Skip to main content
Log in

Strain engineering in electrocatalysis: Strategies, characterization, and insights

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Strain engineering, as a cutting-edge method for modulating the electronic structure of catalysts, plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules. The electrocatalytic performance is influenced by the electronic structure, which can be achieved by introducing the external forces or stresses to adjust interatomic spacing between surface atoms. The challenges in strain engineering research lie in accurately understanding the mechanical impact of strain on performance. This paper first introduces the basic strategy for generating the strain, summarizes the different strain generation forms and their advantages and disadvantages. The progress in researching the characterization means for the lattice strains and their applications in the field of electrocatalysis is also emphasized. Finally, the challenges of strain engineering are introduced, and an outlook on the future research directions is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y. Z.; Yang, Y. Y.; Yan, P. D.; Li, J. Economic optimization of renewable energy system under complex uncertainties. J. Hebei Univ. Technol. 2020, 49, 52–59.

    Google Scholar 

  2. Pang, W. B.; Xu, S. W.; Zhang, Y. H. Thin-film-based miniaturized flexible robots: A brief review. J. Hebei Univ. Technol. 2021, 50, 1–22.

    Google Scholar 

  3. Hu, L.; Li, J.; Sun, B.; Feng, S. F.; Wang, L. D.; Hao, Z. K. Preparation and photocatalytic properties of PW12/Bi2WO6. J. Hebei Univ. Technol. 2023, 52, 85–90.

    Google Scholar 

  4. Jiang, K. Z.; Kang, K. L.; Xu, Z. B.; Zheng, S. J. Research progress of high entropy alloy catalysts in the field of hydrogen electroconversion. J. Hebei Univ. Technol. 2023, 52, 1–15.

    CAS  Google Scholar 

  5. Yang, Z. H.; Du, X. Q.; Ye, X. Q.; Qu, X. D.; Duan, H. L.; Xing, Y. F.; Shao, L. H.; Chen, C. A. The free-standing nanoporous palladium for hydrogen isotope storage. J. Alloys Compd. 2021, 854, 157062.

    Article  CAS  Google Scholar 

  6. Wang, L. F.; Yang, R. X.; Fu, J. Z.; Cao, Y. Y.; Ding, R. F.; Xu, X. H. Vertically aligned W(Mo)S2/N-W(Mo)C-based light-assisted electrocatalysis for hydrogen evolution in acidic solutions. Rare Met. 2023, 42, 1535–1544.

    Article  CAS  Google Scholar 

  7. Yu, F. S.; Tian, L. Y. The progress on rational catalyst design for electrochemical N2 reduction. J. Hebei Univ. Technol. 2022, 51, 55–64.

    Google Scholar 

  8. Si, M.; Shen, B. X. The effect of SO2 and O3 on NO catalytic oxidation by manganese-cobalt catalyst. J. Hebei Univ. Technol. 2021, 50, 69–76.

    Google Scholar 

  9. Feng, Y.; Yang, H. T.; Wang, X.; Hu, C. Q.; Jing, H. L.; Cheng, J. X. Role of transition metals in catalyst designs for oxygen evolution reaction: A comprehensive review. Int. J. Hydrogen Energy 2022, 47, 17946–17970.

    Article  CAS  Google Scholar 

  10. Jiao, P. G.; Ye, D. H.; Zhu, C. Y.; Wu, S.; Qin, C. L.; An, C. H.; Hu, N.; Deng, Q. B. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: Progress and prospects. Nanoscale 2022, 14, 14322–14340.

    Article  CAS  PubMed  Google Scholar 

  11. Xu, J.; Yin, Y. Q.; Xiong, H. Q.; Du, X. D.; Jiang, Y. J.; Guo, W.; Wang, Z.; Xie, Z. Z.; Qu, D. Y.; Tang, H. L. et al. Improving catalytic activity of metal telluride by hybridization: An efficient Ni3Te2-CoTe composite electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2019, 490, 516–521.

    Article  CAS  Google Scholar 

  12. Sun, J. P.; Zhao, Z.; Li, J.; Li, Z. Z.; Meng, X. C. Recent advances in electrocatalytic seawater splitting. Rare Met. 2023, 42, 751–768.

    Article  CAS  Google Scholar 

  13. Li, Z. X.; Hu, M. L.; Wang, P.; Liu, J. H.; Yao, J. S.; Li, C. Y. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953.

    Article  CAS  Google Scholar 

  14. Yin, X.; Yang, L. C.; Gao, Q. S. Core–shell nanostructured electrocatalysts for water splitting. Nanoscale 2020, 12, 15944–15969.

    Article  CAS  PubMed  Google Scholar 

  15. Meng, X. C.; Yuan, S.; An, X.; Jing, Y. K.; Liu, Z.; Fan, C.; Wang, M. J.; Zhen, H. X. First-principle study of electronic structure and optical properties of In-doped SnS2. J. Hebei Univ. Technol. 2021, 50, 30–36.

    Google Scholar 

  16. Li, X. Q.; Xing, Y. F.; Xu, J.; Deng, Q. B.; Shao, L. H. Uniform yolk–shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery. Chem. Commun. 2020, 56, 364–367.

    Article  CAS  Google Scholar 

  17. Xu, W. J.; Cao, M. Q.; Luo, J.; Mao, H. L.; Gu, H. F.; Sun, Z. Y.; Liu, Q. Q.; Zhang, S. Research progress on single atom and particle synergistic catalysts for electrocatalytic reactions. Mater. Chem. Front. 2023, 7, 1992–2013.

    Article  Google Scholar 

  18. Li, K.; Xu, J.; Chen, C.; Xie, Z. Z.; Liu, D.; Qu, D. Y.; Tang, H. L.; Wei, Q.; Deng, Q. B.; Li, J. S. et al. Activating the hydrogen evolution activity of Pt electrode via synergistic interaction with NiS2. J. Colloid Interface Sci. 2021, 582, 591–597.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

    Article  CAS  Google Scholar 

  20. Liu, M. X.; Liu, K.; Gao, C. B. Effects of ligands on synthesis and surface-engineering of noble metal nanocrystals for electrocatalysis. ChemElectroChem 2022, 9, e202200651.

    Article  CAS  Google Scholar 

  21. Wang, J.; Wei, J. K.; An, C. H.; Tang, H. L.; Deng, Q. B.; Li, J. S. Electrocatalyst design for the conversion of energy molecules: Electronic state modulation and mass transport regulation. Chem. Commun. 2022, 58, 10907–10924.

    Article  CAS  Google Scholar 

  22. Deng, Q. B.; Jia, H. X.; An, C. H.; Wu, S.; Zhao, S.; Hu, N. Progress and prospective of electrochemical actuator materials. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107336.

    Article  CAS  Google Scholar 

  23. Hou, J. B.; Yang, M.; Zhang, J. L. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 2020, 12, 6900–6920.

    Article  CAS  PubMed  Google Scholar 

  24. Jansonius, R. P.; Reid, L. M.; Virca, C. N.; Berlinguette, C. P. Strain engineering electrocatalysts for selective CO2 reduction. ACS Energy Lett. 2019, 4, 980–986.

    Article  CAS  Google Scholar 

  25. Khorshidi, A.; Violet, J.; Hashemi, J.; Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 2018, 1, 263–268.

    Article  Google Scholar 

  26. Tiwari, A. P.; Bae, G.; Yoon, Y.; Kim, K.; Kim, J.; Lee, Y. L.; An, K. S.; Jeon, S. Chemical strain engineering of copper atoms on continuous three-dimensional-nanopatterned nickel nitride to accelerate alkaline hydrogen evolution. ACS Sustainable Chem. Eng. 2023, 11, 5229–5237.

    Article  CAS  Google Scholar 

  27. Lin, Y.; Chen, X. M.; Tuo, Y.; Pan, Y.; Zhang, J. In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor. J. Energy Chem. 2022, 70, 27–35

    Article  CAS  Google Scholar 

  28. Guan, D. Q.; Zhong, J.; Xu, H. Y.; Huang, Y. C.; Hu, Z. W.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X. M.; Zhou, W. et al. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 011422.

    Article  CAS  Google Scholar 

  29. Deng, Q. B.; Jia, H. X.; Yang, B.; Qi, Z. P.; Zhang, Z. Y.; Lee, A.; Hu, N. The electro-chemo-mechanical coupling at the solid-liquid interfaces and its applications to electrocatalysis. Adv. Mech. 2022, 52, 221–252.

    Google Scholar 

  30. Wu, G.; Han, X.; Cai, J. Y.; Yin, P. Q.; Cui, P. X.; Zheng, X. S.; Li, H.; Chen, C.; Wang, G. M.; Hong, X. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 2022, 13, 4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  32. Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H.; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243–8250.

    Article  CAS  Google Scholar 

  33. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  CAS  PubMed  Google Scholar 

  34. Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deng, Q. B.; Huang, R.; Shao, L. H.; Mumyatov, A. V.; Troshin, P. A.; An, C. H.; Wu, S.; Gao, L. X.; Yang, B.; Hu, N. Atomic understanding of the strain-induced electrocatalysis from DFT calculation: Progress and perspective. Phys. Chem. Chem. Phys. 2023, 25, 12565–12586.

    Article  CAS  PubMed  Google Scholar 

  36. Li, C.; Yan, S. H.; Fang, J. Y. Construction of lattice strain in bimetallic nanostructures and its effectiveness in electrochemical applications. Small 2021, 17, 2102244.

    Article  CAS  Google Scholar 

  37. Pishgar, S.; Gulati, S.; Strain, J. M.; Liang, Y.; Mulvehill, M. C.; Spurgeon, J. M. In situ analytical techniques for the investigation of material stability and interface dynamics in electrocatalytic and photoelectrochemical applications. Small Methods 2021, 5, 2100322

    Article  CAS  Google Scholar 

  38. An, C. H.; Dong, C. H.; Shao, L. H.; Deng, Q. B. Monitoring the length change of Ni@C composite electrodes during charging/discharging processes. Electrochem. Commun. 2019, 103, 94–99.

    Article  CAS  Google Scholar 

  39. You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

    Article  Google Scholar 

  40. Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

    Article  CAS  PubMed  Google Scholar 

  41. Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

    Article  CAS  Google Scholar 

  42. Zhong, H. Y.; Wang, X. P.; Sun, G. X.; Tang, Y. X.; Tan, S. D.; He, Q.; Zhang, J.; Xiong, T.; Diao, C. Z.; Yu, Z. G. et al. Optimization of oxygen evolution activity by tuning eg bnnd broadening in nickel oxyhydroxide. Energy Environ. Sci. 2023, 16, 641–652.

    Article  CAS  Google Scholar 

  43. Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

    Article  CAS  Google Scholar 

  44. Xiong, L. W.; Qiu, Y. F.; Peng, X.; Liu, Z. T.; Chu, P. K. Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy 2022, 104, 107882.

    Article  CAS  Google Scholar 

  45. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano. 2022, 16, 3251–3263.

    Article  CAS  PubMed  Google Scholar 

  46. Jiang, F. L.; Zhu, F. J.; Yang, F.; Yan, X. H.; Wu, A. M.; Luo, L. X.; Li, X. L.; Zhang, J. L. Comparative investigation on the activity degradation mechanism of Pt/C and PtCo/C electrocatalysts in PEMFCs during the accelerate degradation process characterized by an in situ X-ray absorption fine structure. ACS Catal. 2020, 10, 604–612.

    Article  CAS  Google Scholar 

  47. Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B. L.; Xi, P. X.; Yan, C. H. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 18676–18682.

    Article  CAS  Google Scholar 

  48. Liu, X. F.; Liu, T. Y.; Xiao, W. J.; Wang, W. T.; Zhang, Y. F.; Wang, G.; Luo, Z. J.; Liu, J. C. Strain engineering in single-atom catalysts: GaPS4 for bifunctional oxygen reduction and evolution. Inorg. Chem. Front. 2022, 9, 4272–4280.

    Article  CAS  Google Scholar 

  49. Gao, B.; Du, X. Y.; Zhao, Y. W.; Seok Cheon, W.; Ding, S. J.; Xiao, C. H.; Song, Z. X.; Jang, H. W. Electron strain-driven phase transformation in transition-metal-co doped MoTe2 for electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 433, 133768.

    Article  CAS  Google Scholar 

  50. Yin, Y. Q.; Liu, T. T.; Liu, D.; Wang, Z.; Deng, Q. B.; Qu, D. Y.; Xie, Z. Z.; Tang, H. L.; Li, J. S. Confining nano-sized platinum in nitrogen doped ordered mesoporous carbon: An effective approach toward efficient and robust hydrogen evolution electrocatalyst. J. Colloid Interface Sci. 2018, 530, 595–602.

    Article  CAS  PubMed  Google Scholar 

  51. Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Roldan Cuenya, B. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

    Article  CAS  Google Scholar 

  52. Bolar, S.; Shit, S.; Murmu, N. C.; Samanta, P.; Kuila, T. Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design. ACS Appl. Mater. Interfaces 2021, 13, 765–780.

    Article  CAS  PubMed  Google Scholar 

  53. Guo, R. Y.; Zhang, K.; Liu, Y. M.; He, Y. C.; Wu, C.; Jin, M. S. Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. J. Mater. Chem. A 2021, 9, 6196–6204.

    Article  CAS  Google Scholar 

  54. Guo, R. Y.; Bi, W.; Zhang, K.; Liu, Y. M.; Wang, C. Q.; Zheng, Y. Z.; Jin, M. S. Phosphorization treatment improves the catalytic activity and durability of platinum catalysts toward oxygen reduction reaction. Chem. Mater. 2019, 31, 8205–8211.

    Article  CAS  Google Scholar 

  55. Guo, R. Y.; Zhang, K.; Ji, S. D.; Zheng, Y. Z.; Jin, M. S. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chin. Chem. Lett. 2021, 32, 2679–2692.

    Article  CAS  Google Scholar 

  56. Pierucci, D.; Henck, H.; Ben Aziza, Z.; Naylor, C. H.; Balan, A.; Rault, J. E.; Silly, M. G.; Dappe, Y. J.; Bertran, F.; Le Fèvre, P. et al. Tunable doping in hydrogenated single layered molybdenum disulfide. ACS Nano 2017, 11, 1755–1761.

    Article  CAS  PubMed  Google Scholar 

  57. Zhai, Z. B.; Li, H. W.; Zhou, C. A.; Zheng, H.; Liu, Y.; Yan, W.; Zhang, J. J. Anisotropic strain boosted hydrogen evolution reaction activity of F-NiCoMo LDH for overall water splitting. J. Electrochem. Soc. 2023, 170, 036509.

    Article  CAS  Google Scholar 

  58. Xiong, Y. J.; Ma, Y. A.; Zou, L. L.; Han, S. B.; Chen, H.; Wang, S.; Gu, M.; Shen, Y.; Zhang, L. P.; Xia, Z. H. et al. N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction. J. Catal. 2020, 382, 247–255.

    Article  CAS  Google Scholar 

  59. Mao, Q. Q.; Jiao, S. Q.; Ren, K. L.; Wang, S. Q.; Xu, Y.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Transition metal and phosphorus co-doping induced lattice strain in mesoporous Rh-based nanospheres for pH-universal hydrogen evolution electrocatalysis. Chem. Eng. J. 2021, 426, 131227.

    Article  CAS  Google Scholar 

  60. Chattot, R.; Bordet, P.; Martens, I.; Drnec, J.; Dubau, L.; Maillard, F. Building practical descriptors for defect engineering of electrocatalytic materials. ACS Catal. 2020, 10, 9046–9056.

    Article  CAS  Google Scholar 

  61. Qiu, Y. S.; Gao, R.; Yang, W. Y.; Huang, L.; Mao, Q. J.; Yang, J. B.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Understanding the enhancement mechanism of a-site-deficient LaXNiO3 as an oxygen redox catalyst. Chem. Mater. 2020, 32, 1864–1875.

    Article  CAS  Google Scholar 

  62. Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

    Article  Google Scholar 

  63. Wang, L.; Stoerzinger, K. A.; Chang, L.; Yin, X. M.; Li, Y. Y.; Tang, C. S.; Jia, E. D.; Bowden, M. E.; Yang, Z. Z.; Abdelsamie, A. et al. Strain effect on oxygen evolution reaction activity of epitaxial NdNiO3 thin films. ACS Appl. Mater. Interfaces 2019, 11, 12941–12947.

    Article  CAS  PubMed  Google Scholar 

  64. Kutsuzawa, D.; Oka, D.; Fukumura, T. Thickness effects on crystal growth and metal-insulator transition in rutile-type RuO2(100) Thin films. Phys. Status Solidi B 2020, 257, 2000188.

    Article  CAS  Google Scholar 

  65. Fatima, Z.; Oka, D.; Fukumura, T. Systematic application of extremely large strain to rutile-type RuO2(100) epitaxial thin films on substrates with large lattice mismatches. Cryst. Growth Des. 2021, 21, 4083–4089.

    Article  CAS  Google Scholar 

  66. Xu, H. J.; Yang, Y. W.; Yang, X. X.; Cao, J.; Liu, W. S.; Tang, Y. Stringing MOF-derived nanocages: A strategy for the enhanced oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 8284–8291.

    Article  CAS  Google Scholar 

  67. Adiga, P.; Nunn, W.; Wong, C.; Manjeshwar, A. K.; Nair, S.; Jalan, B.; Stoerzinger, K. A. Breaking OER and CER scaling relations via strain and its relaxation in RuO2 (101). Mater. Today Energy 2022, 28, 101087.

    Article  CAS  Google Scholar 

  68. Fernandez, A.; Caretta, L.; Das, S.; Klewe, C.; Lou, D.; Parsonnet, E.; Gao, R.; Luo, A.; Shafer, P.; Martin, L. W. Strain-induced orbital contributions to oxygen electrocatalysis in transition-metal perovskites. Adv. Energy Mater. 2021, 11, 2102175.

    Article  CAS  Google Scholar 

  69. Jia, D. D.; Qi, Z.; Li, X. Q.; Li, L. L.; Shao, L. H.; Liu, H. 3D hierarchical macro/mesoporous TiO2 with nanoporous or nanotubular structures and their core/shell composites achieved by anodization. CrystEngComm 2017, 19, 2509–2516

    Article  CAS  Google Scholar 

  70. Wang, C.; An, C. H.; Qin, C. L.; Gomaa, H.; Deng, Q. B.; Wu, S.; Hu, N. Noble metal-based catalysts with core–shell structure for oxygen reduction reaction: Progress and prospective. Nanomaterials 2022, 12, 2480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, Y. Q.; Zeng, J. C.; Yang, Y.; Li, Z. J.; Zhang, W. B.; Li, D.; Gao, Q. S. Bromine anion mediated epitaxial growth of core–shell Pd@Ag towards efficient electrochemical CO2 reduction. Mater. Chem. Front. 2021, 5, 4327–4333.

    Article  CAS  Google Scholar 

  72. Ahn, H.; Ahn, H.; An, J. H.; Kim, H.; Hong, J. W.; Han, S. W. Role of surface strain at nanocrystalline Pt{110} facets in oxygen reduction catalysis. Nano Lett. 2022, 22, 9115–9121.

    Article  CAS  PubMed  Google Scholar 

  73. Ding, H.; Wang, P.; Su, C. J.; Liu, H. F.; Tai, X. L.; Zhang, N.; Lv, H. F.; Lin, Y.; Chu, W. S.; Wu, X. J. et al. Epitaxial growth of ultrathin highly crystalline Pt-Ni nanostructure on a metal carbide template for efficient oxygen reduction reaction. Adv. Mater. 2022, 34, 2109188.

    Article  CAS  Google Scholar 

  74. Zhao, G. Q.; Luo, Z. X.; Zhang, B. H.; Chen, Y. P.; Cui, X. Z.; Chen, J.; Liu, Y. F.; Gao, M. X.; Pan, H. G.; Sun, W. P. Epitaxial interface stabilizing iridium dioxide toward the oxygen evolution reaction under high working potentials. Nano Res. 2023, 16, 4767–4774.

    Article  CAS  Google Scholar 

  75. Wang, K.; Deng, Q. B. Constructing core–shell Co@N-rich carbon additives toward enhanced hydrogen storage performance of magnesium hydride. Front. Chem. 2020, 8, 223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. An, C. H.; Wang, T. Y.; Wang, S. K.; Chen, X. D.; Han, X. P.; Wu, S.; Deng, Q. B.; Zhao, L. B.; Hu, N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. Ultrason. Sonochem. 2023, 98, 106503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berning, T.; Becher, M.; Wree, J. L.; Jagosz, J.; Kostka, A.; Ostendorf, A.; Devi, A.; Bock, C. Nucleation and growth studies of large-area deposited WS2 on flexible substrates. Mater. Res. Express 2022, 9, 116401.

    Article  CAS  Google Scholar 

  78. Li, Z. W.; Lv, Y. W.; Ren, L. W.; Li, J.; Kong, L. A.; Zeng, Y. J.; Tao, Q. Y.; Wu, R. X.; Ma, H. F.; Zhao, B. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ren, L. W.; Li, Z. W.; Lv, Y. W.; Li, X.; Zhang, D. L.; Li, W. Y.; Liu, L. T.; Kong, L. A.; Duan, X. D.; Wang, X. et al. Efficient modulation of MoS2/WSe2 interlayer excitons via uniaxial strain. Appl. Phys. Lett. 2022, 120, 053107.

    Article  CAS  Google Scholar 

  80. Xing, H. D.; Wang, X. J.; Xu, C. C.; Du, H. Z.; Li, R. B.; Zhao, Z. H.; Qiu, W. Spectral mechanical investigation of the elastic interface between a MoS2/graphene heterostructure and a soft substrate. Carbon 2023, 204, 566–574.

    Article  CAS  Google Scholar 

  81. Dong, M.; Young, R. J.; Dunstan, D. J.; Papageorgiou, D. G. Interfacial stress transfer in monolayer and few-layer MoS2 nanosheets in model nanocomposites. Compos. Sci. Technol. 2023, 233, 109892.

    Article  CAS  Google Scholar 

  82. Deng, S. K.; Sumant, A. V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35.

    Article  CAS  Google Scholar 

  83. Wang, J. W.; Han, M. J.; Wang, Q.; Ji, Y. Q.; Zhang, X.; Shi, R.; Wu, Z. F.; Zhang, L.; Amini, A.; Guo, L. et al. Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays. ACS Nano 2021, 15, 6633–6644.

    Article  CAS  PubMed  Google Scholar 

  84. Martella, C.; Mennucci, C.; Cinquanta, E.; Lamperti, A.; Cappelluti, E.; de Mongeot, F. B.; Molle, A. Anisotropic MoS2 nanosheets grown on self-organized nanopatterned substrates. Adv. Mater. 2017, 29, 1605785.

    Article  Google Scholar 

  85. Liu, B. S.; Liao, Q. L.; Zhang, X. K.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057–9066.

    Article  CAS  PubMed  Google Scholar 

  86. He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

    Article  CAS  PubMed  Google Scholar 

  87. Ma, Y.; Ding, B.; Chen, Y. L.; Wen, D. S. A novel method to predict nanofilm morphology on arbitrary-topographical substrate. Int. J. Mech. Sci. 2022, 232, 107621.

    Article  Google Scholar 

  88. Yang, S. X.; Chen, Y. J.; Jiang, C. B. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat 2021, 3, 397–420.

    Article  Google Scholar 

  89. Sun, Y. F.; Pan, J. B.; Zhang, Z. T.; Zhang, K. N.; Liang, J.; Wang, W. J.; Yuan, Z. Q.; Hao, Y. K.; Wang, B. L.; Wang, J. W. et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2. Nano Lett. 2019, 19, 761–769.

    Article  CAS  PubMed  Google Scholar 

  90. Jiang, H. J.; Zheng, L.; Wei, Y.; Wang, X. W. In-situ investigation of the elastic behavior of two-dimensional MoS2 on flexible substrate by nanoindentation. J. Phys. D Appl. Phys. 2021, 54, 504006

    Article  CAS  Google Scholar 

  91. Won, K.; Lee, C.; Jung, J.; Kwon, S.; Gebredingle, Y.; Lim, J. G.; Kim, M. K.; Jeong, M. S.; Lee, C. Raman scattering measurement of suspended graphene under extreme strain induced by nanoindentation. Adv. Mater. 2022, 34, 2200946.

    Article  CAS  Google Scholar 

  92. Shao, L. H.; Qu, X. D.; Wang, T. Y.; Cui, Z.; Liu, Y. X.; Zhu, Y. Interfacial shear stress transfer between elastoplastic fiber and elastic matrix. J. Mech. Phys. Solids. 2023, 173, 105218

    Article  CAS  Google Scholar 

  93. Li, X.; Sun, M.; Shan, C. X.; Chen, Q.; Wei, X. L. Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv. Mater. Interfaces 2018, 5, 1701246.

    Article  Google Scholar 

  94. Christopher, J. W.; Vutukuru, M.; Lloyd, D.; Bunch, J. S.; Goldberg, B. B.; Bishop, D. J.; Swan, A. K. Monolayer MoS2 strained to 1.3% with a microelectromechanical system. J. Microelectromech. Syst. 2019, 28, 254–263.

    Article  CAS  Google Scholar 

  95. Jansonius, R. P.; Schauer, P. A.; Dvorak, D. J.; MacLeod, B. P.; Fork, D. K.; Berlinguette, C. P. Strain influences the hydrogen evolution activity and absorption capacity of palladium. Angew. Chem., Int. Ed. 2020, 59, 12192–12198.

    Article  CAS  Google Scholar 

  96. Huang, Y. Q.; Ye, Z. G.; Pei, F.; Ma, G.; Peng, X. Y.; Li, D. S. Strain in a platinum plate induced by an ultrahigh energy laser boosts the hydrogen evolution reaction. RSC Adv. 2021, 11, 39087–39094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan, K.; Maark, T. A.; Khorshidi, A.; Sethuraman, V. A.; Peterson, A. A.; Guduru, P. R. The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 6175–6181.

    Article  CAS  Google Scholar 

  98. Niu, Z. J.; Wan, Y. Y.; Li, X.; Zhang, M.; Liu, B. Y.; Chen, Z.; Lu, G.; Yan, K. In-situ regulation of formic acid oxidation via elastic strains. J. Catal. 2020, 389, 631–635

    Article  CAS  Google Scholar 

  99. Wang, A. Q.; Zhao, Z. L.; Hu, D.; Niu, J. F.; Zhang, M.; Yan, K.; Lu, G. Tuning the oxygen evolution reaction on a nickel-iron alloy via active straining. Nanoscale 2019, 11, 426–430.

    Article  CAS  PubMed  Google Scholar 

  100. Smetanin, M.; Kramer, D.; Mohanan, S.; Herr, U.; Weissmüller, J. Response of the potential of a gold electrode to elastic strain. Phys. Chem. Chem. Phys. 2009, 11, 9008–9012.

    Article  CAS  PubMed  Google Scholar 

  101. Smetanin, M.; Deng, Q. B.; Weissmüller, J. Dynamic electrochemo-mechanical analysis during cyclic voltammetry. Phys. Chem. Chem. Phys. 2011, 13, 17313–17322.

    Article  CAS  PubMed  Google Scholar 

  102. Deng, Q. B.; Smetanin, M.; Weissmüller, J. Mechanical modulation of reaction rates in electrocatalysis. J. Catal. 2014, 309, 351–361.

    Article  CAS  Google Scholar 

  103. Deng, Q. B.; Weissmüller, J. Electrocapillary coupling during electrosorption. Langmuir 2014, 30, 10522–10530.

    Article  CAS  PubMed  Google Scholar 

  104. Deng, Q. B.; Gosslar, D. H.; Smetanin, M.; Weissmüller, J. Electrocapillary coupling at rough surfaces. Phys. Chem. Chem. Phys. 2015, 17, 11725–11731.

    Article  CAS  PubMed  Google Scholar 

  105. Yang, M. Z.; Zhang, H. X.; Deng, Q. B. Understanding the copper underpotential deposition process at strained gold surface. Electrochem. Commun. 2017, 82, 125–128.

    Article  CAS  Google Scholar 

  106. Deng, Q. B.; Yuan, A. T. Monitoring and modeling the variation of electrochemical current induced by dynamic strain at gold surfaces. J. Electrochem. Soc. 2019, 166, H480–H484.

    Article  CAS  Google Scholar 

  107. Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 2010, 464, 571–574.

    Article  CAS  PubMed  Google Scholar 

  108. Su, D. Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ. 2017, 2, 70–83.

    Article  Google Scholar 

  109. Xu, T.; Sun, L. T. Dynamic in-situ experimentation on nanomaterials at the atomic scale. Small 2015, 11, 3247–3262.

    Article  CAS  PubMed  Google Scholar 

  110. Nelli, D.; Roncaglia, C.; Minnai, C. Strain engineering in alloy nanoparticles. Adv. Phys. X 2023, 8, 2127330.

    Google Scholar 

  111. Guo, Z. W.; Kang, X. W.; Zheng, X. S.; Huang, J.; Chen, S. W. PdCu alloy nanoparticles supported on CeO2 nanorods: Enhanced electrocatalytic activity by synergy of compressive strain, PdO and oxygen vacancy. J. Catal. 2019, 374, 101–109.

    Article  CAS  Google Scholar 

  112. Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

    Article  CAS  PubMed  Google Scholar 

  113. Wang, T. L.; Chutia, A.; Brett, D. J. L.; Shearing, P. R.; He, G. J.; Chai, G. L.; Parkin, I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 2021, 14, 2639–2669.

    Article  CAS  Google Scholar 

  114. Gao, W. P.; Hood, Z. D.; Chi, M. F. Interfaces in heterogeneous catalysts: Advancing mechanistic understanding through atomic-scale measurements. Acc. Chem. Res. 2017, 50, 787–795.

    Article  CAS  PubMed  Google Scholar 

  115. Wu, Z. X.; Yang, B.; Miao, S.; Liu, W.; Xie, J. L.; Lee, S.; Pellin, M. J.; Xiao, D. Q.; Su, D. S.; Ma, D. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane. ACS Catal. 2019, 9, 2693–2700.

    Article  CAS  Google Scholar 

  116. Di, J.; Song, P.; Zhu, C.; Chen, C.; Xiong, J.; Duan, M. L.; Long, R.; Zhou, W. Q.; Xu, M. Z.; Kang, L. X. et al. Strain-engineering of Bi12O17Br2 nanotubes for boosting photocatalytic CO2 reduction. ACS Mater. Lett. 2020, 2, 1025–1032.

    Article  CAS  Google Scholar 

  117. Mukherjee, D.; Gamler, J. T. L.; Skrabalak, S. E.; Unocic, R. R. Lattice strain measurement of core@shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction. ACS Catal. 2020, 10, 5529–5541.

    Article  CAS  Google Scholar 

  118. Ke, X. X.; Zhang, M. C.; Zhao, K. N.; Su, D. Moiré fringe method via scanning transmission electron microscopy. Small Methods 2022, 6, 2101040.

    Article  CAS  Google Scholar 

  119. Deng, Y.; Xie, N.; Hu, W. Y.; Ma, Z. Y.; Xu, F. J.; Chen, L. Q.; Qiu, W. B.; Zhao, L.; Tao, H.; Wu, B. et al. Atomic plane misorientation assisted crystalline quality improvement in epitaxial growth of AlN on a nanopatterned sapphire (0001) surface for deep ultraviolet photoelectric devices. ACS Appl. Nano Mater. 2023, 6, 4262–4270.

    Article  CAS  Google Scholar 

  120. Zhao, Y.; Yang, Y.; Wen, H. H.; Liu, C.; Huang, X. F.; Liu, Z. W. Evaluation of interfacial misfit strain field of heterostructures using STEM nano secondary Moiré method. Phys. Chem. Chem. Phys. 2022, 24, 9848–9854.

    Article  CAS  PubMed  Google Scholar 

  121. Feng, Q. L.; Zhu, C. Z.; Sheng, G.; Sun, T. L.; Li, Y. J.; Zhu, Y. H. Four-dimensional scanning transmission electron microscopy: From material microstructures to physicochemical properties. Acta Phys. Chim. Sin. 2023, 39, 2210017.

    Google Scholar 

  122. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 2019, 25, 563–582.

    Article  CAS  PubMed  Google Scholar 

  123. Musavigharavi, P.; Meng, A. C.; Wang, D. X.; Zheng, J.; Foucher, A. C.; Olsson, R. H.; Stach, E. A. Nanoscale structural and chemical properties of ferroelectric aluminum scandium nitride thin films. J. Phys. Chem. C 2021, 125, 14394–14400.

    Article  CAS  Google Scholar 

  124. Shi, C. Q.; Cao, M. C.; Rehn, S. M.; Bae, S. H.; Kim, J.; Jones, M. R.; Muller, D. A.; Han, Y. M. Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy. Npj Comput. Mater. 2022, 8, 114.

    Article  CAS  Google Scholar 

  125. Wang, S. H.; Eldred, T. B.; Smith, J. G.; Gao, W. P. AutoDisk: Automated diffraction processing and strain mapping in 4D-STEM. Ultramicroscopy 2022, 236, 113513.

    Article  CAS  PubMed  Google Scholar 

  126. Vicente, R. A.; Neckel, I. T.; Sankaranarayanan, S. K. R. S.; Solla-Gullon, J.; Fernández, P. S. Bragg coherent diffraction imaging for in situ studies in electrocatalysis. ACS Nano 2021, 15, 6129–6146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lahiri, A.; Lakshya, A. K.; Guan, S. L.; Anguilano, L.; Chowdhury, A. Impact of different metallic forms of nickel on hydrogen evolution reaction. Scr. Mater. 2022, 218, 114829.

    Article  CAS  Google Scholar 

  128. Thomas, O.; Labat, S.; Cornelius, T.; Richard, M. I. X-ray diffraction imaging of deformations in thin films and nano-objects. Nanomaterials 2022, 12, 1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.

    Article  CAS  Google Scholar 

  130. Chen, Y. M.; Yang, F.; Dai, Y.; Wang, W. Q.; Chen, S. L. Ni@Pt core–shell nanoparticles: Synthesis, structural and electrochemical properties. J. Phys. Chem. C 2008, 112, 1645–1649.

    Article  CAS  Google Scholar 

  131. Kong, Z. J.; Maswadeh, Y.; Vargas, J. A.; Shan, S. Y.; Wu, Z. P.; Kareem, H.; Leff, A. C.; Tran, D. T.; Chang, F. F.; Yan, S. et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J. Am. Chem. Soc. 2020, 142, 1287–1299.

    Article  CAS  PubMed  Google Scholar 

  132. Nath, D.; Singh, F.; Das, R. X-ray diffraction analysis by Williamson–Hall, Halder–Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater. Chem. Phys. 2020, 239, 122021.

    Article  CAS  Google Scholar 

  133. Bagus, P. S.; Ilton, E. S.; Nelin, C. J. The interpretation of XPS spectra: Insights into materials properties. Surf. Sci. Rep. 2013, 68, 273–304.

    Article  CAS  Google Scholar 

  134. Wang, W. W.; Bai, X. Y.; Yuan, X. C.; Liu, Y. M.; Yang, L.; Chang, F. F. Platinum-cobalt nanowires for efficient alcohol oxidation electrocatalysis. Materials 2023, 16, 840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ren, M. Y.; Chang, F. F.; Miao, R. F.; He, X. H.; Yang, L.; Wang, X. L.; Bai, Z. Y. Strained lattice platinum-palladium alloy nanowires for efficient electrocatalysis. Inorg. Chem. Front. 2020, 7, 1713–1718.

    Article  CAS  Google Scholar 

  136. Miao, R. F.; Chang, F. F.; Ren, M. Y.; He, X. H.; Yang, L.; Wang, X. L.; Bai, Z. Y. Platinum-palladium alloy nanotetrahedra with tuneable lattice-strain for enhanced intrinsic activity. Catal. Sci. Technol. 2020, 10, 6173–6179.

    Article  CAS  Google Scholar 

  137. Wang, X. Y.; Tuo, Y. X.; Zhou, Y.; Wang, D.; Wang, S. T.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297.

    Article  CAS  Google Scholar 

  138. Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437–5443.

    Article  CAS  PubMed  Google Scholar 

  139. Xu, C. C.; Yang, J.; Liu, E. S.; Jia, Q. Y.; Veith, G. M.; Nair, G.; DiPietro, S.; Sun, K.; Chen, J. X.; Pietrasz, P. et al. Physical vapor deposition process for engineering Pt based oxygen reduction reaction catalysts on NbOx templated carbon support. J. Power Sources. 2020, 451, 227709.

    Article  CAS  Google Scholar 

  140. Zhou, Z. Y.; Xie, Y. N.; Sun, L. Z.; Wang, Z. M.; Wang, W. K.; Jiang, L. Z.; Tao, X.; Li, L. N.; Li, X. H.; Zhao, G. H. Strain-induced in situ formation of NiOOH species on Co-Co bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Appl. Catal. B Environ. 2022, 305, 121072.

    Article  CAS  Google Scholar 

  141. Chen, Z. L.; Yang, H. Y.; Mebs, S.; Dau, H.; Driess, M.; Wang, Z. W.; Kang, Z. H.; Menezes, P. W. Reviving oxygen evolution electrocatalysis of bulk La-Ni intermetallics via gaseous hydrogen engineering. Adv. Mater. 2023, 35, 2208337.

    Article  CAS  Google Scholar 

  142. Xie, H. M.; Song, H. B.; Guo, J. G.; Kang, Y. L.; Yang, W.; Zhang, Q. In situ measurement of rate-dependent strain/stress evolution and mechanism exploration in graphene electrodes during electrochemical process. Carbon 2019, 144, 342–350

    Article  CAS  Google Scholar 

  143. Jiao, W. L.; Chen, C.; You, W. B.; Chen, G. Y.; Xue, S. Y.; Zhang, J.; Liu, J. W.; Feng, Y. Z.; Wang, P.; Wang, Y. Z. et al. Tuning strain effect and surface composition in PdAu hollow nanospheres as highly efficient ORR electrocatalysts and SERS substrates. Appl. Catal. B Environ. 2020, 262, 118298.

    Article  CAS  Google Scholar 

  144. Du, M. S.; Wan, Q.; Wang, Z. Q.; Cui, L. S. Elastic strain induced improvement in the photocatalytic activity of semiconducting film exerted by the surface relief of Fe-Ni-Co-Ti alloy substrate. Mater. Lett. 2016, 168, 192–195.

    Article  CAS  Google Scholar 

  145. Liu, L. Y.; Su, L. J.; Lu, Y. L.; Zhang, Q. N.; Zhang, L.; Lei, S. L.; Shi, S. Q.; Levi, M. D.; Yan, X. B. The origin of electrochemical actuation of MnO2/Ni bilayer film derived by redox pseudocapacitive process. Adv. Funct. Mater. 2019, 29, 1806778.

    Article  Google Scholar 

  146. Tsai, W. Y.; Wang, R. C.; Boyd, S.; Augustyn, V.; Balke, N. Probing local electrochemistry via mechanical cyclic voltammetry curves. Nano Energy 2021, 81, 105592.

    Article  CAS  Google Scholar 

  147. Khadka, R.; Zhang, P. K.; Nguyen, N. T.; Tamm, T.; Travas-Sejdic, J.; Otero, T. F.; Kiefer, R. Role of polyethylene oxide content in polypyrrole linear actuators. Mater. Today Commun. 2020, 23, 100908.

    Article  CAS  Google Scholar 

  148. Gao, Q.; Come, J.; Naguib, M.; Jesse, S.; Gogotsi, Y.; Balke, N. Synergetic effects of K+ and Mg2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2 MXene. Faraday Discuss. 2017, 199, 393–403.

    Article  CAS  PubMed  Google Scholar 

  149. Schmidt, T. O.; Ngoipala, A.; Arevalo, R. L.; Watzele, S. A.; Lipin, R.; Kluge, R. M.; Hou, S. J.; Haid, R. W.; Senyshyn, A.; Gubanova, E. L. et al. Elucidation of structure–activity relations in proton electroreduction at Pd surfaces: Theoretical and experimental study. Small 2022, 18, 2202410.

    Article  CAS  Google Scholar 

  150. Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74–77.

    Article  CAS  PubMed  Google Scholar 

  151. Mitterreiter, E.; Liang, Y. C.; Golibrzuch, M.; McLaughlin, D.; Csoklich, C.; Bartl, J. D.; Holleitner, A.; Wurstbauer, U.; Bandarenka, A. S. In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides under reaction conditions. Npj 2D Mater. Appl. 2019, 3, 25

    Article  Google Scholar 

  152. Kluge, R. M.; Haid, R. W.; Riss, A.; Bao, Y.; Seufert, K.; Schmidt, T. O.; Watzele, S. A.; Barth, J. V.; Allegretti, F.; Auwärter, W. et al. A trade-off between ligand and strain effects optimizes the oxygen reduction activity of Pt alloys. Energy Environ. Sci. 2022, 15, 5181–5191.

    Article  CAS  Google Scholar 

  153. Haid, R. W.; Kluge, R. M.; Liang, Y. C.; Bandarenka, A. S. In situ quantification of the local electrocatalytic activity via electrochemical scanning tunneling microscopy. Small Methods 2021, 5, 2000710

    Article  CAS  Google Scholar 

  154. Liao, M. S.; Zhu, Q. M.; Li, S. H.; Li, Q. Q.; Tao, Z. T.; Fu, Y. C. In-situ imaging of strain-induced enhancement of hydrogen evolution activity on the extruded MoO2 sheets. Nano Res. 2023, 16, 5419–5426

    Article  CAS  Google Scholar 

  155. Atlan, C.; Chatelier, C.; Martens, I.; Dupraz, M.; Viola, A.; Li, N.; Gao, L.; Leake, S. J.; Schülli, T. U.; Eymery, J. et al. Imaging the strain evolution of a platinum nanoparticle under electrochemical control. Nat. Mater. 2023, 22, 754–761.

    Article  CAS  PubMed  Google Scholar 

  156. Shade, P. A.; Musinski, W. D.; Obstalecki, M.; Pagan, D. C.; Beaudoin, A. J.; Bernier, J. V.; Turner, T. J. Exploring new links between crystal plasticity models and high-energy X-ray diffraction microscopy. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100763.

    Article  CAS  Google Scholar 

  157. Li, Z.; Wang, Q.; Bai, X. W.; Wang, M. Y.; Yang, Z. Z.; Du, Y. G.; Sterbinsky, G. E.; Wu, D. J.; Yang, Z. Z.; Tian, H. J. et al. Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc-air batteries. Energy Environ. Sci. 2021, 14, 5035–5043.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12172118, 52071125, and 12227801), the Research Program of Local Science and Technology Development under the Guidance of Central (No. 216Z4402G), Science Research Project of Hebei Education Department (No. JZX2023004), Opening fund of State Key Laboratory of Nonlinear Mechanics (LNM), and National Key Research and Development Program of China (No. 2019YFC0840709). We also acknowledge support from “Yuanguang” Scholar Program of Hebei University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuihua An, Li-Hua Shao or Ning Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Xu, P., Gomaa, H. et al. Strain engineering in electrocatalysis: Strategies, characterization, and insights. Nano Res. 17, 3603–3621 (2024). https://doi.org/10.1007/s12274-023-6392-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6392-5

Keywords

Navigation