Skip to main content
Log in

Single Fe atom-anchored manganese dioxide for efficient removal of volatile organic compounds in refrigerator

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The efficient and rapid removal of volatile organic compounds (VOCs) holds significant importance for ensuring food quality and human health, particularly within the low-temperature confined spaces in refrigerators. However, achieving effective VOCs degradation under such conditions poses challenges in terms of activating inert bonds and facilitating mass transfer. In this study, we propose a novel solution by designing a cleaner module that incorporates 1.07% single Fe atom-anchored manganese dioxide catalysts (FeSAs-MnO2). The combination of single Fe atoms and defect-rich MnO2 substrate efficiently activates molecular oxygen, leading to enhanced generation of highly reactive oxygen species (ROS). Non-thermal plasma (NTP) and circulating fan are introduced to facilitate the regeneration of catalytic activity and improve mass transfer. The FeSAs-MnO2 cleaner module demonstrates exceptional performance in trimethylamine (TMA) removal, achieving a conversion efficiency of 98.9% for 9 ppm within just 9 min. Furthermore, accelerated aging tests predict an extended service life of up to 45 years for the FeSAs-MnO2 cleaner module, surpassing the expected lifespan of refrigerators significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiu, Z. L.; Li, G. Y.; An, T. C. In vitro toxic synergistic effects of exogenous pollutants-trimethylamine and its metabolites on human respiratory tract cells. Sci. Total Environ. 2021, 783, 146915

    Article  CAS  PubMed  Google Scholar 

  2. Spengler, J. D.; Sexton, K. Indoor air pollution: A public health perspective. Science 1983, 221, 9–17.

    Article  CAS  PubMed  Google Scholar 

  3. Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669.

    Article  CAS  Google Scholar 

  4. Jiang, C. J.; Li, D. D.; Zhang, P. Y.; Li, J. G.; Wang, J.; Yu, J. G. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. Build. Environ. 2017, 117, 118–126.

    Article  Google Scholar 

  5. Wi, S.; Kim, M. G.; Myung, S. W.; Baik, Y. K.; Lee, K. B.; Song, H. S.; Kwak, M. J.; Kim, S. Evaluation and analysis of volatile organic compounds and formaldehyde emission of building products in accordance with legal standards: A statistical experimental study. J. Hazard. Mater. 2020, 393, 122381.

    Article  CAS  PubMed  Google Scholar 

  6. Kamal, M. S.; Razzak, S. A.; Hossain, M. M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134.

    Article  CAS  Google Scholar 

  7. Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004, 59, 746–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo, H.; Lee, S. C.; Chan, L. Y.; Li, W. M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66.

    Article  CAS  PubMed  Google Scholar 

  9. Kujawa, J.; Cerneaux, S.; Kujawski, W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Membr. Sci. 2015, 474, 11–19.

    Article  CAS  Google Scholar 

  10. Chung, K. H.; Lee, K. Y. Removal of trimethylamine by adsorption over zeolite catalysts and deodorization of fish oil. J. Hazard. Mater. 2009, 172, 922–927.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, D. K.; Wan, P.; Cai, B. N.; Ye, Z. Q.; Chen, H.; Chen, X.; Sun, H. L.; Pan, J. Y. Trimethylamine adsorption mechanism on activated carbon and removal in water and oyster proteolytic solution. J. Ocean Univ. China 2021, 20, 1578–1586.

    Article  CAS  Google Scholar 

  12. Huang, S. W.; Lou, J. C.; Lin, Y. C. Treatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer. J. Hazard. Mater. 2010, 183, 641–647.

    Article  CAS  PubMed  Google Scholar 

  13. Wu, P.; Dai, S. Q.; Chen, G. X.; Zhao, S. Q.; Xu, Z.; Fu, M. L.; Chen, P. R.; Chen, Q.; Jin, X. J.; Qiu, Y. C. et al. Interfacial effects in hierarchically porous a-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Appl. Catal. B: Environ. 2020, 268, 118418.

    Article  CAS  Google Scholar 

  14. Mamaghani, A. H.; Haghighat, F.; Lee, C. S. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B: Environ. 2017, 203, 247–269.

    Article  CAS  Google Scholar 

  15. Li, X. X.; Wang, Y. R.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. A highly dispersed Pt/copper modified-MnO2 catalyst for the complete oxidation of volatile organic compounds: The effect of oxygen species on the catalytic mechanism. Green Energy Environ. 2023, 8, 538–547.

    Article  CAS  Google Scholar 

  16. Sun, H.; Yu, X. L.; Yang, X. Q.; Ma, X. Y.; Lin, M. Y.; Shao, C. F.; Zhao, Y.; Wang, F. Y.; Ge, M. F. Au/Rod-like MnO2 catalyst via thermal decomposition of manganite precursor for the catalytic oxidation of toluene. Catal. Today 2019, 332, 153–159.

    Article  CAS  Google Scholar 

  17. Huang, S. Y.; Zhang, C. B.; He, H. Complete oxidation of o-xylene over Pd/Al2O3 catalyst at low temperature. Catal. Today 2008, 139, 15–23.

    Article  CAS  Google Scholar 

  18. Liu, R.; Wu, H.; Shi, J. H.; Xu, X. M.; Zhao, D.; Ng, Y. H.; Zhang, M. L.; Liu, S. J.; Ding, H. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2022, 12, 6945–6991.

    Article  CAS  Google Scholar 

  19. Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B: Environ. 2010, 100, 403–412.

    Article  CAS  Google Scholar 

  20. Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

    Article  CAS  Google Scholar 

  21. Chen, J.; Yan, D. X.; Xu, Z.; Chen, X.; Chen, X.; Xu, W. J.; Jia, H. P.; Chen, J. A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol. 2018, 52, 4728–4737.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano-to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

    Article  CAS  Google Scholar 

  23. Zhai, C. Y.; Chen, Y. P.; Huang, X. X.; Isaev, A. B.; Zhu, M. S. Recent progress on single-atom catalysts in advanced oxidation processes for water treatment. Environ. Funct. Mater. 2022, 1, 219–229.

    Google Scholar 

  24. Tian, M. Z.; Liu, S. J.; Wang, L. L.; Ding, H.; Zhao, D.; Wang, Y. Q.; Cui, J. H.; Fu, J. F.; Shang, J.; Li, G. K. Complete degradation of gaseous methanol over Pt/FeOx catalysts by normal temperature catalytic ozonation. Environ. Sci. Technol. 2020, 54, 1938–1945.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

    Article  CAS  Google Scholar 

  26. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, DOI: https://doi.org/10.1007/112274-023-5700-4.

  27. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res., in press, DOI: https://doi.org/10.1007/sl2274-023-6037-8.

  28. Nguyen Dinh, M. T.; Giraudon, J. M.; Vandenbroucke, A. M.; Morent, R.; De Geyter, N.; Lamonier, J. F. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. J. Hazard. Mater. 2016, 314, 88–94.

    Article  CAS  PubMed  Google Scholar 

  29. Feng, X. B.; Chen, C. W.; He, C.; Chai, S. N.; Yu, Y. K.; Cheng, J. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation. J. Hazard. Mater. 2020, 383, 121143.

    Article  CAS  PubMed  Google Scholar 

  30. Bo, Z.; Yang, S. L.; Kong, J.; Zhu, J. H.; Wang, Y. L.; Yang, H. C.; Li, X. D.; Yan, J. H.; Cen, K. F.; Tu, X. Solar- enhanced plasma-catalytic oxidation of toluene over a bifunctional graphene fin foam decorated with nanofin-like MnO2. ACS Catal. 2020, 10, 4420–4432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bogaerts, A.; Tu, X.; Whitehead, J. C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H. H.; Murphy, A. B.; Schneider, W. F. et al. The 2020 plasma catalysis roadmap. J. Phys. D: Appl. Phys. 2020, 53, 443001.

    Article  CAS  Google Scholar 

  32. Thevenet, F.; Sivachandiran, L.; Guaitella, O.; Barakat, C.; Rousseau, A. Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: A review. J. Phys. D: Appl. Phys. 2014, 47, 224011.

    Article  Google Scholar 

  33. Zhang, H. B.; Chen, Q. Recent progress of non-thermal plasma material surface treatment and functionalization. Acta Phys. Sin. 2021, 70, 095203.

    Article  Google Scholar 

  34. Wu, P.; Jin, X. J.; Qiu, Y. C.; Ye, D. Q. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environ. Sci. Technol. 2021, 55, 4268–4286.

    Article  CAS  PubMed  Google Scholar 

  35. Yang, R. J.; Guo, Z. J.; Cai, L. X.; Zhu, R. S.; Fan, Y. Y.; Zhang, Y. F.; Han, P. P.; Zhang, W. J.; Zhu, X. G.; Zhao, Q. T. et al. Investigation into the phase-activity relationship of MnO2 nanomaterials toward ozone-assisted catalytic oxidation of toluene. Small 2021, 17, 2103052.

    Article  CAS  Google Scholar 

  36. Yang, R. J.; Fan, Y. Y.; Ye, R. Q.; Tang, Y. X.; Cao, X. H.; Yin, Z. Y.; Zeng, Z. Y. MnO2- based materials for environmental applications. Adv. Mater. 2021, 33, 2004862.

    Article  CAS  Google Scholar 

  37. Ma, Z. M.; Liu, S. Q.; Tang, N. F.; Song, T.; Motokura, K.; Shen, Z. M.; Yang, Y. Coexistence of Fe nanoclusters boosting Fe single atoms to generate singlet oxygen for efficient aerobic oxidation of primary amines to imines. ACS Catal. 2022, 12, 5595–5604.

    Article  CAS  Google Scholar 

  38. Kim, H. H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Plasma catalysis for environmental treatment and energy applications. Plasma Chem. Plasma Process. 2016, 36, 45–72.

    Article  Google Scholar 

  39. Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

    Article  CAS  Google Scholar 

  40. Allen, G. C.; Curtis, M. T.; Hooper, A. J.; Tucker, P. M. X-ray photoelectron spectroscopy of iron-oxygen systems. J. Chem. Soc. Dalton Trans. 1974, 14, 1525–1530.

    Article  Google Scholar 

  41. Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

    Article  CAS  Google Scholar 

  42. Fang, M.; Han, D.; Xu, W. B.; Shen, Y.; Lu, Y. M.; Cao, P. J.; Han, S.; Xu, W. Y.; Zhu, D. L.; Liu, W. J. et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 2020, 10, 2001059.

    Article  CAS  Google Scholar 

  43. Gu, H. Y.; Liu, X.; Liu, X. F.; Ling, C. C.; Wei, K.; Zhan, G. M.; Guo, Y. B.; Zhang, L. Z. Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nat. Commun. 2021, 12, 5422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L. S.; Jiang, X. H.; Zhong, Z. A.; Tian, L.; Sun, Q.; Cui, Y. T.; Lu, X.; Zou, J. P.; Luo, S. L. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity. Angew. Chem., Int. Ed. 2021, 60, 21751–21755.

    Article  CAS  Google Scholar 

  45. Xu, T. Z.; Zhang, P. Y.; Zhang, H. Y. Ultrathin δ-MnO2 nanoribbons for highly efficient removal of a human-related low threshold odorant-acetic acid. Appl. Catal. B: Environ. 2022, 309, 121273.

    Article  CAS  Google Scholar 

  46. Feng, J.; Luo, S. H.; Qian, L. X.; Yan, S. X.; Wang, Q.; Ji, X. B.; Zhang, Y. H.; Liu, X.; Hou, P. Q.; Teng, F. Properties of the “Z”-phase in Mn-rich P2-Na0067Ni0.1Mn0.8Fe0.1O2 as sodium-ion-battery cathodes. Small 2023, 19, 2208005.

    Article  CAS  Google Scholar 

  47. Cao, R. R.; Li, L. X.; Zhang, P. Y.; Gao, L. L.; Rong, S. P. Regulating oxygen vacancies in ultrathin 5-MnO2 nanosheets with superior activity for gaseous ozone decomposition. Environ. Sci.: Nano 2021, 8, 1628–1641.

    CAS  Google Scholar 

  48. Yang, W. H.; Su, Z. A.; Xu, Z. H.; Yang, W. N.; Peng, Y.; Li, J. H. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B: Environ. 2020, 260, 118150.

    Article  CAS  Google Scholar 

  49. Dong, C.; Qu, Z. P.; Jiang, X.; Ren, Y. W. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation. J. Hazard. Mater. 2020, 391, 122181.

    Article  CAS  PubMed  Google Scholar 

  50. Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, S. H.; Yang, Y.; Bi, F. K.; Chen, Y. F.; Wu, M. H.; Zhang, X. D.; Wang, G. Oxygen vacancies in the catalyst: Efficient degradation of gaseous pollutants. Chem. Eng. J. 2023, 454, 140376.

    Article  CAS  Google Scholar 

  52. Liu, Y.; Bui, H. T. D.; Jadhav, A. R.; Yang, T.; Saqlain, S.; Luo, Y. G.; Yu, J. M.; Kumar, A.; Wang, H. D.; Wang, L. L. et al. Revealing the synergy of cation and anion vacancies on improving overall water splitting kinetics. Adv. Funct. Mater. 2021, 31, 2010718.

    Article  CAS  Google Scholar 

  53. Fu, Z. Z.; Wang, D. W.; Yao, Y. B.; Gao, X. Y.; Liu, X.; Wang, S. Y.; Yao, S. Y.; Wang, X. X.; Chi, X. Y.; Zhang, K. X. et al. Local electric field induced by atomic-level donor-acceptor couple of O vacancies and Mn atoms enables efficient hybrid capacitive deionization. Small 2023, 19, 2205666.

    Article  CAS  Google Scholar 

  54. Mo, S. P.; Zhang, Q.; Li, J. Q.; Sun, Y. H.; Ren, Q. M.; Zou, S. B.; Zhang, Q.; Lu, J. H.; Fu, M. L.; Mo, D. Q. et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl. Catal. B: Environ 2020, 264, 118464.

    Article  CAS  Google Scholar 

  55. Wang, Z.; Zhang, Y.; Neyts, E. C.; Cao, X. X.; Zhang, X. S.; Jang, B. W. L.; Liu, C. J. Catalyst preparation with plasmas: How does it work. ACS Catal. 2018, 8, 2093–2110.

    Article  CAS  Google Scholar 

  56. Ren, T. F.; Yin, M. X.; Chen, S. N.; Ouyang, C. P.; Huang, X.; Zhang, X. Y. Single- atom Fe-N4 sites for catalytic ozonation to selectively induce a nonradical pathway toward wastewater purification. Environ. Sci. Technol. 2023, 57, 3623–3633.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB0450401), the National Natural Science Foundation of China (Nos. 92261105 and 22221003), the Anhui Provincial Natural Science Foundation (Nos. 2108085QB70 and 2108085UD06), the Anhui Provincial Key Research and Development Project (No. 2023z04020010), the Key Technologies Research and Development Program of Anhui Province (No. 2022a05020053), the Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences (No. 2021HSC-CIP002), and the Joint Funds from Hefei National Synchrotron Radiation Laboratory (Nos. KY2060000180 and KY2060000195). This work was partially carried out at the University of Science and Technology of China Center for Micro and Nanoscale Research and Fabrication. We acknowledge the Experimental Center of Engineering and Material Science in the University of Science and Technology of China. We thank the photo emission endstations BL1W1B in Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), and BL10B and BL11U in National Synchrotron Radiation Laboratory (NSRL) for the help in characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Wang, Jing Wang or Yuen Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Zhang, Y. et al. Single Fe atom-anchored manganese dioxide for efficient removal of volatile organic compounds in refrigerator. Nano Res. 17, 3927–3933 (2024). https://doi.org/10.1007/s12274-023-6390-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6390-7

Keywords

Navigation