highly reversible zinc anodes for aqueous zinc-ion batteries. J. Colloid Interface Sci. 2023, 650, 875–882.

    Article  CAS  PubMed  Google Scholar 

  114. Li, C. C.; Wu, Q.; Ma, J.; Pan, H. G.; Liu, Y. X.; Lu, Y. Y. Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries. J. Mater. Chem. A 2022, 10, 14692–14708.

    Article  CAS  Google Scholar 

  115. Jiao, M. L.; Dai, L. X.; Ren, H. R.; Zhang, M. T.; Xiao, X.; Wang, B. R.; Yang, J. L.; Liu, B. L.; Zhou, G. M.; Cheng, H. M. A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202301114.

    Article  CAS  Google Scholar 

  116. Zhong, X. W.; Zheng, Z. Y.; Xu, J. H.; Xiao, X.; Sun, C. B.; Zhang, M. T.; Ma, J. B.; Xu, B. M.; Yu, K.; Zhang, X. et al. Flexible zinc-air batteries with ampere-hour capacities and wide-temperature adaptabilities. Adv. Mater. 2023, 35, 2209980.

    Article  CAS  Google Scholar 

  117. Wan, F.; Zhou, X. Z.; Lu, Y.; Niu, Z. Q.; Chen, J. Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett. 2020, 5, 3569–3590.

    Article  CAS  Google Scholar 

  118. Li, C. P.; Xie, X. S.; Liu, H.; Wang, P. J.; Deng, C. B.; Lu, B. A.; Zhou, J.; Liang, S. Q. Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 2022, 9, nwab177.

    Article  CAS  PubMed  Google Scholar 

  119. Xie, X. S.; Li, J. J.; Xing, Z. Y.; Lu, B. A.; Liang, S. Q.; Zhou, J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 2023, 10, nwac281.

    Article  CAS  PubMed  Google Scholar 

  120. Li, J. J.; Liu, Z. X.; Han, S. H.; Zhou, P.; Lu, B. A.; Zhou, J. D.; Zeng, Z. Y.; Chen, Z. Z.; Zhou, J. Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 2023, 15, 237.

    Article  CAS  Google Scholar 

  121. Fan, L. L.; Hu, X. Y.; Jiao, Y. M.; Cao, L.; Xiong, S. X.; Gu, F.; Wang, S. F. Advances of designing effective and functional electrolyte system for high-stability aqueous Zn ion battery. Chem. Eng. J. 2024, 419, 147763.

    Article  Google Scholar 

  122. Wang, P. J.; Xie, X. S.; Xing, Z. Y.; Chen, X. H.; Fang, G. Z.; Lu, B. A.; Zhou, J.; Liang, S. Q.; Fan, H. J. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 2021, 11, 2101158.

    Article  CAS  Google Scholar 

  123. Hu, Z. Q.; Zhang, F. L.; Zhao, Y.; Wang, H. R.; Huang, Y. X.; Wu, F.; Chen, R. J.; Li, L. A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 2022, 34, 2203104.

    Article  CAS  Google Scholar 

  124. Wang, D. D.; Lv, D.; Peng, H. L.; Wang, C.; Liu, H. X.; Yang, J.; Qian, Y. T. Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202310290.

    Article  CAS  Google Scholar 

  125. Liu, Z. X.; Wang, R.; Gao, Y. C.; Zhang, S. L.; Wan, J. D.; Mao, J. F.; Zhang, L. H.; Li, H. B.; Hao, J. N.; Li, G. J. et al. Low-cost multi-function electrolyte additive enabling highly stable interfacial chemical environment for highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 2023, 33, 2308463.

    Article  CAS  Google Scholar 

  126. Zhou, W. J.; Chen, M. F.; Quan, Y. H.; Ding, J.; Cheng, H. L.; Han, X.; Chen, J. Z.; Liu, B.; Shi, S. Q.; Xu, X. W. Stabilizing zinc deposition through solvation sheath regulation and preferential adsorption by electrolyte additive of lithium difluoro(oxalato) borate. Chem. Eng. J. 2023, 457, 141328.

    Article  CAS  Google Scholar 

  127. Cao, J.; Zhang, D. D.; Yue, Y. L.; Chanajaree, R.; Wang, S. M.; Han, J. T.; Zhang, X. Y.; Qin, J. Q.; Huang, Y. H. Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 2022, 93, 106839.

    Article  CAS  Google Scholar 

  128. Zheng, Z. Y.; Zhong, X. W.; Zhang, Q.; Zhang, M. T.; Dai, L. X.; Xiao, X.; Xu, J. H.; Jiao, M. L.; Wang, B. R.; Li, H. et al. An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 2024, 15, 753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, H.; Chen, B.; Gao, R. H.; Xu, F. G.; Wen, X. Z.; Zhong, X. W.; Li, C.; Piao, Z. H.; Hu, N. T.; Xiao, X. et al. Integrating molybdenum sulfide selenide-based cathode with C–O–Mo heterointerface design and atomic engineering for superior aqueous Zn-ion batteries. Nano Res. 2023, 16, 4933–4940.

    Article  CAS  Google Scholar 

  130. Zhong, X. W.; Shao, Y. F.; Chen, B.; Li, C.; Sheng, J. Z.; Xiao, X.; Xu, B. M.; Li, J.; Cheng, H. M.; Zhou, G. M. Rechargeable zinc-air batteries with an ultralarge discharge capacity per cycle and an ultralong cycle life. Adv. Mater. 2023, 35, 2301952.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 22022813), the Zhejiang Provincial Natural Science Foundation of China (No. LQ24B030002), the China Postdoctoral Science Foundation (Nos. 2022M722729 and 2023T160571), and the technology project of Institute of Wenzhou (Nos. XMGL-CX-202204 and XMGL-KJZX-202208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Cheng or Yingying Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Tan, C., Li, L. et al. Regulation of aqueous electrolyte interface via electrolyte strategies for uniform zinc deposition. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6591-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6591-8

Keywords

Navigation