Skip to main content
Log in

Alloy/layer double hydroxide interphasic synergy via nano-heterointerfacing for highly reversible CO2 redox reaction in Li-CO2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Li-CO2 batteries are among the most intriguing techniques for balancing the carbon cycle, but are challenged by the annoyed thermodynamic barrier of the Li2CO3 decomposition reaction. Herein, we demonstrate the electrocatalytic performances of two-dimensional (2D) CoAl-layer double hydroxide (LDH) nanosheets can be significantly improved by trans-dimensional crosslinking with three-dimensional (3D) multilevel nanoporous (MP)-RuCoAl alloy (MP-RuCoAl alloy ⊥ CoAl-LDH). The MP-RuCoAl alloy⊥CoAl-LDH with multiscale pore channels and abundant nano-heterointerface is directly prepared by controllable etching Al from a Ru-Co-Al master alloy along with simultaneous partial oxidization of Al and Co atoms. The MP-RuCoAl is composed of various intermetallic compounds and Ru with abundant grain boundaries, and forms numerous heterointerface with 2D CoAl-LDH nanosheets. The multiscale porous metallic network benefits mass and electron transportation as well as discharge product storage and enables a rich multiphase reaction interface. In situ differential electrochemical mass spectrometry shows that the mass-to-charge ratio in the charging process is ∼ 0.733 which is consistent with the theoretical value of 3/4, stating that the reversible co-decomposition of Li2CO3 and C can be achieved with the MP-RuCoAl alloy⊥CoAl-LDH. The Ketjen black (KB)/MP-RuCoAl⊥CoAl-LDH battery demonstrates a high cyclability for over 2270 h (227 cycles) with a lower voltage gap stabilized at ∼ 1.3 V at 200 mA·g−1. Our findings here provide useful guidelines for developing high efficiency transition metal based electrocatalysts by coupling with conductive porous substrate for impelling the development of practical Li-CO2 battery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarkar, A.; Dharmaraj, V. R.; Yi, C. H.; Iputera, K.; Huang, S. Y.; Chung, R. J.; Hu, S. F.; Liu, R. S. Recent advances in rechargeable metal-CO2 batteries with nonaqueous electrolytes. Chem. Rev. 2023, 123, 9497–9564.

    Article  CAS  PubMed  Google Scholar 

  2. Ezeigwe, E. R.; Dong, L.; Manjunatha, R.; Zuo, Y. Z.; Deng, S. Q.; Tan, M.; Yan, W.; Zhang, J. J.; Wilkinson, D. P. A review of lithium-O2/CO2 and lithium-CO2 batteries: Advanced electrodes/materials/electrolytes and functional mechanisms. Nano Energy 2022, 95, 106964.

    Article  CAS  Google Scholar 

  3. Jia, P.; Yu, M. Q.; Zhang, X. D.; Yang, T. T.; Zhu, D. D.; Shen, T. D.; Zhang, L. Q.; Tang, Y. F.; Huang, J. Y. In-situ imaging the electrochemical reactions of Li-CO2 nanobatteries at high temperatures in an aberration corrected environmental transmission electron microscope. Nano Res. 2022, 15, 542–550

    Article  ADS  CAS  Google Scholar 

  4. Mu, X. W.; Pan, H.; He, P.; Zhou, H. S. Li-CO2 and Na-CO2 batteries: Toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, 1903790.

    Article  CAS  Google Scholar 

  5. Xie, J. F.; Zhou, Z.; Wang, Y. B. Metal-CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 2020, 30, 1908285.

    Article  CAS  Google Scholar 

  6. Jiao, Y. N.; Qin, J.; Sari, H. M. K.; Li, D. J.; Li, X. F.; Sun, X. L. Recent progress and prospects of Li-CO2 batteries: Mechanisms, catalysts and electrolytes. Energy Storage Mater. 2021, 34, 148–170.

    Article  Google Scholar 

  7. Lv, H. Z.; Huang, X. L.; Zhu, X. Q.; Wang, B. Meta-related electrocatalysts for Li-CO2 batteries: An overview of the fundamentals to explore future-oriented strategies. J. Mater. Chem. A 2022, 10, 25406–25430.

    Article  CAS  Google Scholar 

  8. Hu, A. J.; Shu, C. Z.; Xu, C. X.; Liang, R. X.; Li, J. B.; Zheng, R. X.; Li, M. L.; Long, J. P. Design strategies toward catalytic materials and cathode structures for emerging Li-CO2 batteries. J. Mater. Chem. A 2019, 7, 21605–21633.

    Article  CAS  Google Scholar 

  9. Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

    Article  Google Scholar 

  10. Xu, Y. Y.; Jiang, C.; Gong, H.; Xue, H. R.; Gao, B.; Li, P.; Chang, K.; Huang, X. L.; Wang, T.; He, J. P. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano Res. 2022, 15, 4100–4107.

    Article  ADS  CAS  Google Scholar 

  11. Jian, T. Z.; Ma, W. Q.; Xu, C. X.; Liu, H.; Wang, J. Intermetallic-driven highly reversible electrocatalysis in Li-CO2 battery over nanoporous Ni3Al/Ni heterostructure. eScience 2023, 3, 100114.

    Article  Google Scholar 

  12. Xu, Y. Y.; Gong, H.; Ren, H.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery. Small 2022, 18, 2203917.

    Article  CAS  Google Scholar 

  13. Sun, Z. M.; Wang, D.; Lin, L.; Liu, Y. H.; Yuan, M. W.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Yang, X. J. Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery. Nano Res. 2021, 15, 1171–1177.

    Article  ADS  Google Scholar 

  14. Xu, Y. Y.; Xia, Y. J.; Xue, H. R.; Gong, H.; Chang, K.; He, J. P.; Wang, T.; Ma, R. Z. Aprotic lithium-carbon dioxide batteries: Reaction mecanism and catalyst design. Chem. Rec. 2022, 22, e202200109.

    Article  CAS  PubMed  Google Scholar 

  15. Masnica, J. P.; Sibt-e-Hassan, S.; Potgieter-Vermaak, S.; Regmi, Y. N.; King, L. A.; Tosheva, L. ZIF-8-derived Fe-C catalysts: Relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon 2023, 1, 160–169.

    Article  Google Scholar 

  16. Wang, X. F.; Liu, H. X.; Wang, Q.; Huo, J. H.; Ge, W. Y.; Duan, X. B.; Guo, S. W. Microbial-derived functional carbon decorated hollow NiCo-LDHs nanoflowers as a highly efficient catalyst for Li-CO2 battery. Appl. Surf. Sci. 2021, 540, 148351.

    Article  CAS  Google Scholar 

  17. Jin, Y. C.; Chen, F. Y.; Wang, J. L. Achieving low charge overpotential in a Li-CO2 battery with bimetallic RuCo nanoalloy decorated carbon nanofiber cathodes. ACS Sustain. Chem. Eng. 2020, 8, 2783–2792.

    Article  CAS  Google Scholar 

  18. Yue, G. H.; Luo, X. R.; Hu, Z. Y.; Xu, W. J.; Li, J. T.; Liu, J. Z.; Cao, R. G. RuC2−x decorated CoSnO3 nanoboxes as a high performance cathode catalyst for Li-CO2 batteries. Chem. Commun. 2020, 56, 11693–11696.

    Article  CAS  Google Scholar 

  19. Xu, S. M.; Ren, Z. C.; Liu, X.; Liang, X.; Wang, K. X.; Chen, J. S. Carbonate decomposition: Low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalyst. Energy Storage Mater. 2018, 15, 291–298.

    Article  Google Scholar 

  20. Zhang, B. W.; Jiao, Y.; Chao, D. L.; Ye, C.; Wang, Y. X.; Davey, K.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1904206.

    Article  CAS  Google Scholar 

  21. Fan, L. J.; Tang, D. C.; Wang, D. Y.; Wang, Z. X.; Chen, L. Q. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Res. 2016, 9, 3903–3913.

    Article  CAS  Google Scholar 

  22. Ma, W. Q.; Lu, S. S.; Lei, X. F.; Liu, X. Z.; Ding, Y. Porous Mn2O3 cathode for highly durable Li-CO2 batteries. J. Mater. Chem. A 2018, 6, 20829–20835.

    Article  CAS  Google Scholar 

  23. Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2021, 11, 2002762.

    Article  CAS  Google Scholar 

  24. Du, Y. M.; Li, B.; Xu, G. R.; Wang, L. Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting. InfoMat 2023, 5, e12377.

    Article  CAS  Google Scholar 

  25. Zhou, Q. X.; Xu, C. X.; Li, Y. X.; Xie, X. M.; Liu, H.; Yan, S. S. Synergistic coupling of NiFeZn-OH nanosheet network arrays on a hierarchical porous NiZn/Ni heterostructure for highly efficient water splitting. Sci. China Mater. 2022, 65, 1207–1216.

    Article  CAS  Google Scholar 

  26. Zhou, Q. X.; Xu, C. X.; Hou, J. G.; Ma, W. Q.; Jian, T. Z.; Yan, S. S.; Liu, H. Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 2023, 15, 95.

    Article  ADS  CAS  Google Scholar 

  27. Wang, R.; Zhang, X. J.; Cai, Y. C.; Nian, Q. S.; Tao, Z. L.; Chen, J. Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Res. 2019, 12, 2543–2548.

    Article  CAS  Google Scholar 

  28. Xu, Y. Y.; Xue, H. R.; Li, X. J.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2023, 2, e9120052.

    Article  Google Scholar 

  29. Yuan, M. W.; Sun, Z. M.; Yang, H.; Wang, D.; Liu, Q. M.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Chen, S. W. Self-catalyzed rechargeable lithium-air battery by in situ metal ion doping of discharge products: A combined theoretical and experimental study. Energy Environ. Mater. 2023, 6, e12258.

    Article  CAS  Google Scholar 

  30. Xie, J. F.; Liu, Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B. A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO. J. Mater. Chem. A 2018, 6, 13952–13958.

    Article  CAS  Google Scholar 

  31. Ma, W. Q.; Liu, X. Z.; Li, C.; Yin, H. M.; Xi, W.; Liu, R. R.; He, G.; Zhao, X.; Luo, J.; Ding, Y. Rechargeable Al-CO2 batteries for reversible utilization of CO2. Adv. Mater. 2018, 30, 1801152.

    Article  Google Scholar 

  32. Wan, W. B.; Zhou, Y. T.; Zeng, S. P.; Shi, H.; Yao, R. Q.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous intermetallic Cu3Sn/Cu hybrid electrodes as efficient electrocatalysts for carbon dioxide reduction. Small 2021, 17, 2100683.

    Article  CAS  Google Scholar 

  33. Dong, C. Q.; Kou, T. Y.; Gao, H.; Peng, Z. Q.; Zhang, Z. H. Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv. Energy Mater. 2018, 8, 1701347.

    Article  Google Scholar 

  34. Gao, H.; Wang, Y.; Guo, Z. Y.; Yu, B.; Cheng, G. H.; Yang, W. F.; Zhang, Z. H. Dealloying-induced dual-scale nanoporous indium-antimony anode for sodium/potassium ion batteries. J. Energy Chem. 2022, 75, 154–163.

    Article  CAS  Google Scholar 

  35. Ding, Y.; Zhang, Z. H. Nanoporous Metals for Advanced Energy Technologies; Springer: Cham, 2016.

    Book  Google Scholar 

  36. Zhang, J.; Dong, C. Q.; Wang, Z. B.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution electrocatalyst. Small Methods 2019, 3, 1800286.

    Article  Google Scholar 

  37. Zhou, Q. X.; Xu, C. X. Nanoporous PtCo/Co3O4 composites with high catalytic activities toward hydrolytic dehydrogenation of ammonia borane. J. Colloid Interface Sci. 2017, 508, 542–550.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Zhang, Z. H.; Zhang, C.; Sun, J. Z.; Kou, T. Y.; Bai, Q. G.; Wang, Y.; Ding, Y. Ultrafine nanoporous PdFe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. J. Mater. Chem. A 2013, 1, 3620–3628.

    Article  CAS  Google Scholar 

  39. Duan, H. M.; Hao, Q.; Xu, C. X. Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction. J. Power Sources 2014, 269, 589–596.

    Article  ADS  CAS  Google Scholar 

  40. Jian, T. Z.; Ma, W. Q.; Hou, J. G.; Ma, J. P.; Xu, C. X.; Liu, H. From Ru to RuAl intermetallic/Ru heterojunction: Enabling high reversibility of the CO2 redox reaction in Li-CO2 battery based on lowered interface thermodynamic energy barrier. Nano Energy 2023, 118, 108998.

    Article  CAS  Google Scholar 

  41. Fang, J. H.; Li, M.; Li, Q. Q.; Zhang, W. F.; Shou, Q. L.; Liu, F.; Zhang, X. B.; Cheng, J. P. Microwave-assisted synthesis of CoAl-layered double hydroxide/graphene oxide composite and its application in supercapacitors. Electrochim. Acta 2012, 85, 248–255.

    Article  CAS  Google Scholar 

  42. Chen, Y. X.; Jing, C.; Zhang, X.; Jiang, D. B.; Liu, X. Y.; Dong, B. Q.; Feng, L.; Li, S. C.; Zhang, Y. X. Acid-salt treated CoAl layered double hydroxide nanosheets with enhanced adsorption capacity of methyl orange dye. J. Colloid Interface Sci. 2019, 548, 100–109.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Hall, D. S.; Lockwood, D. J.; Poirier, S.; Bock, C.; MacDougall, B. R. Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. J. Phys. Chem. A 2012, 116, 6771–6784.

    Article  CAS  PubMed  Google Scholar 

  44. Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. J. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.

    Article  CAS  Google Scholar 

  45. Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.

    Article  CAS  Google Scholar 

  46. Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22−/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155–166

    Article  CAS  Google Scholar 

  47. Thoka, S.; Chen, C. J.; Jena, A.; Wang, F. M.; Wang, X. C.; Chang, H.; Hu, S. F.; Liu, R. S. Spinel zinc cobalt oxide (ZnCo2O4) porous nanorods as a cathode material for highly durable Li-CO2 batteries. ACS Appl. Mater. Interfaces 2020, 12, 17353–17363.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52201254), the Natural Science Foundation of Shandong Province (Nos. ZR2020QE012, ZR2020MB090, ZR2023ME155, and ZR2023ME085), the project of “20 Items of University” of Jinan (No. 202228046), and the Taishan Scholar Project of Shandong Province (No. tsqn202306226). The authors are grateful for the support provided by the Shandong Province Laboratory of Technology and Equipment for Molecular Diagnosis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqing Ma or Caixia Xu.

Electronic Supplementary Material

12274_2024_6461_MOESM1_ESM.pdf

Alloy/layer double hydroxide interphasic synergy via nano-heterointerfacing for highly reversible CO2 redox reaction in Li-CO2 batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, T., Ma, W., Hou, J. et al. Alloy/layer double hydroxide interphasic synergy via nano-heterointerfacing for highly reversible CO2 redox reaction in Li-CO2 batteries. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6461-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6461-4

Keyword

Navigation