Skip to main content
Log in

Li2ZnTi3O8 as the host-separator modifier with efficient polysulfides trapping and fast Li+ diffusion for lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The diffusion and loss of lithium polysulfides (LiPSs) in lithium-sulfur batteries (LSBs) reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species, resulting in early battery failure. Li2ZnTi3O8 (LZTO), characterized by its stable spinel structure, exhibits high Li+ conductivity and holds great potential as an effective adsorbent for LiPSs. This study proposes a collaborative design concept of LZTO host-separator modifier, which offers a complementary and matching approach in the cathode side, effectively addressing the challenges associated with dissolution and inadequate conversion of LiPSs. Density functional theory (DFT) calculation substantiates the pronounced chemical affinity of LZTO towards LiPSs. More importantly, the high efficiency ion transport channels are achieved in separator coating due to the presence of the LZTO particles. Furthermore, the catalytic efficacy of LZTO is validated through meticulous analysis of symmetric batteries and Tafel curves. Consequently, the LZTO host-separator modifier-based cell displays satisfactory rate capability (1449 and 1166 mAh·g−1 at 0.1 and 0.5 C) and an impressively capacity (606 mAh·g−1 after 500 cycles at 1 C). The coordinated strategy of host-separator modifier is supposed to have wide applications in LSBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  2. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  3. Zhang, Q.; Ding, Z. G.; Liu, G. Z.; Wan, H. L.; Mwizerwa, J. P.; Wu, J. H.; Yao, X. Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2019, 23, 168–180.

    Article  Google Scholar 

  4. Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

    Article  Google Scholar 

  5. He, Y. B.; Qiao, Y.; Chang, Z.; Cao, X.; Jia, M.; He, P.; Zhou, H. S. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 11774–11778.

    Article  CAS  Google Scholar 

  6. Xu, R.; Tang, H. A.; Zhou, Y. Y.; Wang, F. Z.; Wang, H. R.; Shao, M. H.; Li, C. P.; Wei, Z. D. Enhanced catalysis of LiS3 radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries. Chem. Sci. 2022, 13, 6224–6232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zuo, M. G.; Liu, H.; Feng, Y. Q.; Li, J. Q.; He, X. M.; Tian, X. 3D hollow reduced graphene oxide coated TiO2 heterostructures as an advanced host-interlayer integrated electrode for enhanced Li-S batteries. Solid State Ionics. 2022, 381, 115948

    Article  CAS  Google Scholar 

  8. Ma, C.; Feng, Y. M.; Liu, X. J.; Yang, Y.; Zhou, L. J.; Chen, L. B.; Yan, C. L.; Wei, W. F. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries. Energy Storage Mater. 2020, 32, 46–54.

    Article  Google Scholar 

  9. Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

    Article  CAS  Google Scholar 

  10. Tian, S. H.; Liu, G.; Xu, S. X.; Han, C.; Tao, K.; Huang, J. J.; Peng, S. L. Deposition mode design of Li2S: Transmitted orbital overlap strategy in highly stable lithium-sulfur battery. Adv. Funct. Mater. 2023, 34, 2309437.

    Article  Google Scholar 

  11. Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H. T.; Allen, C. S.; Xu, X. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

    Article  CAS  Google Scholar 

  12. Ding, X. W.; Yang, S.; Zhou, S. Y.; Zhan, Y. X.; Lai, Y. C.; Zhou, X. M.; Xu, X. J.; Nie, H. G.; Huang, S. M.; Yang, Z. Biomimetic molecule catalysts to promote the conversion of polysulfides for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2003354.

    Article  CAS  Google Scholar 

  13. Wang, S. X.; Liu, X. Y.; Zou, K. X.; Deng, Y. F.; Chen, G. H. Toward a practical Li-S battery enabled by synergistic confinement of a nitrogen-enriched porous carbon as a multifunctional interlayer and sulfur-host material. J. Electroanal. Chem. 2020, 858, 113797.

    Article  CAS  Google Scholar 

  14. Zhang, B. W.; Sun, B.; Fu, P.; Liu, F.; Zhu, C.; Xu, B. M.; Pan, Y.; Chen, C. A review of the application of modified separators in inhibiting the “shuttle effect” of lithium-sulfur batteries. Membranes 2022, 12, 790.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wei, Z. H.; Ren, Y. Q.; Sokolowski, J.; Zhu, X. D.; Wu, G. Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. InfoMat 2020, 2, 483–508.

    Article  CAS  Google Scholar 

  16. Zheng, B. B.; Yu, L. W.; Zhao, Y.; Xi, J. Y. Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries. Electrochim. Acta. 2019, 295, 910–917.

    Article  CAS  Google Scholar 

  17. Chen, X.; Zhao, C. C.; Yang, K.; Sun, S. Y.; Bi, J. X.; Zhu, N. R.; Cai, Q.; Wang, J. A.; Yan, W. Conducting polymers meet lithium-sulfur batteries: Progress, challenges, and perspectives. Energy Environ. Mater. 2022, 6, e12483.

    Article  Google Scholar 

  18. Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

    Article  CAS  Google Scholar 

  19. Wan, H. L.; Liu, G. Z.; Li, Y. L.; Weng, W.; Mwizerwa, J. P.; Tian, Z. Q.; Chen, L.; Yao, X. Y. Transitional metal catalytic pyrite cathode enables ultrastable four-electron-based all-solid-state lithium batteries. ACS Nano 2019, 13, 9551–9560.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Z. C.; Zhang, F.; Gu, S. C.; Lv, W. Applications of titanium-based compounds for lithium-sulfur batteries (in Chinese). Inorg. Chem. Ind. 2021, 53, 14–22.

    Google Scholar 

  21. Zhang, X. Q.; Yuan, W.; Yang, Y.; Yang, S. Z.; Wang, C.; Yuan, Y. H.; Wu, Y. P.; Kang, W. Q.; Tang, Y. Green and facile fabrication of porous titanium dioxide as efficient sulfur host for advanced lithium-sulfur batteries: An air oxidation strategy. J. Colloid Interface Sci. 2021, 583, 157–165.

    Article  CAS  PubMed  Google Scholar 

  22. Li, T. T.; Guo, R. S.; Sun, X. H.; Li, F. Y.; Zhao, X. Q.; Wang, S. H.; Meng, L. C.; Luo, H. L.; Wan, Y. Z. Chemisorption of polysulfides by keto groups modified Li4Ti5O12 nanofibers with 3D interwove network structure for LSBs. Chem. Eng. J. 2022, 429, 132202.

    Article  CAS  Google Scholar 

  23. Cheng, Z. B.; Chen, Y. L.; Yang, Y. S.; Zhang, L. J.; Pan, H.; Fan, X.; Xiang, S. C.; Zhang, Z. J. Metallic MoS2 Nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003718.

    Article  CAS  Google Scholar 

  24. Deng, S. G.; Shi, X. T.; Zhao, Y.; Wang, C.; Wu, J. H.; Yao, X. Y. Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium-sulfur batteries. Chem. Eng. J. 2022, 433, 133683.

    Article  CAS  Google Scholar 

  25. Ma, W. J.; Shao, Z. T.; Yao, J.; Zhao, K. X.; Ma, X. Z.; Wu, L. L.; Zhang, X. T. Mott–Schottky electrocatalyst selectively mediates the sulfur species conversion in lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 631, 114–124.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, W.; Qiu, Z. Q.; Wang, C.; Yuan, Y. H.; Yang, Y.; Zhang, X. Q.; Ye, Y. T.; Tang, Y. Design and interface optimization of a sandwich-structured cathode for lithium-sulfur batteries. Chem. Eng. J. 2020, 381, 122648.

    Article  CAS  Google Scholar 

  27. Wang, T.; He, J. R.; Zhu, Z.; Cheng, X. B.; Zhu, J.; Lu, B. G.; Wu, Y. P. Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries. Adv. Mater. 2023, 35, 2303520.

    Article  CAS  Google Scholar 

  28. Hernandez, V. S.; Martinez, L. M. T.; Mather, G. C.; West, A. R. Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33xZn2-2xTi1+0.67xO4. J. Mater. Chem. 1996, 6, 1533–1536.

    Article  CAS  Google Scholar 

  29. Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. AVanneed nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141, 4003–416.

    Article  Google Scholar 

  30. Zhao, S. P.; Li, Y. P.; Zhang, F. X.; Guo, J. L. Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. J. Alloys Compd. 2019, 805, 873–879.

    Article  CAS  Google Scholar 

  31. Wang, R.; Qin, J. L.; Pei, F.; Li, Z. Z.; Xiao, P.; Huang, Y. H.; Yuan, L. X.; Wang, D. L. Ni single atoms on hollow nanosheet assembled carbon flowers optimizing polysulfides conversion for Li-S batteries. Adv. Funct. Mater. 2023, 33, 2305991.

    Article  CAS  Google Scholar 

  32. Zuo, Y. Z.; Zhu, Y. J.; Tang, X. S.; Zhao, M.; Ren, P. J.; Su, W. M.; Tang, Y. F.; Chen, Y. F. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries. J. Power Sources. 2020, 464, 228181.

    Article  CAS  Google Scholar 

  33. Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. Am improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.

    Article  CAS  PubMed  Google Scholar 

  34. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, 2000.

    Google Scholar 

  35. Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.

    Article  Google Scholar 

  36. Xiao, R.; Yu, T.; Yang, S.; Zhang, X. Y.; Hu, T. Z.; Xu, R. G.; Qu, Z. Y.; Hu, G. J.; Sun, Z. H.; Li, F. Non-carbon- dominated catalyst architecture enables double-high-energy-density lithium-sulfur batteries. Adv. Funct. Mater. 2023, 34, 2308210.

    Article  Google Scholar 

  37. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    Article  CAS  PubMed  Google Scholar 

  38. An, D. C.; Shen, L.; Lei, D. N.; Wang, L. H.; Ye, H.; Li, B. H.; Kang, F. Y.; He, Y. B. An ultrathin and continuous Li4Ti5O12 coated carbon nanofiber interlayer for high rate lithium sulfur battery. J. Energy Chem. 2019, 31, 19–26.

    Article  Google Scholar 

  39. Wang, Z. Y.; Zhang, B. H.; Liu, S.; Li, G. R.; Yan, T. Y.; Gao, X. P. Nicke-platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200893.

    Article  CAS  Google Scholar 

  40. Hagen, M.; Schiffels, P.; Hammer, M.; Dörfler, S.; Tübke, J.; Hoffmann, M. J.; Althues, H.; Kaskel, S. In-situ Raman investigation of polysulfide formation in Li-S cells. J. Electrochem. Soc. 2013, 160, A1205–A1214.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22278347), State Key Laboratory of Physical Chemistry of Solid Surface (No. 2021X21), and State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lang Liu or JiaJia Chen.

Electronic supplementary material

12274_2024_6563_MOESM1_ESM.pdf

Li2ZnTi3O8 as the host-separator modifier with efficient polysulfides trapping and fast Li+ diffusion for lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, M., Tang, Y., Liu, L. et al. Li2ZnTi3O8 as the host-separator modifier with efficient polysulfides trapping and fast Li+ diffusion for lithium-sulfur batteries. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6563-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6563-y

Keywords

Navigation