Skip to main content
Log in

Geometric edge effect on the interface of Au/CeO2 nanocatalysts for CO oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The oxide supports play a crucial role in anchoring and promoting the active metal species by geometric confinement and chemical interaction. The design and synthesis of the well-defined oxide support with specific morphology such as size, shape, and exposed facets have attracted extensive research efforts, which directly reflects on their catalytic performance. In this study, using an Au/CeO2-nanorod model catalyst, we demonstrate an edge effect on the Au/CeO2 interfacial structure, which shows a prominent effect on the structure–performance relationship in the CO oxidation reaction. This specific “edge-interface” structure features an “edge-on” Au nanoparticles position on rod-shaped CeO2 support, confirmed by atomic-scale electron microscopy characterization, which introduces additional degrees of freedom in coordination environment, chemical state, bond length, and strength. Combined with theocratical calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) investigations, we confirmed that this “edge-interface” has distinct adsorption properties due to the change of O vacancy formation energy as well as the chemical states of Au resulting from the electron transfer and redistribution between the metal and the support. These results demonstrate a non-conventional geometric effect of rod-shaped supported metal catalysts on the catalytic performance, which could provide insights into the atomic-precise utilization of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sankar, M.; He, Q.; Engel, R. V.; Sainna, M. A.; Logsdail, A. J.; Roldan, A.; Willock, D. J.; Agarwal, N.; Kiely, C. J.; Hutchings, G. J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

    Article  CAS  PubMed  Google Scholar 

  3. van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

    Article  CAS  Google Scholar 

  4. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Munnik, P.; de Jongh, P. E.; de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687–6718.

    Article  CAS  PubMed  Google Scholar 

  6. Ta, N.; Liu, J. Y.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A. L.; Shen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 2022, 134, 20585–20588.

    Article  Google Scholar 

  7. Wang, Y. C.; Widmann, D.; Behm, R. J. Influence of TiO2 bulk defects on CO adsorption and CO oxidation on Au/TiO2: Electronic metal–support interactions (EMSIs) in supported Au catalysts. ACS Catal. 2017, 7, 2339–2345.

    Article  CAS  Google Scholar 

  8. Carrettin, S.; Concepción, P.; Corma, A.; López Nieto, J. M.; Puntes, V. F. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem., Int. Ed. 2004, 43, 2538–2540.

    Article  CAS  Google Scholar 

  9. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 2003, 301, 935–938.

    Article  CAS  PubMed  Google Scholar 

  10. Sakurai, H.; Ueda, A.; Kobayashi, T.; Haruta, M. Low-temperature water–gas shift reaction over gold deposited on TiO2. Chem. Commun. 1997, 271–272.

  11. Yuan, W. T.; Zhu, B. E.; Fang, K.; Li, X. Y.; Hansen, T. W.; Ou, Y.; Yang, H. S.; Wagner, J. B.; Gao, Y.; Wang, Y. et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021, 371, 517–521.

    Article  CAS  PubMed  Google Scholar 

  12. Suchorski, Y.; Kozlov, S. M.; Bespalov, I.; Datler, M.; Vogel, D.; Budinska, Z.; Neyman, K. M.; Rupprechter, G. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 2018, 17, 519–522.

    Article  CAS  PubMed  Google Scholar 

  13. Ha, H.; Yoon, S.; An, K.; Kim, H. Y. Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: Effect of the Au–CeO2 interface. ACS Catal. 2018, 8, 11491–11501.

    Article  CAS  Google Scholar 

  14. Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 2014, 345, 1599–1602.

    Article  CAS  PubMed  Google Scholar 

  15. Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 2013, 341, 771–773.

    Article  CAS  PubMed  Google Scholar 

  16. Ahn, S. Y.; Jang, W. J.; Shim, J. O.; Jeon, B. H.; Roh, H. S. CeO2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: Extended application and key catalytic properties. Catal. Rev., in press, https://doi.org/10.1080/01614940.2022.2162677.

  17. Liu, J. C.; Luo, L. L.; Xiao, H.; Zhu, J. F.; He, Y.; Li, J. Metal affinity of support dictates sintering of gold catalysts. J. Am. Chem. Soc. 2022, 144, 20601–20609.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y.; Zhao, S. N.; Feng, J.; Song, S. Y.; Shi, W. D.; Wang, D.; Zhang, H. J. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021, 7, 2022–2059.

    Article  CAS  Google Scholar 

  19. He, Y.; Liu, J. C.; Luo, L. L.; Wang, Y. G.; Zhu, J. F.; Du, Y. G.; Li, J.; Mao, S. X.; Wang, C. M. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc. Natl. Acad. Sci. USA 2018, 115, 7700–7705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez, J. A.; Grinter, D. C.; Liu, Z. Y.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: Fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841.

    Article  CAS  PubMed  Google Scholar 

  21. Luo, L. L.; Chen, S. Y.; Xu, Q.; He, Y.; Dong, Z. J.; Zhang, L. F.; Zhu, J. F.; Du, Y. G.; Yang, B.; Wang, C. M. Dynamic atom clusters on AuCu nanoparticle surface during CO oxidation. J. Am. Chem. Soc. 2020, 142, 4022–4027.

    Article  CAS  PubMed  Google Scholar 

  22. Chang, M. W.; Zhang, L.; Davids, M.; Filot, I. A. W.; Hensen, E. J. M. Dynamics of gold clusters on ceria during CO oxidation. J. Catal. 2020, 392, 39–47.

    Article  CAS  Google Scholar 

  23. Kim, H. Y.; Lee, H. M.; Henkelman, G. CO oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560–1570.

    Article  CAS  PubMed  Google Scholar 

  24. Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 2001, 127, 3286–3287.

    Article  Google Scholar 

  25. Soler, L.; Casanovas, A.; Urrich, A.; Angurell, I.; Llorca, J. CO oxidation and COPrOx over preformed Au nanoparticles supported over nanoshaped CeO2. Appl. Catal. B: Environ. 2016, 197, 47–55.

    Article  CAS  Google Scholar 

  26. Reina, T. R.; Ivanova, S.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. WGS and CO-PrOx reactions using gold promoted copper-ceria catalysts: “Bulk CuO-CeO2 vs. CuO-CeO2/Al2O3 with low mixed oxide content”. Appl. Catal. B: Environ. 2016, 197, 62–72.

    Article  CAS  Google Scholar 

  27. Pozdnyakova, O.; Teschner, D.; Wootsch, A.; Kröhnert, J.; Steinhauer, B.; Sauer, H.; Toth, L.; Jentoft, F. C.; Knop-Gericke, A.; Paál, Z. et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal. 2006, 237, 1–16.

    Article  CAS  Google Scholar 

  28. Ning, J.; Zhou, Y.; Shen, W. J. Atomically dispersed copper species on ceria for the low-temperature water–gas shift reaction. Sci. China Chem. 2021, 64, 1103–1110.

    Article  CAS  Google Scholar 

  29. Karpenko, A.; Leppelt, R.; Cai, J.; Plzak, V.; Chuvilin, A.; Kaiser, U.; Behm, R. J. Deactivation of a Au/CeO2 catalyst during the low-temperature water–gas shift reaction and its reactivation: A combined TEM, XRD, XPS, DRIFTS, and activity study. J. Catal. 2007, 250, 139–150.

    Article  CAS  Google Scholar 

  30. Fu, Q.; Kudriavtseva, S.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Gold-ceria catalysts for low-temperature water–gas shift reaction. Chem. Eng. J. 2003, 93, 41–53.

    Article  CAS  Google Scholar 

  31. Li, Y. Y.; Kottwitz, M.; Vincent, J. L.; Enright, M. J.; Liu, Z. Y.; Zhang, L. H.; Huang, J. H.; Senanayake, S. D.; Yang, W. C. D.; Crozier, P. A. et al. Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. Nat. Commun. 2021, 12, 914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andreeva, D.; Idakiev, V.; Tabakova, T.; Ilieva, L.; Falaras, P.; Bourlinos, A.; Travlos, A. Low-temperature water–gas shift reaction over Au/CeO2 catalysts. Catal. Today 2002, 72, 51–57.

    Article  CAS  Google Scholar 

  33. Wen, Y.; Huang, Q. Y.; Zhang, Z. H.; Huang, W. X. Morphology-dependent catalysis of CeO2-based nanocrystal model catalysts. Chin. J. Chem. 2022, 40, 1856–1866.

    Article  CAS  Google Scholar 

  34. Lin, Y. Y.; Wu, Z. L.; Wen, J. G.; Ding, K. L.; Yang, X. Y.; Poeppelmeier, K. R.; Marks, L. D. Adhesion and atomic structures of gold on ceria nanostructures: The role of surface structure and oxidation state of ceria supports. Nano Lett. 2015, 15, 5375–5381.

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.

    Article  PubMed  Google Scholar 

  36. Huang, W. X.; Gao, Y. X. Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals. Catal. Sci. Technol. 2014, 4, 3772–3784.

    Article  CAS  Google Scholar 

  37. Wu, Z. L.; Li, M. J.; Overbury, S. H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 2012, 285, 61–73.

    Article  CAS  Google Scholar 

  38. Tana; Zhang, M. L.; Li, J.; Li, H. J.; Li, Y.; Shen, W. J. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: Nanowires, nanorods and nanoparticles. Catal. Today 2009, 148, 179–183.

    Article  CAS  Google Scholar 

  39. Zhou, K.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212.

    Article  CAS  Google Scholar 

  40. Aneggi, E.; Llorca, J.; Boaro, M.; Trovarelli, A. Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J. Catal. 2005, 234, 88–95.

    Article  CAS  Google Scholar 

  41. Zhang, L. J.; Chen, R. H.; Tu, Y.; Gong, X. Y.; Cao, X.; Xu, Q.; Li, Y.; Ye, B. J.; Ye, Y. F.; Zhu, J. F. Revealing the crystal facet effect of ceria in Pd/CeO2 catalysts toward the selective oxidation of benzyl alcohol. ACS Catal. 2023, 13, 2202–2213.

    Article  CAS  Google Scholar 

  42. Li, Z. M.; Zhang, X. Y.; Shi, Q. Q.; Gong, X.; Xu, H.; Li, G. Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation. Nanoscale Adv. 2021, 3, 7002–7006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang, F.; Wang, S. S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y. B.; Liu, X. H. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts. ACS Catal. 2020, 10, 11493–11509.

    Article  CAS  Google Scholar 

  44. Huang, X. S.; Sun, H.; Wang, L. C.; Liu, Y. M.; Fan, K. N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B: Environ. 2009, 90, 224–232.

    Article  CAS  Google Scholar 

  45. Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385.

    Article  CAS  PubMed  Google Scholar 

  46. Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem., Int. Ed. 2008, 47, 2884–2887.

    Article  CAS  Google Scholar 

  47. Nolan, M.; Watson, G. W. The surface dependence of CO adsorption on ceria. J. Phys. Chem. B 2006, 110, 16600–16606.

    Article  CAS  PubMed  Google Scholar 

  48. Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005, 595, 223–232.

    Article  CAS  Google Scholar 

  49. Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

    Article  CAS  PubMed  Google Scholar 

  50. Trovarelli, A.; Llorca, J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis. ACS Catal. 2017, 7, 4716–4735.

    Article  CAS  Google Scholar 

  51. Yao, S. Y.; Xu, W. Q.; Johnston-Peck, A. C.; Zhao, F. Z.; Liu, Z. Y.; Luo, S.; Senanayake, S. D.; Martínez-Arias, A.; Liu, W. J.; Rodriguez, J. A. Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water–gas shift reaction. Phys. Chem. Chem. Phys. 2014, 16, 17183–17195.

    Article  CAS  PubMed  Google Scholar 

  52. Zanella, R.; Giorgio, S.; Henry, C. R.; Louis, C. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B 2002, 106, 7634–7642.

    Article  CAS  Google Scholar 

  53. Haftel, M. I. Ehrlich–Schwoebel effect for vacancies: Low-index faces of silver. Phys. Rev. B 2001, 64, 125415.

    Article  Google Scholar 

  54. Kim, H. Y.; Henkelman, G. CO oxidation at the interface of Au nanoclusters and the stepped-CeO2 (111) surface by the Mars–van Krevelen mechanism. J. Phys. Chem. Lett. 2013, 4, 216–221.

    Article  CAS  PubMed  Google Scholar 

  55. Li, C.; Sakata, Y.; Arai, T.; Domen, K.; Maruya, K. I.; Onishi, T. Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1. Formation of carbonate species on dehydroxylated CeO2, at room temperature. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 1989, 85, 929–943.

    Article  CAS  Google Scholar 

  56. Fu, X. P.; Guo, L. W.; Wang, W. W.; Ma, C.; Jia, C. J.; Wu, K.; Si, R.; Sun, L. D.; Yan, C. H. Direct identification of active surface species for the water–gas shift reaction on a gold-ceria catalyst. J. Am. Chem. Soc. 2019, 141, 4613–4623.

    Article  CAS  PubMed  Google Scholar 

  57. Jin, Z.; Song, Y. Y.; Fu, X. P.; Song, Q. S.; Jia, C. J. Nanoceria supported gold catalysts for CO oxidation. Chin. J. Chem. 2018, 36, 639–643.

    Article  CAS  Google Scholar 

  58. Chen, S. L.; Luo, L. F.; Jiang, Z. Q.; Huang, W. X. Size-dependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal. 2015, 5, 1653–1662.

    Article  CAS  Google Scholar 

  59. Vayssilov, G. N.; Mihaylov, M.; Petkov, P. S.; Hadjiivanov, K. I.; Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 2011, 115, 23435–23454.

    Article  CAS  Google Scholar 

  60. Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from the National Natural Science Foundation of China (Nos. 22172110 and 12364018) and the Guangxi Science and Technology Major Program (No. AA23073019). We thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support. We thank the Facility Center at the Institute of Molecular Plus at Tianjin University, Facility and Analysis Center at Guangxi University, and Electron Microscopy Center at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences to use the transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zi-An Li, Xing Chen or Langli Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Cao, Z., Yang, S. et al. Geometric edge effect on the interface of Au/CeO2 nanocatalysts for CO oxidation. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6508-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6508-6

Keywords

Navigation