Skip to main content
Log in

Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Li-S batteries (LSBs) have been considering as new and promising energy storage systems because of the high theoretical energy density and low price. Nevertheless, their practical application is inhibited by several factors, including poor electrical conductivity of electrode materials, greatly volumetric variation, as well as the polysulfide formation upon the cycling. To address these problems, it is imperative to develop and design effective and suitable sulfur host anode materials. Metal organic frameworks (MOFs)-based cathode materials, possessing their good conductivity and easy morphology design, have been extensively studied and exhibited enormously potential in LSBs. In this review, a comprehensive overview of MOFs-based sulfur host materials is provided, including their electrochemical reaction mechanisms, related evaluation parameters, and their performances used in LSBs in the past few years. In particular, the recent advances using in-situ characterization technologies for investigating the electrochemical reaction mechanism in LSBs are presented and highlighted. Additionally, the challenges and prospects associated with future research on MOF-related sulfur host materials are discussed. It is anticipated to offer the guidance for the identification of suitable MOFs-based sulfur cathode materials for high-performance LSBs, thereby contributing for the achievement of a sustainable and renewable society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, J. N.; Yang, Q. Y.; Xie, Q. Y.; Ou, H.; Lin, X. M.; Zeb, A.; Hu, L.; Wu, Y. B.; Ma, G. Z. Recent progress in Co-based metal-organic framework derivatives for advanced batteries. J. Mater. Sci. Technol. 2022, 96, 262–284.

    CAS  Google Scholar 

  2. Hu, Y. Y.; Han, R. X.; Mei, L.; Liu, J. L.; Sun, J. C.; Yang, K.; Zhao, J. W. Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Mater. Today Energy 2021, 19, 100608.

    CAS  Google Scholar 

  3. Deng, W. J.; Phung, J.; Li, J.; Wang, X. L. Realizing highperformance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy 2021, 82, 105761.

    CAS  Google Scholar 

  4. Shrivastav, V.; Sundriyal, S.; Goel, P.; Kaur, H.; Tuteja, S. K.; Vikrant, K.; Kim, K. H.; Tiwari, U. K.; Deep, A. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2019, 393, 48–78.

    CAS  Google Scholar 

  5. Qi, F. L.; Sun, Z. H.; Fan, X. L.; Wang, Z. X.; Shi, Y.; Hu, G. J.; Li, F. Tunable interaction between metal-organic frameworks and electroactive components in lithium-sulfur batteries: Status and perspectives. Adv. Energy Mater. 2021, 11, 2100387.

    CAS  Google Scholar 

  6. Zhou, C.; Li, Z. H.; Xu, X.; Mai, L. Q. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang, H. Q.; Liu, X. C.; Wu, Y. S.; Shu, Y. F.; Gong, X.; Ke, F. S.; Deng, H. X. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 130, 3980–3985.

    ADS  Google Scholar 

  8. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    CAS  PubMed  ADS  Google Scholar 

  9. Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469–3491.

    CAS  Google Scholar 

  10. Zhong, Y. J.; Xu, X. M.; Liu, Y.; Wang, W.; Shao, Z. P. Recent progress in metal-organic frameworks for lithium-sulfur batteries. Polyhedron 2018, 155, 464–484.

    CAS  Google Scholar 

  11. Salem, H. A.; Babu, G.; Rao, C. V.; Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J. Am. Chem. Soc. 2015, 137, 11542–11545.

    PubMed  Google Scholar 

  12. Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596–6615.

    CAS  Google Scholar 

  13. Rana, M.; Ahad, S. A.; Li, M.; Luo, B.; Wang, L. Z.; Gentle, I.; Knibbe, R. Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 2019, 18, 289–310.

    Google Scholar 

  14. Li, S. Q.; Fan, Z. Y. Encapsulation methods of sulfur particles for lithium-sulfur batteries: A review. Energy Storage Mater. 2021, 34, 107–127.

    ADS  Google Scholar 

  15. Imtiaz, S.; Zhang, J.; Zafar, Z. A.; Ji, S. N.; Huang, T. Z.; Anderson, J. A.; Zhang, Z. L.; Huang, Y. H. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci. China Mater. 2016, 59, 389–407.

    CAS  Google Scholar 

  16. Du, M.; Li, Q.; Zhang, G. X.; Wang, F. F.; Pang, H. Metal-organic framework-based sulfur-loaded materials. Energy Environ. Mater. 2022, 5, 215–230.

    CAS  Google Scholar 

  17. Chu, Z. H.; Gao, X. C.; Wang, C. Y.; Wang, T. Y.; Wang, G. X. Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 7301–7316.

    CAS  Google Scholar 

  18. Xie, X. C.; Huang, K. J.; Wu, X. Metal-organic framework derived hollow materials for electrochemical energy storage. J. Mater. Chem. A 2018, 6, 6754–6771.

    CAS  Google Scholar 

  19. Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.

    CAS  Google Scholar 

  20. Zhu, W.; Li, A.; Wang, Z. P.; Yang, J. X.; Xu, Y. H. Metal-organic frameworks and their derivatives: Designing principles and advances toward advanced cathode materials for alkali metal ion batteries. Small, 2021, 17, 2006424.

    CAS  Google Scholar 

  21. Wang, W.; Xu, X. M.; Zhou, W.; Shao, Z. P. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 2017, 4, 1600371.

    Google Scholar 

  22. Wang, Z. Y.; Tao, H. Z.; Yue, Y. Z. Metal-organic-framework-based cathodes for enhancing the electrochemical performances of batteries: A review. ChemElectroChem 2019, 6, 5358–5374.

    CAS  Google Scholar 

  23. Yuan, N.; Sun, W. D.; Yang, J. L.; Gong, X. R.; Liu, R. P. Multifunctional MOF-based separator materials for advanced lithium-sulfur batteries. Adv. Mater. Interfaces 2021, 8, 2001941.

    CAS  Google Scholar 

  24. Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

    CAS  Google Scholar 

  25. Danuta, H. Electric dry cells and storage batteries. U.S. Patent 3043896, July 10, 1962.

  26. Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, C.; Serre, R.; Férey, G.; Tarascon, J. M. Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 2011, 133, 16154–16160.

    CAS  PubMed  Google Scholar 

  27. Xi, K.; Cao, S.; Peng, X. Y.; Ducati, C.; Kumar, R. V.; Cheetham, A. K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem. Commun. 2013, 49, 2192–2194.

    CAS  Google Scholar 

  28. Wang, Z. Q.; Li, X.; Cui, Y. J.; Yang, Y.; Pan, H. G.; Wang, Z. Y.; Wu, C. D.; Chen, B. L.; Qian, G. D. A metal-organic framework with open metal sites for enhanced confinement of sulfur and lithium-sulfur battery of long cycling life. Cryst. Growth Des. 2013, 13, 5116–5120.

    CAS  Google Scholar 

  29. Zhao, Z. X.; Wang, S.; Liang, R.; Li, Z.; Shi, Z. C.; Chen, G. H. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries. J. Mater. Chem. A 2014, 2, 13509–13512.

    CAS  Google Scholar 

  30. Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345–2352.

    CAS  PubMed  ADS  Google Scholar 

  31. Wang, Z. Q.; Wang, B. X.; Yang, Y.; Cui, Y. J.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 20999–21004.

    CAS  PubMed  Google Scholar 

  32. Zhou, J. W.; Yu, X. S.; Fan, X. X.; Wang, X. J.; Li, H. W.; Zhang, Y. W.; Li, W.; Zheng, J.; Wang, B.; Li, X. G. The impact of the particle size of a metal-organic framework for sulfur storage in Li-S batteries. J. Mater. Chem. A 2015, 3, 8272–8275.

    CAS  Google Scholar 

  33. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

    CAS  ADS  Google Scholar 

  34. Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.

    CAS  Google Scholar 

  35. Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710–12715.

    CAS  PubMed  Google Scholar 

  36. Park, H.; Siegel, D. J. Tuning the adsorption of polysulfides in lithium-sulfur batteries with metal-organic frameworks. Chem. Mater. 2017, 29, 4932–4939.

    CAS  Google Scholar 

  37. Chen, K.; Sun, Z. H.; Fang, R. P.; Shi, Y.; Cheng, H. M.; Li, F. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707592.

    Google Scholar 

  38. Yang, Y. X.; Wang, Z. H.; Jiang, T. Z.; Dong, C.; Mao, Z.; Lu, C. Y.; Sun, W.; Sun, K. N. A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 13593–13598.

    CAS  Google Scholar 

  39. Geng, P. B.; Cao, S.; Guo, X. T.; Ding, J. W.; Zhang, S. T.; Zheng, M. B.; Pang, H. Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 19465–19470.

    CAS  Google Scholar 

  40. Li, Q.; Zhu, H.; Tang, Y. F.; Zhu, P.; Ma, H. Y.; Ge, C. W.; Yan, F. Chemically grafting nanoscale UIO-66 onto polypyrrole nanotubes for long-life lithium-sulfur batteries. Chem. Commun. 2019, 55, 12108–12111.

    CAS  Google Scholar 

  41. Zhang, H.; Zhao, W. Q.; Wu, Y. Z.; Wang, Y. S.; Zou, M. C.; Cao, A. Y. Dense monolithic MOF and carbon nanotube hybrid with enhanced volumetric and areal capacities for lithium-sulfur battery. J. Mater. Chem. A 2019, 7, 9195–9201.

    CAS  Google Scholar 

  42. Liu, H. D.; Chen, Z. L.; Zhou, L.; Li, X.; Pei, K.; Zhang, J.; Song, Y.; Fang, F.; Che, R. C.; Sun, D. L. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 7074–7081.

    CAS  Google Scholar 

  43. Li, Y. J.; Chen, G. L.; Mou, J. R.; Liu, Y. Z.; Xue, S. F.; Tan, T.; Zhong, W. T.; Deng, Q.; Li, T.; Hu, J. H. et al. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2020, 28, 196–204.

    Google Scholar 

  44. Cui, G. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Wang, D. R.; Wang, J. Y.; Zhang, Z.; Wang, X.; Chen, Z. W. Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 2020, 72, 104685.

    CAS  Google Scholar 

  45. Rana, M.; Al-Fayaad, H. A.; Luo, B.; Lin, T. E.; Ran, L. B.; Clegg, J. K.; Gentle, I.; Knibbe, R. Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 2020, 75, 105009.

    CAS  Google Scholar 

  46. Seo, S. D.; Yu, S.; Park, S.; Kim, D. W. In situ conversion of metal-organic frameworks into VO2-V3S4 heterocatalyst embedded layered porous carbon as an “all-in-one” host for lithium-sulfur batteries. Small 2020, 16, 2004806

    CAS  Google Scholar 

  47. Zong, H.; Hu, L.; Wang, Z. G.; Qi, R. J.; Yu, K.; Zhu, Z. Q. Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage. Chem. Eng. J. 2021, 416, 129102.

    CAS  Google Scholar 

  48. Jeon, Y.; Lee, J.; Jo, H.; Hong, H.; Lee, L. Y. S.; Piao, Y. Z. Co/Co3O4-embedded N-doped hollow carbon composite derived from a bimetallic MOF/ZnO core–shell template as a sulfur host for Li-S batteries. Chem. Eng. J. 2021, 407, 126967.

    CAS  Google Scholar 

  49. Meng, R. J.; Du, Q. J.; Zhong, N.; Zhou, X.; Liu, S. H.; Yin, S. F.; Liang, X. A tandem electrocatalysis of sulfur reduction by bimetal 2D MOFs. Adv. Energy Mater. 2021, 11, 2102819.

    CAS  Google Scholar 

  50. Du, M.; Wang, X. Y.; Geng, P. B.; Li, Q.; Gu, Y. J.; An, Y.; Pang, H. Polypyrrole-enveloped prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: High-performance lithium-sulfur batteries. Chem. Eng. J. 2021, 420, 130518.

    CAS  Google Scholar 

  51. Geng, P. B.; Du, M.; Guo, X. T.; Pang, H.; Tian, Z. Q.; Braunstein, P.; Xu, Q. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 599–607.

    CAS  Google Scholar 

  52. Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1d π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv. Mater. 2022, 34, 2108835.

    CAS  Google Scholar 

  53. Li, F. Y.; Wu, Y. J.; Lin, Y. X.; Li, J. H.; Sun, Y. J.; Nan, H. X.; Wu, M.; Dong, H. F.; Shi, K. X.; Liu, Q. B. Achieving job-synergistic polysulfides adsorption-conversion within hollow structured MoS2/Co4S3/C heterojunction host for long-life lithium-sulfur batteries. J. Colloid Interface Sci. 2022, 626, 535–543.

    CAS  PubMed  ADS  Google Scholar 

  54. Luo, J. H.; Wang, Y.; Mao, Y. J.; Zhang, Y.; Su, Y.; Zou, B. C.; Chen, S. X.; Deng, Q.; Zeng, Z. L.; Wang, J. et al. Interface engineering of metal phosphide on hollow carbons by dualtemplate method for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 433, 133549.

    CAS  Google Scholar 

  55. Xu, Z. L.; Kim, J. K.; Kang, K. Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 2018, 19, 84–107.

    CAS  Google Scholar 

  56. Zhang, X. Y.; Chen, K.; Sun, Z. H.; Hu, G. J.; Xiao, R.; Cheng, H. M.; Li, F. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1076–1095.

    CAS  Google Scholar 

  57. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    PubMed  ADS  Google Scholar 

  58. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    CAS  PubMed  ADS  Google Scholar 

  59. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    CAS  PubMed  Google Scholar 

  60. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    CAS  PubMed  Google Scholar 

  61. Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141, 400–416.

    CAS  Google Scholar 

  62. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Google Scholar 

  63. Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 3, 361–386.

    CAS  Google Scholar 

  64. Yan, M.; Wang, W. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Interfacial design for lithium-sulfur batteries: From liquid to solid. EnergyChem 2019, 1, 100002.

    Google Scholar 

  65. Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.

    Google Scholar 

  66. Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.

    Google Scholar 

  67. Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M.; Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075.

    CAS  Google Scholar 

  68. Pope, M. A.; Aksay, I. A. Structural design of cathodes for Li-S batteries. Adv. Energy Mater. 2015, 5, 1500124.

    Google Scholar 

  69. Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

    Google Scholar 

  70. McCloskey, B. D. Attainable gravimetric and volumetric energy density of Li-S and Li ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 2015, 6, 4581–4588.

    CAS  PubMed  Google Scholar 

  71. Palacín, M. R.; De Guibert, A. Why do batteries fail? Science 2016, 351, 1253292.

    PubMed  Google Scholar 

  72. Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.

    CAS  PubMed  ADS  Google Scholar 

  73. Liu, B.; Fang, R. Y.; Xie, D.; Zhang, W. K.; Huang, H.; Xia, Y.; Wang, X. L.; Xia, X. H.; Tu, J. P. Revisiting scientific issues for industrial applications of lithium-sulfur batteries. Energy Environ. Mater. 2018, 1, 196–208.

    Google Scholar 

  74. Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 2015, 5, 1401986.

    Google Scholar 

  75. Huang, L.; Li, J. J.; Liu, B.; Li, Y. H.; Shen, S. H.; Deng, S. J.; Lu, C. W.; Zhang, W. K.; Xia, Y.; Pan, G. X. et al. Electrode design for lithium-sulfur batteries: Problems and solutions. Adv. Funct. Mater. 2020, 30, 1910375.

    CAS  Google Scholar 

  76. Li, J. J.; Xiao, Z.; Zhou, X. Z.; Zhang, W. K.; Zhang, J.; Gan, Y. P.; Huang, H.; He, X. P.; Wang, G. G.; Xia, Y. The effect of compaction density of sulfur/carbon cathodes on the practical application of Li-S pouch cells. J. Electr. Mater. 2022, 51, 4115–4124.

    CAS  ADS  Google Scholar 

  77. Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2003955.

    CAS  Google Scholar 

  78. Shao, Q. J.; Zhu, S. D.; Chen, J. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Res. 2023, 16, 8097–8138.

    CAS  ADS  Google Scholar 

  79. Cha, E.; Patel, M.; Bhoyate, S.; Prasad, V.; Choi, W. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Nanoscale Horiz. 2020, 5, 808–831.

    CAS  PubMed  ADS  Google Scholar 

  80. Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

    Google Scholar 

  81. Nanda, S.; Gupta, A.; Manthiram, A. A lithium-sulfur cell based on reversible lithium deposition from a Li2S cathode host onto a hostless-anode substrate. Adv. Energy Mater. 2018, 8, 1801556.

    Google Scholar 

  82. Zhang, S. S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc. 2012, 159, A920–A923.

    CAS  ADS  Google Scholar 

  83. Zhang, S. S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 2006, 8, 1423–1428.

    CAS  Google Scholar 

  84. Sun, J.; Zeng, Q. C.; Lv, R. T.; Lv, W.; Yang, Q. H.; Amal, R.; Wang, D. W. A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Storage Mater. 2018, 15, 209–217.

    Google Scholar 

  85. Xie, Z. K.; Wu, Z. J.; An, X. W.; Yue, X. Y.; Wang, J. J.; Abudula, A.; Guan, G. Q. Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Mater. 2020, 32, 386–401.

    Google Scholar 

  86. Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “Goldilocks” principle. Adv. Energy Mater. 2016, 6, 1501636.

    Google Scholar 

  87. Qiao, R. H.; Zhu, J.; Shen, X. Y.; Cen, G. J.; Hao, J. F.; Ji, H. X.; Tian, M. Y.; Jin, Z.; Zhan, Y. J.; Wu, Y. D. et al. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023). Energy Storage Sci. Technol. 2023, 12, 2333–2348

    Google Scholar 

  88. Cen, G. J.; Qiao, R. H.; Shen, X. Y.; Zhu, J.; Hao, J. F.; Sun, Q. F.; Zhang, X. X.; Tian, M. Y.; Jin, Z.; Zhan, Y. J. et al. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2023 to Jul. 31, 2023). Energy Storage Sci. Technol. 2023, 12, 3003–3018

    Google Scholar 

  89. Zhang, J. Y.; Yan, Y. L.; Wang, X.; Cui, Y. Y.; Zhang, Z. F.; Wang, S.; Xie, Z. K.; Yan, P. F.; Chen, W. H. Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes. Nat. Commun. 2023, 14, 3701.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Song, K. M.; Wang, X.; Xie, Z. K.; Zhao, Z. W.; Fang, Z.; Zhang, Z. F.; Luo, J.; Yan, P. F.; Peng, Z. Q.; Chen, W. H. Ultrathin CuF2-rich solid–electrolyte interphase induced by cation-tailored double electrical layer toward durable sodium storage. Angew. Chem., Int. Ed. 2023, 62, e202216450.

    CAS  Google Scholar 

  91. Huo, S. D.; Sheng, L.; Xue, W. D.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M. M.; He, X. M. Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: A review. Adv. Energy Mater. 2023, 13, 2204343.

    CAS  Google Scholar 

  92. Xie, Z. K.; Yang, Z. Y.; An, X. W.; Yue, X. Y.; Wang, J. J.; Zhang, S. S.; Chen, W. H.; Abudula, A.; Guan, G. Q. An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage. Nano Res. 2022, 15, 6138–6147.

    CAS  ADS  Google Scholar 

  93. Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

    CAS  Google Scholar 

  94. Sun, Y. H.; Gao, M. D.; Li, H.; Xu, L.; Xue, Q.; Wang, X. R.; Bai, Y.; Wu, C. Application of metal-organic frameworks to the interface of lithium metal batteries. Acta Phys. Chim. Sin. 2021, 37, 2007048.

    Google Scholar 

  95. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.

    CAS  Google Scholar 

  96. Huo, H. B.; Xing, Y. J.; Pecht, M.; Züger, B. J.; Khare, N.; Vezzini, A. Safety requirements for transportation of lithium batteries. Energies 2017, 10, 793.

    Google Scholar 

  97. Ren, D. S.; Feng, X. N.; Han, X. B.; Lu, L. G.; Ouyang, M. G. Recent progress on evolution of safety performance of lithium-ion battery during aging process. Energy Storage Sci. Technol. 2018, 7, 957–966.

    Google Scholar 

  98. Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175.

    Google Scholar 

  99. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    CAS  PubMed  Google Scholar 

  100. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

    CAS  ADS  Google Scholar 

  101. Berg, E. J.; Villevieille, C.; Streich, D.; Trabesinger, S.; Novák, P. Rechargeable batteries: Grasping for the limits of chemistry. J. Electrochem. Soc. 2015, 162, A2468–A2475.

    CAS  Google Scholar 

  102. Mauler, L.; Duffner, F.; Zeier, W. G.; Leker, J. Battery cost forecasting: A review of methods and results with an outlook to 2050. Energy Environ. Sci. 2021, 14, 4712–4739.

    Google Scholar 

  103. Yang, X. F.; Li, X.; Adair, K.; Zhang, H. M.; Sun, X. L. Structural design of lithium-sulfur batteries: From fundamental research to practical application. Electrochem. Energy Rev. 2018, 1, 239–293.

    CAS  Google Scholar 

  104. Hong, X. J.; Tan, T. X.; Guo, Y. K.; Tang, X. Y.; Wang, J. Y.; Qin, W.; Cai, Y. P. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Nanoscale 2018, 10, 2774–2780.

    CAS  PubMed  Google Scholar 

  105. Liu, X. F.; Guo, X. Q.; Wang, R.; Liu, Q. C.; Li, Z. J.; Zang, S. Q.; Mak, T. C. W. Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 2838–2844.

    CAS  Google Scholar 

  106. Sun, M.; Yan, G. J.; Ji, H. F.; Feng, Y.; Zhang, X. J.; Shi, J. J. Rational design of a zwitterionic porous organic framework loaded with Co(II) ions to host sulfur and synergistically boost polysulfide redox kinetics for lithium sulfur batteries. Mater. Adv. 2022, 3, 1594–1601.

    CAS  Google Scholar 

  107. Wang, T.; Liu, Y. Y.; Liu, X.; Cui, G. L.; Zhang, Y. G.; Wang, X. Three-dimensionally ordered macro-porous metal-organic framework for high-performance lithium-sulfur battery. ChemElectroChem 2022, 9, e202101099.

    CAS  Google Scholar 

  108. Ge, X. L.; Li, C. X.; Li, Z. Q.; Yin, L. W. Tannic acid tuned metal-organic framework as a high-efficiency chemical anchor of polysulfide for lithium-sulfur batteries. Electrochim. Acta 2018, 281, 700–709.

    CAS  Google Scholar 

  109. Benitez, A.; Amaro-Gahete, J.; Esquivel, D.; Romero-Salguero, F. J.; Morales, J.; Caballero, A. MIL-88A metal-organic framework as a stable sulfur-host cathode for long-cycle Li-S batteries. Nanomaterials 2020, 10, 424.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu, Y. S.; Jiang, H. Q.; Ke, F. S.; Deng, H. X. Three-dimensional hierarchical constructs of MOF-on-reduced graphene oxide for lithium-sulfur batteries. Chem.—Asian. J. 2019, 14, 3577–3582.

    CAS  PubMed  Google Scholar 

  111. Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800013

    Google Scholar 

  112. Shen, G. H.; Liu, Z. X.; Liu, P.; Duan, J. H.; Younus, H. A.; Deng, H. Q.; Wang, X. W.; Zhang, S. G. Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1154–1163.

    CAS  Google Scholar 

  113. Wu, Z. L.; Wang, L.; Chen, S. X.; Zhu, X. M.; Deng, Q.; Wang, J.; Zeng, Z. L.; Deng, S. G. Facile and low-temperature strategy to prepare hollow ZIF-8/CNT polyhedrons as high-performance lithium-sulfur cathodes. Chem. Eng. J. 2021, 404, 126579.

    CAS  Google Scholar 

  114. Chen, X. H.; Zhang, M.; Zhu, J.; Wang, J.; Jiao, Z. B.; Li, Y. Boosting electrochemical performance of Li-S batteries by cerium-based MOFs coated with polypyrrole. J. Alloys Compd. 2022, 901, 163649.

    CAS  Google Scholar 

  115. Wu, H. L.; Li, Y.; Ren, J.; Rao, D. W.; Zheng, Q. J.; Zhou, L.; Lin, D. M. CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 2019, 55, 82–92.

    CAS  Google Scholar 

  116. Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

    CAS  Google Scholar 

  117. Zhou, F.; Qiao, Z. S.; Zhang, Y. G.; Xu, W. J.; Zheng, H. F.; Xie, Q. S.; Luo, Q.; Wang, L. S.; Qu, B. H.; Peng, D. L. Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium-sulfur batteries. Electrochim. Acta 2020, 349, 136378.

    CAS  Google Scholar 

  118. Capková, D.; Kazda, T.; Čech, O.; Király, N.; Zelenka, T.; Čudek, P.; Sharma, A.; Hornebecq, V.; Fedorková, A. S.; Almáši, M. Influence of metal-organic framework MOF-76(Gd) activation/carbonization on the cycle performance stability in Li-S battery. J. Energy Storage 2022, 51, 104419.

    Google Scholar 

  119. Wang, C. G.; Song, H. W.; Yu, C. C.; Ullah, Z.; Guan, Z. X.; Chu, R. R.; Zhang, Y. F.; Zhao, L. Y.; Li, Q.; Liu, L. W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 3421–3430.

    CAS  Google Scholar 

  120. Li, H. P.; Li, C. J.; Liu, N.; Wang, Y.; Zhang, Y. G. Co-TiO2 nanoparticles anchored in porous carbon matrix as an efficient sulfur host for lithium/sulfur batteries. J. Alloys Compd. 2020, 818, 152868.

    CAS  Google Scholar 

  121. Yang, J.; Wang, B.; Jin, F.; Ning, Y.; Luo, H.; Zhang, J.; Wang, F.; Wang, D. L.; Zhou, Y. A MIL-47(V) derived hierarchical lasagna-structured V2O3@C hollow microcuboid as an efficient sulfur host for high-performance lithium-sulfur batteries. Nanoscale 2020, 12, 4552–4561.

    CAS  PubMed  Google Scholar 

  122. Li, Z. F.; Wu, J. Y.; Chen, P. P.; Zeng, Q. H.; Wen, X.; Wen, W.; Liu, Y.; Chen, A. Q.; Guan, J. Z.; Liu, X. et al. A new metallic composite cathode originated from hyperbranched polymer coated MOF for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 435, 135125.

    CAS  Google Scholar 

  123. Zhang, J. T.; Li, Z.; Chen, Y.; Gao, S. Y.; Lou, X. W. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 10944–10948.

    CAS  Google Scholar 

  124. Luo, S. Q.; Zheng, C. M.; Sun, W. W.; Wang, Y. Q.; Ke, J. H.; Guo, Q. P.; Liu, S. K.; Hong, X. B.; Li, Y. J.; Xie, W. Multifunctional CoS2-N-C porous carbon composite derived from metal-organic frameworks for high performance lithium-sulfur batteries. Electrochim. Acta 2018, 289, 94–103.

    CAS  Google Scholar 

  125. Seo, S. D.; Park, D.; Park, S.; Kim, D. W. “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903712.

    Google Scholar 

  126. Jiang, J.; Wang, H. Y.; Zhao, J. Q.; Li, J. D.; Liu, G. H.; Zhang, Y. G. Rational design of graphene oxide wrapped porous microspheres as high-performance sulfur cathode in lithium-sulfur batteries. J. Alloys Compd. 2022, 899, 163240.

    CAS  Google Scholar 

  127. Fu, Y.; Hu, J.; Wang, Q.; Lin, D. M.; Li, K. K.; Zhou, L. M. Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium-sulfur batteries. Carbon 2019, 150, 76–84.

    CAS  Google Scholar 

  128. Sun, X. X.; Liu, S. K.; Sun, W. W.; Li, Y. J.; Wang, D. Q.; Guo, Q. P.; Hong, X. B.; Xu, J.; Zheng, C. M. Nano-confined synthesis of multi yolk–shell Co-NC@N-HCSs hybrid as sulfur host for high performance lithium-sulfur batteries. Electrochim. Acta 2021, 398, 139302.

    CAS  Google Scholar 

  129. Gao, X. G.; Huang, Y.; Sun, X. Y.; Batool, S.; Li, T. H. Nanopolyhedron Co-C/Cores triggered carbon nanotube in-situ growth inside carbon aerogel shells for fast and long-lasting lithium-sulfur batteries. J. Power Sources 2022, 520, 230913.

    CAS  Google Scholar 

  130. Xiao, K. K.; Wang, J.; Chen, Z.; Qian, Y. H.; Liu, Z.; Zhang, L. L.; Chen, X. H.; Liu, J. L.; Fan, X. F.; Shen, Z. X. Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/N-doped carbon composites for lithium-sulfur batteries. Small 2019, 15, 1901454.

    Google Scholar 

  131. Xin, S. S.; Li, J.; Cui, H. T.; Liu, Y. Y.; Wei, H. Y.; Zhong, Y. Y.; Wang, M. R. Self-templating synthesis of prismatic-like N-doped carbon tubes embedded with Fe3O4 as a high-efficiency polysulfide-anchoring-conversion mediator for high performance lithium-sulfur batteries. Chem. Eng. J. 2021, 410, 128153.

    CAS  Google Scholar 

  132. Zhang, H. Y.; Xin, S. S.; Li, J.; Cui, H. T.; Liu, Y. Y.; Yang, Y. Z.; Wang, M. R. Synergistic regulation of polysulfides immobilization and conversion by MOF-derived CoP-HNC nanocages for high-performance lithium-sulfur batteries. Nano Energy 2021, 85, 106011.

    CAS  Google Scholar 

  133. Wang, D. H.; Ma, K. K.; Hao, J. M.; Zhang, W. Y.; Wang, C. D.; Xu, C. Z.; Shi, H. F.; Ji, Z.; Yan, X. Q.; Gu, Y. S. Multifunction Co-Nx species to manipulate polysulfides conversion kinetics toward highly efficient lithium-sulfur batteries. Nano Energy 2021, 89, 106426.

    CAS  Google Scholar 

  134. Xu, J.; Zhang, W. X.; Chen, Y.; Fan, H. B.; Su, D. W.; Wang, G. X. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 2797–2807.

    CAS  Google Scholar 

  135. Wang, Z. S.; Shen, J. D.; Liu, J.; Xu, X. J.; Liu, Z. B.; Hu, R. Z.; Yang, L. C.; Feng, Y. Z.; Liu, J.; Shi, Z. C. et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 2019, 31, 1902228.

    Google Scholar 

  136. Chen, C. H.; Lin, S. H.; Wu, Y. J.; Su, J. T.; Cheng, C. C.; Cheng, P. Y.; Ting, Y. C.; Lu, S. Y. MOF-derived cobalt disulfide/nitrogen-doped carbon composite polyhedrons linked with multi-walled carbon nanotubes as sulfur hosts for lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133924.

    CAS  Google Scholar 

  137. Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 2021, 13, 203.

    CAS  ADS  Google Scholar 

  138. Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

    CAS  Google Scholar 

  139. Chen, D. C.; Mukherjee, S.; Zhang, C.; Li, Y.; Xiao, B. B.; Singh, C. V. Two-dimensional square metal organic framework as promising cathode material for lithium-sulfur battery with high theoretical energy density. J. Colloid Interface Sci. 2022, 613, 435–446.

    CAS  PubMed  ADS  Google Scholar 

  140. Peng, Y.; Xu, J.; Xu, J. M.; Ma, J.; Bai, Y.; Cao, S.; Zhang, S. T.; Pang, H. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid Interface Sci. 2022, 307, 102732.

    CAS  PubMed  Google Scholar 

  141. Phung, J.; Zhang, X. Z.; Deng, W. J.; Li, G. An overview of MOF-based separators for lithium-sulfur batteries. Sustain. Mater. Technol. 2022, 31, e00374.

    CAS  Google Scholar 

  142. Zhang, X. H.; Dong, P. P.; Song, M. K. Metal-organic frameworks for high-energy lithium batteries with enhanced safety: Recent progress and future perspectives. Batteries Supercaps 2019, 2, 591–626.

    CAS  Google Scholar 

  143. Zhang, Y. Y.; Gao, Z.; Song, N. N.; He, J. J.; Li, X. D. Graphene and its derivatives in lithium-sulfur batteries. Mater. Today Energy 2018, 9, 319–335.

    Google Scholar 

  144. Zhang, M. Y.; Shan, Y. Y.; Kong, Q. Q.; Pang, H. Applications of metal-organic framework-graphene composite materials in electrochemical energy storage. FlatChem 2022, 32, 100332.

    CAS  Google Scholar 

  145. Baumann, A. E.; Downing, J. R.; Burns, D. A.; Hersam, M. C.; Thoi, V. S. Graphene-metal-organic framework composite sulfur electrodes for Li-S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 2020, 12, 37173–37181.

    CAS  PubMed  Google Scholar 

  146. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    CAS  ADS  Google Scholar 

  147. Fang, R. P.; Li, G. X.; Zhao, S. Y.; Yin, L. C.; Du, K.; Hou, P. X.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy 2017, 42, 205–214.

    CAS  Google Scholar 

  148. Zeng, Q. H.; Li, X.; Gong, W.; Guo, S. J.; Ouyang, Y.; Li, D. X.; Xiao, Y. B.; Tan, C.; Xie, L.; Lu, H. B. et al. Copolymerization of sulfur chains with vinyl functionalized metal-organic framework for accelerating redox kinetics in lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2104074.

    CAS  Google Scholar 

  149. Jiang, H. Q.; Liu, X. C.; Wu, Y. S.; Shu, Y. F.; Gong, X.; Ke, F. S.; Deng, H. X. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 3916–3921.

    CAS  Google Scholar 

  150. Wu, L.; Zheng, J.; Wang, L.; Xiong, X. H.; Shao, Y. Y.; Wang, G.; Wang, H. J.; Zhong, S. K.; Wu, M. H. PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 811–815.

    CAS  Google Scholar 

  151. Jiang, Q. C.; Li, J.; Yang, Y. J.; Ren, Y. J.; Dai, L.; Gao, J. Y.; Wang, L.; Ye, J. Y.; He, Z. X. Ultrafine SnO2 in situ modified graphite felt derived from metal-organic framework as a superior electrode for vanadium redox flow battery. Rare Met. 2023, 42, 1214–1226.

    CAS  Google Scholar 

  152. Zeng, Q. H.; Xu, L. L.; Li, G. X.; Zhang, Q.; Guo, S. J.; Lu, H. B.; Xie, L.; Yang, J. H.; Weng, J. Q.; Zheng, C. et al. Integrating sub-nano catalysts into metal-organic framework toward pore-confined polysulfides conversion in lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2304619.

    CAS  Google Scholar 

  153. Xiao, Y. B.; Guo, S. J.; Xiang, Y. C.; Li, D. X.; Zheng, C.; Ouyang, Y.; Cherevan, A.; Gan, L. Y.; Eder, D.; Zhang, Q. et al. Engineering configuration compatibility and electronic structure in axially assembled metal-organic framework nanowires for high-performance lithium sulfur batteries. ACS Energy Lett. 2023, 8, 5107–5115.

    CAS  Google Scholar 

  154. Liu, Y. Z.; Li, G. R.; Fu, J.; Chen, Z. W.; Peng, X. S. Strings of porous carbon polyhedrons as self-standing cathode host for high-energy-density lithium-sulfur batteries. Angew. Chem., Int. Ed. 2017, 56, 6176–6180.

    CAS  Google Scholar 

  155. Sun, Z. X.; Vijay, S.; Heenen, H. H.; Eng, A. Y. S.; Tu, W. G.; Zhao, Y. X.; Koh, S. W.; Gao, P. Q.; Seh, Z. W.; Chan, K. et al. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 1904010.

    CAS  Google Scholar 

  156. Zhu, Y. P.; Chen, G.; Xu, X. M.; Yang, G. M.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons. ACS Catal. 2017, 7, 3540–3547.

    CAS  Google Scholar 

  157. Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 2012, 5, 9269–9290.

    CAS  Google Scholar 

  158. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    CAS  PubMed  ADS  Google Scholar 

  159. Kong, A. G.; Lin, Q. P.; Mao, C. Y.; Bu, X. H.; Feng, P. Y. Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium-MOF. Chem. Commun. 2014, 50, 15619–15622.

    CAS  Google Scholar 

  160. Tang, T. Y.; Hou, Y. L. Chemical confinement and utility of lithium polysulfides in lithium sulfur batteries. Small Methods 2019, 4, 1900001.

    Google Scholar 

  161. Huang, X.; Qiu, T. F.; Zhang, X. H.; Wang, L.; Luo, B.; Wang, L. Z. Recent advances of hollow-structured sulfur cathodes for lithium-sulfur batteries. Mater. Chem. Front. 2020, 4, 2517–2547.

    CAS  Google Scholar 

  162. Reddy, R. C. K.; Lin, J.; Chen, Y. Y.; Zeng, C. H.; Lin, X. M.; Cai, Y. P.; Su, C. Y. Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries. Coordin. Chem. Rev. 2020, 420, 213434.

    CAS  Google Scholar 

  163. Chen, S. R.; Xue, M.; Li, Y. Q.; Pan, Y.; Zhu, L. K.; Qiu, S. L. Rational design and synthesis of NixCo3−xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors. J. Mater. Chem. A 2015, 3, 20145–20152.

    CAS  Google Scholar 

  164. Wang, H.; Zhang, X. M.; Yao, R. X.; Zhao, S.; Zhao, P. F.; Yang, R. L.; Wang, L.; Huang, Y. C.; Wei, T.; Li, X.; Fan, Z. J.; Wang, B. In situ rapid versatile method for the preparation of zirconium metal-organic framework filters. Sci. China Chem. 2022, 65, 2462–2467

    CAS  Google Scholar 

  165. Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

    CAS  Google Scholar 

  166. Wang, Z. F.; Liu, Y. S.; Gao, C. W.; Jiang, H.; Zhang, J. M. A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J. Mater. Chem. A 2015, 3, 20658–20663.

    CAS  Google Scholar 

  167. Shi, Z. Y.; Ge, Y. Y.; Yun, Q. B.; Zhang, H. Two-dimensional nanomaterial-templated composites. Acc. Chem. Res. 2022, 55, 3581–3593.

    CAS  PubMed  Google Scholar 

  168. Liang, X.; Nazar, L. F. In situ reactive assembly of scalable core–shell sulfur-MnO2 composite cathodes. ACS Nano 2016, 10, 4192–4198

    CAS  PubMed  Google Scholar 

  169. Wang, J. J.; Yue, X. Y.; Cao, X.; Liu, Z.; Patil, A. M.; Wang, J. W.; Hao, X. G.; Abudula, A.; Guan, G. Q. Metal organic frameworks derived CoS2/NiS2 heterostructure toward high-performance sodium storage anode materials. Chem. Eng. J. 2022, 431, 134091.

    CAS  Google Scholar 

  170. Wang, S.; Zhou, G. L.; Lv, J. G.; Ma, Y. X.; Wang, Y.; Hu, C. J.; Zhang, J. J.; Yang, J.; He, G.; Zhang, M. et al. Co9S8/CoS@S, N co-doped porous carbon derived from MOFs as an efficient catalyst for the oxygen evolution reaction. J. Phys. Chem. Solids 2021, 148, 109696.

    CAS  Google Scholar 

  171. Xu, H. K.; Wei, X. F.; Zeng, H.; Jiang, C. H.; Wang, Z. F.; Ouyang, Y. G.; Lu, C. Y.; Jing, Y.; Yao, S. W.; Dai, F. N. Recent progress of two-dimensional metal-organic-frameworks: From synthesis to electrocatalytic oxygen evolution. Nano Res. 2023, 16, 8614–8637.

    CAS  ADS  Google Scholar 

  172. Ogawa, S.; Teranishi, T. Electrical resistivity of narrow-band ferromagnetic Fe1−xCoxS2. Phys. Lett. A 1972, 42, 147–148.

    CAS  ADS  Google Scholar 

  173. Zhang, K. X.; Zhang, Z. T.; Shen, H. M.; Tang, Y. Q.; Liang, Z. B.; Zou, R. Q. Electronic modulation of Ni2P through anion and cation substitution toward highly efficient oxygen evolution. Sci. China Mater. 2022, 65, 1522–1530.

    CAS  Google Scholar 

  174. Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

    CAS  Google Scholar 

  175. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    CAS  ADS  Google Scholar 

  176. Xue, L. X.; Li, Y. Y.; Hu, A. J.; Zhou, M. J.; Chen, W.; Lei, T. Y.; Yan, Y. C.; Huang, J. W.; Yang, C. T.; Wang, X. F. et al. In situ/operando Raman techniques in lithium-sulfur batteries. Small Struct. 2022, 3, 2100170

    Google Scholar 

  177. Zhang, L.; Qian, T.; Zhu, X. Y.; Hu, Z. L.; Wang, M. F.; Zhang, L. Y.; Jiang, T.; Tian, J. H.; Yan, C. L. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries. Chem. Soc. Rev. 2019, 48, 5432–5453.

    CAS  PubMed  Google Scholar 

  178. Patel, M. U. M.; Demir-Cakan, R.; Morcrette, M.; Tarascon, J. M.; Gaberscek, M.; Dominko, R. Li-S battery analyzed by UV/Vis in operando mode. ChemSusChem 2013, 6, 1177–1181.

    CAS  PubMed  Google Scholar 

  179. Xu, N.; Qian, T.; Liu, X. J.; Liu, J.; Chen, Y.; Yan, C. L. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett. 2017, 17, 538–543.

    CAS  PubMed  ADS  Google Scholar 

  180. Saqib, N.; Ohlhausen, G. M.; Porter, J. M. In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell. J. Power Sources 2017, 364, 266–271

    CAS  ADS  Google Scholar 

  181. Rafie, A.; Pereira, R.; Shamsabadi, A. A.; Kalra, V. In operando FTIR study on the effect of sulfur chain length in sulfur copolymer-based Li-S batteries. J. Phys. Chem. C 2022, 126, 12327–12338.

    CAS  Google Scholar 

  182. Chen, W.; Lei, T. Y.; Qian, T.; Lv, W. Q.; He, W. D.; Wu, C. Y.; Liu, X. J.; Liu, J.; Chen, B.; Yan, C. L. et al. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium-sulfur battery. Adv. Energy Mater. 2018, 8, 1702889.

    Google Scholar 

  183. Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.

    CAS  Google Scholar 

  184. Ling, M.; Zhang, L.; Zheng, T. Y.; Feng, J.; Guo, J. H.; Mai, L. Q.; Liu, G. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 2017, 38, 82–90.

    CAS  Google Scholar 

  185. Zhang, L.; Sun, D.; Feng, J.; Cairns, E. J.; Guo, J. H. Revealing the electrochemical charging mechanism of nanosized Li2S by in situ and operando X-ray absorption spectroscopy. Nano Lett. 2017, 17, 5084–5091.

    CAS  PubMed  ADS  Google Scholar 

  186. Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.

    CAS  ADS  Google Scholar 

  187. Zheng, J. Y.; Liu, X. X.; Li, W. B.; Li, W. J.; Feng, X. M.; Chen, W. H. Green synthesis of novel conjugated poly(perylene diimide) as cathode with stable sodium storage. Nano Res. 2023, 16, 9538–9545.

    CAS  ADS  Google Scholar 

  188. Xu, D., Liang, B. Q., Xu, Y. D.; Liu, M. Recent advances in tip-enhanced Raman spectroscopy probe designs. Nano Res. 2023, 16, 5555–5571.

    ADS  Google Scholar 

  189. Cao, D. X.; Sun, X.; Li, F.; Bak, S. M.; Ji, T. T.; Geiwitz, M.; Burch, K. S.; Du, Y. H.; Yang, G. C.; Zhu, H. L. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies. Angew. Chem. Int. Ed. 2023, 62, e202302363.

    CAS  Google Scholar 

  190. Lang, S. Y.; Feng, X. R.; Seok, J.; Yang, Y.; Krumov, M. R.; Villarino, A. M.; Lowe, M. A.; Yu, S. H.; Abruña, H. D. Lithium-sulfur redox: Challenges and opportunities. Curr. Opin. Electroche. 2021, 25, 100652.

    CAS  Google Scholar 

  191. Chen, X.; Hou, T. Z.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives. Mater. Today 2019, 22, 142–158.

    CAS  Google Scholar 

  192. Sheng, B. B.; Chu, Y. H.; Cao, D. F.; Xia, Y. J.; Liu, C. J.; Chen, S. M.; Song, L. Application of X-ray absorption spectroscopy in carbon-supported electrocatalysts. Nano Res. 2023, 16, 12438–12452.

    CAS  ADS  Google Scholar 

  193. Wilson, B. E.; Smyrl, W. H.; Stein, A. Design of a low-cost electrochemical cell for in situ XRD analysis of electrode materials. J. Electrochem. Soc. 2014, 161, A700–A703.

    CAS  Google Scholar 

  194. Bleith, P.; Kaiser, H.; Novák, P.; Villevieille, C. In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries. Electrochim. Acta 2015, 176, 18–21

    CAS  Google Scholar 

  195. Tan, J.; Matz, J.; Dong, P.; Ye, M. X.; Shen, J. F. Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy Storage Mater. 2021, 42, 645–678.

    Google Scholar 

  196. Zhao, R.; Wu, Y. X.; Liang, Z. B.; Gao, L.; Xia, W.; Zhao, Y. S.; Zou, R. Q. Metal-organic frameworks for solid-state electrolytes. Energy Environ. Sci. 2020, 13, 2386–2403.

    CAS  Google Scholar 

  197. Li, S. W.; Fu, X. T.; Zhou, J. W.; Han, Y. Z.; Qi, P. F.; Gao, X.; Feng, X.; Wang, B. An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating. J. Mater. Chem. A 2016, 4, 5823–5827.

    CAS  Google Scholar 

  198. Ma, D.; Huang, X.; Zhang, Y.; Wang, L.; Wang, B. Metal-organic frameworks: Synthetic methods for industrial production. Nano Res. 2023, 16, 7906–7925.

    CAS  ADS  Google Scholar 

  199. Huang, N. Y.; Chen, Z. Y.; Hu, F. L.; Shang, C. Y.; Wang, W. J.; Huang, J. R.; Zhou, C.; Li, L.; Xu, Q. Large-scale synthesis of low-cost 2D metal-organic frameworks for highly selective photocatalytic CO2 reduction. Nano Res. 2023, 16, 7756–7760.

    CAS  ADS  Google Scholar 

  200. Xu, H. Y.; Geng, P. B.; Feng, W. C.; Du, M.; Kang, D. J.; Pang, H. Recent advances in metal-organic frameworks for electrochemical performance of batteries. Nano Res., in press, https://doi.org/10.1007/s12274-023-6251-4.

  201. Czaja, A. U.; Trukhan, N.; Müller, U. Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1284–1293.

    CAS  PubMed  Google Scholar 

  202. Hai, G. T.; Xue, X. D.; Feng, S. H.; Ma, Y. W.; Huang, X. B. High-throughput computational screening of metal-organic frameworks as high-performance electrocatalysts for CO2RR. ACS Catal. 2022, 12, 15271–15281.

    CAS  Google Scholar 

  203. Feng, S.; Fu, Z. H.; Chen, X.; Zhang, Q. A review on theoretical models for lithium-sulfur battery cathodes. InfoMat 2022, 4, e12304.

    CAS  Google Scholar 

  204. Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Research progress of high-throughput computational screening of metal-organic frameworks. Acta Chim. Sin. 2019, 77, 323–339.

    CAS  Google Scholar 

  205. Xu, D. G.; Zhang, Q.; Huo, X. Y.; Wang, Y. T.; Yang, M. L. Advances in data-assisted high-throughput computations for material design. MGE Adv. 2023, 1, e11.

    Google Scholar 

  206. Li, W.; Liang, T. G.; Lin, Y. C.; Wu, W. X.; Li, S. Machine learning accelerated high-throughput computational screening of metal-organic frameworks. Prog. Chem. 2022, 34, 2619–2637.

    CAS  Google Scholar 

Download references

Acknowledgements

All authors greatly acknowledge the National Natural Science Foundation of China (Nos. 22279121 and 22209153), Key Research and Development Program of Henan Province (No. 231111241400), Joint Fund of Scientific and Technological Research, Development Program of Henan Province (No. 222301420009), and the Chunhui Plan Cooperative Research Project Foundation of Ministry of Education of China (No. 202200713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajia Wang or Weihua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Cao, B., Yue, X. et al. Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review. Nano Res. 17, 2592–2618 (2024). https://doi.org/10.1007/s12274-024-6481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6481-0

Keywords

Navigation