Skip to main content
Log in

Highly efficient catalyst for 1,1,2-trichloroethane dehydrochlorination via BN3 frustrated Lewis acid-base pairs

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen (B,N) was successfully synthesized. By precisely controlling the carbonization temperature of a binary mixed ionic liquid, we selectively modified the doping site structure, ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst. This catalyst exhibited remarkable catalytic activity, selectivity, and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane (TCE). Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN3 configuration. Compared to conventional graphitic N structures, the BN3 structure had a higher p-band center, ensuring superior adsorption and activation capabilities for TCE during the reaction. Within the BN3 site, three negatively charged nitrogen atoms acted as Lewis bases, while positively charged boron atoms acted as Lewis acids. This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE, significantly enhancing the 1,1-dichloroethene selectivity. Through this research, we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient, selective, and stable catalyst for the dehydrochlorination of TCE, contributing significantly to the development of nonmetallic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312.

    Article  CAS  PubMed  Google Scholar 

  2. Xu, J. M.; Zhao, X. C.; Wang, A. Q.; Zhang, T. Synthesis of nitrogen-doped ordered mesoporous carbons for catalytic dehydrochlorination of 1,2-dichloroethane. Carbon 2014, 80, 610–616.

    Article  CAS  Google Scholar 

  3. Zhao, W.; Sun, M. X.; Zhang, H. Y.; Dong, Y. Z.; Li, X. Y.; Li, W.; Zhang, J. L. Catalytic dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride over N-doped coconut activated carbon. RSC Adv. 2015, 5, 104071–104078.

    Article  CAS  Google Scholar 

  4. Boudewijns, T.; Piccinini, M.; Degraeve, P.; Liebens, A.; De Vos, D. Pathway to vinyl chloride production via dehydrochlorination of 1,2-dichloroethane in ionic liquid media. ACS Catal. 2015, 5, 4043–4047.

    Article  CAS  Google Scholar 

  5. Bai, S. X.; Dai, Q. G.; Chu, X. X.; Wang, X. Y. Dehydrochlorination of 1,2-dichloroethane over Ba-modified Al2O3 catalysts. RSC Adv. 2016, 6, 52564–52574.

    Article  CAS  Google Scholar 

  6. Sun, X.; Qin, Y. C.; Li, Q.; Liu, X.; Liu, Z.; Song, L. J.; Sun, Z. L. Supported structure-controlled graphitic carbon nitride catalyst for dehydrochlorination of 1,2-dichloroethane. Catal. Sci. Technol. 2018, 8, 5334–5343.

    Article  CAS  Google Scholar 

  7. Chen, C.; Shen, Z. B.; Zhu, Y. P.; Wang, F.; Jiang, B.; Qi, H. M. Construction of activated carbon-supported B3N3 doped carbon as metal-free catalyst for dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride. RSC Adv. 2021, 11, 183–191.

    Article  CAS  Google Scholar 

  8. Martin, M.; Richard, B. D. H. Splitting-off of hydrogen halide from halogenated hydrocarbons. U.S. Patent 2,378,859, June 19, 1945.

  9. Iván, B.; Kennedy, J. P.; Kelen, T.; Tüdõs, F.; Nagy, T. T.; Turcsányi, B. Degradation of PVCs obtained by controlled chemical dehydrochlorination. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 2177–2188.

    Article  Google Scholar 

  10. Mochida, I.; Uchino, A.; Fujitsu, H.; Takeshita, K. Catalytic dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethylene over alumina promoted by water. Chem. Lett. 1975, 4, 745–746.

    Article  Google Scholar 

  11. Brace, N. O. Cyclization during the dehydrohalogenation of perfluoroalkyl-substituted iodoalkylmalonates. Thermal rearrangement of the derived 2-(perfluoroalkyl) methylcyclopropane-1,1-dicarboxylates. J. Org. Chem. 1975, 40, 851–858.

    Article  CAS  Google Scholar 

  12. Milchert, E.; Pazdzioch, W. Optimization of dehydrochlorination of waste 1,1,2-trichloroethane to vinylidene chloride. Ind. Eng. Chem. Res. 1999, 38, 391–395.

    Article  CAS  Google Scholar 

  13. Lawrence, N. J. Aldehydes and ketones. J. Chem. Soc., Perkin Trans. 1. 1998, 10, 1739–1750.

    Article  Google Scholar 

  14. Hiroshi, F.; Takeshi, T.; Isao, M. Influences of supporting silica gel on the catalytic activity of B-18 crown ether-KCl complex for the selective dehydrochlorination of 1, 1, 2-trichloroethane. Bull. Chem. Soc. Japan 1985, 58, 1589–1590.

    Article  Google Scholar 

  15. Mochida, I.; Tsunawaki, T.; Sotowa, C.; Korai, Y.; Higuchi, K. Coke produced in the commercial pyrolysis of ethylene dichloride into vinyl chloride. Ind. Eng. Chem. Res. 1996, 35, 3803–3807.

    Article  CAS  Google Scholar 

  16. Kim, D. I.; Allen, D. T. Catalytic hydroprocessing of chlorinated olefins. Ind. Eng. Chem. Res. 1997, 36, 3019–3026.

    Article  CAS  Google Scholar 

  17. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to Sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  18. Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

    Article  CAS  Google Scholar 

  19. Yang, J. R.; Li, W. H.; Tang, H. T.; Pan, Y. M.; Wang, D. S.; Li, Y. D. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023, 617, 519–523.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  CAS  Google Scholar 

  21. Yue, Y. X.; Wang, B. L.; Wang, S. S.; Jin, C. X.; Lu, J. Y.; Fang, Z.; Shao, S. J.; Pan, Z. Y.; Ni, J.; Zhao, J. et al. Boron- doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination. Chem. Commun. 2020, 56, 5174–5177.

    Article  CAS  Google Scholar 

  22. Zhao, J.; Wang, B. L.; Yue, Y. X.; Sheng, G. F.; Lai, H. X.; Wang, S. S.; Yu, L.; Zhang, Q. F.; Feng, F.; Hu, Z. T. et al. Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. J. Catal. 2019, 373, 240–249.

    Article  CAS  Google Scholar 

  23. Yue, Y. X.; Wang, S. S.; Zhou, Q.; Wang, B. L.; Jin, C. X.; Chang, R. Q.; Wan, L. Q.; Pan, Z. Y.; Zhu, Y. H.; Zhao, J.; Li, X. N. Tailoring asymmetric Cu-O-P coupling site by carbothermal shock method for efficient vinyl chloride synthesis over carbon supported Cu catalysts. ACS Catal. 2023, 13, 9777–9791.

    Article  CAS  Google Scholar 

  24. Wang, B. L.; Zhao, J.; Yue, Y. X.; Sheng, G. F.; Lai, H. X.; Rui, J. Y.; He, H. H.; Hu, Z. T.; Feng, F.; Zhang, Q. F. et al. Carbon with surface-enriched nitrogen and sulfur supported Au catalysts for acetylene hydrochlorination. ChemCatChem 2019, 11, 1002–1009.

    Article  CAS  Google Scholar 

  25. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  26. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  28. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  PubMed  Google Scholar 

  29. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  PubMed  Google Scholar 

  30. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  31. Jeong, J. H.; Lee, J. S.; Roh, K. C.; Kim, K. B. Multimodal porous carbon derived from ionic liquids: Correlation between pore sizes and ionic clusters. Nanoscale 2017, 9, 14672–14681.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, B. L.; Wu, D. L.; Wang, T.; Yuan, F.; Jia, D. Z. Rapid preparation of porous carbon by flame burning carbonization method for supercapacitor. Chem. Eng. J. 2023, 462, 142163.

    Article  CAS  Google Scholar 

  33. Zhang, Z. P.; Sun, J. T.; Dou, M. L.; Ji, J.; Wang, F. Nitrogen and phosphorus codoped mesoporous carbon derived from polypyrrole as superior metal-free electrocatalyst toward the oxygen reduction reaction. ACSAppl. Mater. Interfaces 2017, 9, 16236–16242.

    Article  CAS  Google Scholar 

  34. Gao, X. F.; Zhu, L.; Yang, F.; Zhang, L.; Xu, W. H.; Zhou, X.; Huang, Y. K.; Song, H. H.; Lin, L. L.; Wen, X. D. et al. Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation. Nat. Commun. 2023, 14, 1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Z. K.; Yan, B.; Meng, S. Y.; Liu, R.; Lu, W. D.; Sheng, J.; Yi, Y. H.; Lu, A. H. Plasma tuning local environment of hexagonal boron nitride for oxidative dehydrogenation of propane. Angew. Chem., Int. Ed. 2021, 60, 19691–19695.

    Article  CAS  Google Scholar 

  36. Liu, Z.; Liu, J. Q.; Mateti, S.; Zhang, C. M.; Zhang, Y. X.; Chen, L. F.; Wang, J. M.; Wang, H. B.; Doeven, E. H.; Francis, P. S. et al. Boron radicals identified as the source of the unexpected catalysis by boron nitride nanosheets. ACS Nano 2019, 13, 1394–1402.

    CAS  PubMed  Google Scholar 

  37. Li, J.; Dong, Y.; Zhu, J. Y.; Wang, L. X.; Tian, W. H.; Zhao, J.; Lin, H.; Zhang, S.; Cao, Y. L.; Song, H. H. et al. B, N co-doped carbon nanosheets derived from graphene quantum dots: Improving the pseudocapacitive performance by efficient trapping nitrogen. Appl. Surf. Sci. 2020, 529, 147239.

    Article  CAS  Google Scholar 

  38. Song, X. H.; Li, X.; Zhang, X. Y.; Wu, Y. F.; Ma, C. C.; Huo, P. W.; Yan, Y. S. Fabricating C and O co-doped carbon nitride with intramolecular donor-acceptor systems for efficient photoreduction of CO2 to CO. Appl. Catal. B Environ. 2020, 268, 118736.

    Article  CAS  Google Scholar 

  39. Wang, S. Z.; Wang, J. L. Synergistic effect of PMS activation by Fe0@Fe3O4 anchored on N, S, O co-doped carbon composite for degradation of sulfamethoxazole. Chem. Eng. J. 2022, 427, 131960.

    Article  CAS  Google Scholar 

  40. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  41. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  42. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

    Article  CAS  PubMed  Google Scholar 

  43. Doubková, S.; Marek, A. Frustrated Lewis pairs: A real alternative to deuteride/tritide reductions. J. Labelled Compd. Radiopharm. 2019, 62, 729–742.

    Article  Google Scholar 

  44. McQuilken, A. C.; Dao, Q. M.; Cardenas, A. J. P.; Bertke, J. A.; Grimme, S.; Warren, T. H. A frustrated and confused Lewis pair. Angew. Chem., Int. Ed. 2016, 55, 14335–14339.

    Article  CAS  Google Scholar 

  45. Frenette, B. L.; Rivard, E. Frustrated Lewis pair chelation in the p-block. Chem. — Eur. J. 2023, 29, e202302332.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the National Natural Science Foundation of China (Nos. 22202036 and 22302001) and the Jilin Province Scientific, the Technological Planning Project of China (No. 20230101292JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolin Wang, Qingping Ke or Wei Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Zuo, F., Wang, B. et al. Highly efficient catalyst for 1,1,2-trichloroethane dehydrochlorination via BN3 frustrated Lewis acid-base pairs. Nano Res. 17, 4773–4781 (2024). https://doi.org/10.1007/s12274-024-6423-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6423-x

Keywords

Navigation