Skip to main content
Log in

Diverse atomic structure configurations of metal-doped transition metal dichalcogenides for enhancing hydrogen evolution

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Doping foreign metal atoms into the substrate of transition metal dichalcogenides (TMDs) enables the formation of diverse atomic structure configurations, including isolated atoms, chains, and clusters. Therefore, it is very important to reasonably control the atomic structure and determine the structure–activity relationship between the atomic configurations and the hydrogen evolution reaction (HER) performance. Although numerous studies have indicated that doping can yield diverse atomic structure configurations, there remains an incomplete understanding of the relationship between atomic configurations within the lattice of TMDs and their performance. Here, diverse atomic structure configurations of adsorptive doping, substitutional doping, and TMDs alloys are summarized. The structure–activity relationship between different atomic configurations and HER performance can be determined by micro-nanostructure devices and density functional theory (DFT) calculations. These diverse atomic structure configurations are of great significance for activating the inert basal plane of TMDs and improving the catalytic activity of HER. Finally, we have summarized the current challenges and future opportunities, offering new perspectives for the design of highly active and stable metal-doped TMDs catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.

    Article  CAS  Google Scholar 

  2. Ledendecker, M.; Mondschein, J. S.; Kasian, O.; Geiger, S.; Göhl, D.; Schalenbach, M.; Zeradjanin, A.; Cherevko, S.; Schaak, R. E.; Mayrhofer, K. Stability and activity of non-noble-metal-based catalysts toward the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 9767–9771.

    Article  CAS  Google Scholar 

  3. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

    Article  CAS  Google Scholar 

  4. Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 2019, 58, 244–276.

    Article  CAS  Google Scholar 

  5. Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

    Article  CAS  Google Scholar 

  6. Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

    Article  CAS  Google Scholar 

  7. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  8. Tian, S. F.; Tang, Q. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping. J. Mater. Chem. C 2021, 9, 6040–6050.

    Article  CAS  Google Scholar 

  9. Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. N.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, R.; Fei, H. L.; Ye, G. L. Recent advances in single metal atom-doped MoS2 as catalysts for hydrogen evolution reaction. Tungsten 2020, 2, 147–161.

    Article  Google Scholar 

  11. Balasubramaniam, B.; Singh, N.; Kar, P.; Tyagi, A.; Prakash, J.; Gupta, R. K. Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications. Mol. Syst. Des. Eng. 2019, 4, 804–827.

    Article  CAS  Google Scholar 

  12. Zhang, T. Y.; Fujisawa, K.; Zhang, F.; Liu, M. Z.; Lucking, M. C.; Gontijo, R. N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T. et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 2020, 14, 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  14. Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. A.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. L. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res. 2023, 16, 4381–4398.

    Article  CAS  Google Scholar 

  15. Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

    Article  CAS  PubMed  Google Scholar 

  16. Park, H. Y.; Dugasani, S. R.; Kang, D. H.; Jeon, J.; Jang, S. K.; Lee, S.; Roh, Y.; Park, S. H.; Park, J. H. n- and p-Type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 11603–11613.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, J.; Heo, J.; Lim, H. Y.; Seo, J.; Kim, Y.; Kim, J.; Kim, U.; Choi, Y.; Kim, S. H.; Yoon, Y. J. et al. Defect-induced in situ atomic doping in transition metal dichalcogenides via liquid-phase synthesis toward efficient electrochemical activity. ACS Nano 2020, 14, 17114–17124.

    Article  CAS  PubMed  Google Scholar 

  18. Fu, Y. J.; Long, M. S.; Gao, A. Y.; Wang, Y.; Pan, C.; Liu, X. W.; Zeng, J. W.; Xu, K.; Zhang, L. L.; Liu, E. F. et al. Intrinsic p-type W-based transition metal dichalcogenide by substitutional Ta-doping. Appl. Phys. Lett. 2017, 111, 043502.

    Article  Google Scholar 

  19. Wang, Y.; Slassi, A.; Stoeckel, M. A.; Bertolazzi, S.; Cornil, J.; Beljonne, D.; Samorì, P. Doping of monolayer transition-metal dichalcogenides via physisorption of aromatic solvent molecules. J. Phys. Chem. Lett. 2019, 10, 540–547.

    Article  CAS  PubMed  Google Scholar 

  20. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  23. Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

    Article  CAS  PubMed  Google Scholar 

  25. Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem. 2022, 134, e202203522.

    Article  Google Scholar 

  26. Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    Article  CAS  Google Scholar 

  27. Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

    Article  CAS  PubMed  Google Scholar 

  28. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  29. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  30. Hou, X. B.; Jiang, T. Y.; Xu, X. J.; Wang, X. K.; Zhou, J.; Xie, H. M.; Liu, Z. C.; Chu, L.; Huang, M. H. Coupling of NiFe-based metal-organic framework nanosheet arrays with embedded Fe-Ni3S2 clusters as efficient bifunctional electrocatalysts for overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2207074–2207080.

    CAS  Google Scholar 

  31. Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R. T.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002.

    Article  Google Scholar 

  33. Joseph, S.; Mohan, J.; Lakshmy, S.; Thomas, S.; Chakraborty, B.; Thomas, S.; Kalarikkal, N. A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures. Mater. Chem. Phys. 2023, 297, 127332.

    Article  CAS  Google Scholar 

  34. Xia, H.; Shi, Z. D.; Gong, C. S.; He, Y. M. Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. J. Mater. Chem. A 2022, 10, 19067–19089.

    Article  CAS  Google Scholar 

  35. Lin, Y. C.; Torsi, R.; Geohegan, D. B.; Robinson, J. A.; Xiao, K. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 2021, 8, 2004249.

    Article  CAS  Google Scholar 

  36. Song, A. L.; Song, S. L.; Duanmu, M. M.; Tian, H.; Liu, H.; Qin, X. J.; Shao, G. J.; Wang, G. X. Recent progress of non-noble metallic heterostructures for the electrocatalytic hydrogen evolution. Small Sci. 2023, 3, 2300036.

    Article  CAS  Google Scholar 

  37. Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

    Article  PubMed  Google Scholar 

  38. Pan, M. H.; Mullen, J. T.; Wook Kim, K. First-principles analysis of magnetically doped transition-metal dichalcogenides. J. Phys. D: Appl. Phys. 2021, 54, 025002.

    Article  CAS  Google Scholar 

  39. Ouyang, B.; Lan, G. Q.; Guo, Y. S.; Mi, Z. T.; Song, J. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation. Appl. Phys. Lett. 2015, 107, 191903.

    Article  Google Scholar 

  40. Sahoo, K. R.; Guha, A.; Bawari, S.; Sharma, R.; Maity, D.; Narayanan, T. N. Basal plane activation of MoS2 by the substitutional doping of vanadium toward electrocatalytic hydrogen generation. ACS Appl. Energy Mater. 2022, 5, 11263–11270.

    Article  CAS  Google Scholar 

  41. Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tedstone, A. A.; Lewis, D. J.; O’Brien, P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 2016, 28, 1965–1974.

    Article  CAS  Google Scholar 

  43. Li, G.; Feng, S. Y.; Li, J.; Deng, P. L.; Tian, X. L.; Wang, C. T.; Hua, Y. J. P-Ni4Mo catalyst for seawater electrolysis with high current density and durability. Chin. J. Struct. Chem. 2022, 41, 2207068–2207073.

    CAS  Google Scholar 

  44. Abidi, N.; Bonduelle-Skrzypczak, A.; Steinmann, S. N. How to dope the basal plane of 2H-MoS2 to boost the hydrogen evolution reaction. Electrochim. Acta 2023, 439, 141653.

    Article  CAS  Google Scholar 

  45. Wu, R.; Xu, J.; Zhao, C. L.; Su, X. Z.; Zhang, X. L.; Zheng, Y. R.; Yang, F. Y.; Zheng, X. S.; Zhu, J. F.; Luo, J. et al. Dopant triggered atomic configuration activates water splitting to hydrogen. Nat. Commun. 2023, 14, 2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, S.; Zhou, S.; Wang, X. C.; Tang, P.; Pasta, M.; Warner, J. H. Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction. Mater. Today Energy 2019, 13, 134–144.

    Article  Google Scholar 

  47. Chia, H. L.; Mayorga-Martinez, C. C.; Sofer, Z.; Lazar, P.; Webster, R. D.; Pumera, M. Vanadium dopants: A boon or a bane for molybdenum dichalcogenides-based electrocatalysis applications. Adv. Funct. Mater. 2021, 31, 2009083.

    Article  CAS  Google Scholar 

  48. Ma, W. Q.; Li, D. Y.; Liao, L. L.; Zhou, H. Q.; Zhang, F. M.; Zhou, X.; Mo, Y. X.; Yu, F. High-performance bifunctional porous iron-rich phosphide/nickel nitride heterostructures for alkaline seawater splitting. Small 2023, 19, 2207082.

    Article  CAS  Google Scholar 

  49. Mo, Y. X.; Liao, L. L.; Li, D. Y.; Pan, R. W.; Deng, Y. H.; Tan, Y. L.; Zhou, H. Q. Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries. Chin. Chem. Lett. 2023, 34, 107130.

    Article  CAS  Google Scholar 

  50. Zhou, Y.; Zhang, J.; Song, E. H.; Lin, J. H.; Zhou, J. D.; Suenaga, K.; Zhou, W.; Liu, Z.; Liu, J. J.; Lou, J. et al. Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat. Commun. 2020, 11, 2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bai, G. X.; Yuan, S. G.; Zhao, Y. D.; Yang, Z. B.; Choi, S. Y.; Chai, Y.; Yu, S. F.; Lau, S. P.; Hao, J. H. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence. Adv. Mater. 2016, 28, 7472–7477.

    Article  CAS  PubMed  Google Scholar 

  52. Kozhakhmetov, A.; Schuler, B.; Tan, A. M. Z.; Cochrane, K. A.; Nasr, J. R.; El-Sherif, H.; Bansal, A.; Vera, A.; Bojan, V.; Redwing, J. M. et al. Scalable substitutional re-doping and its impact on the optical and electronic properties of tungsten diselenide. Adv. Mater. 2020, 32, 2005159.

    Article  CAS  Google Scholar 

  53. Wang, R. N.; Guo, Z. L.; Tan, X. L.; Zhang, J. F.; Yang, L.; Wang, W.; Cao, L. X.; Dong, B. H. Atmosphere plasma treatment and Co heteroatoms doping on basal plane of colloidal 2D VSe2 nanosheets for enhanced hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 32425–32434.

    Article  CAS  Google Scholar 

  54. He, Q.; Wan, Y. Y.; Jiang, H. L.; Wu, C. Q.; Sun, Z. T.; Chen, S. M.; Zhou, Y.; Chen, H. P.; Liu, D. B.; Haleem, Y. A. et al. High-metallic-phase-concentration Mo1−xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano Res. 2018, 11, 1687–1698.

    Article  CAS  Google Scholar 

  55. Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

    Article  CAS  Google Scholar 

  56. Ou, M.; Ma, L.; Xu, L. M.; Yang, Z. M.; Li, H. Z. Hydrothermal synthesis of few-layer and edge-rich cobalt-doped molybdenum selenide/nitrogenated graphene composite and investigation of its electrocatalytic activity for hydrogen evolution reaction. Nano 2016, 11, 1650107.

    Article  CAS  Google Scholar 

  57. Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  PubMed  Google Scholar 

  58. Kwon, I. S.; Kwak, I. H.; Zewdie, G. M.; Lee, S. J.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. WSe2−VSe2 alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction. ACS Nano 2022, 16, 12569–12579.

    Article  CAS  PubMed  Google Scholar 

  59. Yoshimura, A.; Koratkar, N.; Meunier, V. Substitutional transition metal doping in MoS2: A first-principles study. Nano Express 2020, 1, 010008.

    Article  Google Scholar 

  60. Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552.

    Article  CAS  Google Scholar 

  61. Lau, T. H. M.; Wu, S.; Kato, R.; Wu, T. S.; Kulhavý, J.; Mo, J. Y.; Zheng, J. W.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 2019, 9, 7527–7534.

    Article  CAS  Google Scholar 

  62. Li, B. J.; Nie, K. K.; Zhang, Y. J.; Yi, L. X.; Yuan, Y. L.; Chong, S. K.; Liu, Z. Q.; Huang, W. Engineering single-layer hollow structure of transition metal dichalcogenides with high 1T-phase purity for hydrogen evolution reaction. Adv. Mater. 2023, 35, 2303285.

    Article  CAS  Google Scholar 

  63. Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.

    Article  CAS  PubMed  Google Scholar 

  64. Peng, Q.; Qi, X. S.; Gong, X.; Chen, Y. L. 1T-MoS2 coordinated bimetal atoms as active centers to facilitate hydrogen generation. Materials 2021, 14, 4073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shi, Z. Y.; Zhang, X.; Lin, X. Q.; Liu, G. G.; Ling, C. Y.; Xi, S. B.; Chen, B.; Ge, Y. Y.; Tan, C. L.; Lai, Z. C. et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 2023, 621, 300–305.

    Article  CAS  PubMed  Google Scholar 

  67. Vega-Granados, K.; Gochi-Ponce, Y.; Alonso-Vante, N. Electrochemical interfaces on chalcogenides: Some structural perspectives and synergistic effects of single-surface active sites. Curr. Opin. Electrochem. 2022, 33, 100955.

    Article  CAS  Google Scholar 

  68. Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.

    Article  CAS  PubMed  Google Scholar 

  69. Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294–299.

    Article  CAS  PubMed  Google Scholar 

  70. Jin, Y. Y.; Zeng, Z. Y.; Xu, Z. W.; Lin, Y. C.; Bi, K. X.; Shao, G. L.; Hu, T. S.; Wang, S. S.; Li, S. S.; Suenaga, K. et al. Synthesis and transport properties of degenerate P-type Nb-doped WS2 monolayers. Chem. Mater. 2019, 31, 3534–3541.

    Article  CAS  Google Scholar 

  71. Kadam, S. R.; Enyashin, A. N.; Houben, L.; Bar-Ziv, R.; Bar-Sadan, M. Ni-WSe2 nanostructures as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media. J. Mater. Chem. A 2020, 8, 1403–1416.

    Article  CAS  Google Scholar 

  72. Mo, Y. X.; Ni, Y. F.; Li, X.; Pan, R. W.; Tang, Y. X.; Deng, Y. H.; Xiao, B. B.; Tan, Y. L.; Yu, F. An efficient pH-universal non-noble hydrogen-evolving electrocatalyst from transition metal phosphides-based heterostructures. Int. J. Hydrogen Energy 2023, 48, 31101–31109.

    Article  CAS  Google Scholar 

  73. Qiu, Y.; Liu, J. Z.; Sun, M. X.; Yang, J. F.; Liu, J. Z.; Zhang, X. Y.; Liu, X. J.; Zhang, L. X. Rational design of electrocatalyst with abundant Co/MoN heterogeneous domains for accelerating hydrogen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2207040–2207045.

    CAS  Google Scholar 

  74. Zhang, F. M.; Liu, Y. L.; Yu, F.; Pang, H. J.; Zhou, X.; Li, D. Y.; Ma, W. Q.; Zhou, Q.; Mo, Y. X.; Zhou, H. Q. Engineering multilevel collaborative catalytic interfaces with multifunctional iron sites enabling high-performance real seawater splitting. ACS Nano 2023, 17, 1681–1692.

    Article  CAS  Google Scholar 

  75. Yoo, H.; Heo, K.; Ansari, M. H. R.; Cho, S. Recent advances in electrical doping of 2D semiconductor materials: Methods, analyses, and applications. Nanomaterials 2021, 11, 832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu, Z. N.; Zhao, Y. X.; Zou, W. T.; Lu, Q.; Liao, J. H.; Li, F. F.; Shang, M. P.; Lin, L.; Liu, Z. F. Doping of graphene films: Open the way to applications in electronics and optoelectronics. Adv. Funct. Mater. 2022, 32, 2203179.

    Article  CAS  Google Scholar 

  77. Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681.

    Article  CAS  Google Scholar 

  78. Onofrio, N.; Guzman, D.; Strachan, A. Novel doping alternatives for single-layer transition metal dichalcogenides. J. Appl. Phys. 2017, 122, 185102.

    Article  Google Scholar 

  79. Zhang, J.; Zhu, Y.; Tebyetekerwa, M.; Li, D. L.; Liu, D.; Lei, W. W.; Wang, L. F.; Zhang, Y. P.; Lu, Y. R. Vanadium-doped monolayer MoS2 with tunable optical properties for field-effect transistors. ACS Appl. Nano Mater. 2021, 4, 769–777.

    Article  CAS  Google Scholar 

  80. Zhao, Y. D.; Xu, K.; Pan, F.; Zhou, C. J.; Zhou, F. C.; Chai, Y. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 2017, 27, 1603484.

    Article  Google Scholar 

  81. Wei, Z. M.; Li, B.; Xia, C. X.; Cui, Y.; He, J.; Xia, J. B.; Li, J. B. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2018, 2, 1800094.

    Article  Google Scholar 

  82. Kwak, I. H.; Kwon, I. S.; Zewdie, G. M.; Debela, T. T.; Lee, S. J.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. Polytypic phase transition of Nb1−xVxSe2 via colloidal synthesis and their catalytic activity toward hydrogen evolution reaction. ACS Nano 2022, 16, 4278–4288.

    Article  CAS  PubMed  Google Scholar 

  83. Feng, S. M.; Lin, Z.; Gan, X.; Lv, R. T.; Terrones, M. Doping two-dimensional materials: Ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horiz. 2017, 2, 72–80.

    Article  CAS  PubMed  Google Scholar 

  84. Kaur, S. P.; Dhilip Kumar, T. J. Tuning structure, electronic, and catalytic properties of non-metal atom doped Janus transition metal dichalcogenides for hydrogen evolution. Appl. Surf. Sci. 2021, 552, 149146.

    Article  CAS  Google Scholar 

  85. Chia, X. Y.; Sutrisnoh, N. A. A.; Sofer, Z.; Luxa, J.; Pumera, M. Morphological effects and stabilization of the metallic 1T phase in layered V-, Nb-, and Ta-doped WSe2 for electrocatalysis. Chem.-Eur. J. 2018, 24, 3199–3208.

    Article  CAS  PubMed  Google Scholar 

  86. Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818.

    Article  CAS  Google Scholar 

  87. Wang, R.; Han, J. C.; Xu, P.; Gao, T. L.; Zhong, J.; Wang, X. J.; Zhang, X. H.; Li, Z. J.; Xu, L. L.; Song, B. Dual-enhanced doping in ReSe2 for efficiently photoenhanced hydrogen evolution reaction. Adv. Sci. 2020, 7, 2000216.

    Article  CAS  Google Scholar 

  88. Cheng, R. Q.; Min, Y. L.; Li, H. X.; Fu, C. P. Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications. Nano Energy 2023, 115, 108718.

    Article  CAS  Google Scholar 

  89. Kwon, I. S.; Kwak, I. H.; Debela, T. T.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. Phase-transition Mo1−xVxSe2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction. ACS Nano 2021, 15, 14672–14682.

    Article  CAS  PubMed  Google Scholar 

  90. Vasu, K.; Meiron, O. E.; Enyashin, A. N.; Bar-Ziv, R.; Bar-Sadan, M. Effect of Ru doping on the properties of MoSe2 nanoflowers. J. Phys. Chem. C 2019, 123, 1987–1994.

    Article  CAS  Google Scholar 

  91. Xiong, L. W.; Qiu, Y. F.; Peng, X.; Liu, Z. T.; Chu, P. K. Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy 2022, 104, 107882.

    Article  CAS  Google Scholar 

  92. Bolar, S.; Shit, S.; Kumar, J. S.; Murmu, N. C.; Ganesh, R. S.; Inokawa, H.; Kuila, T. Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Appl. Catal. B: Environ. 2019, 254, 432–442.

    Article  CAS  Google Scholar 

  93. Kuraganti, V.; Jain, A.; Bar-Ziv, R.; Ramasubramaniam, A.; Bar-Sadan, M. Manganese doping of MoSe2 promotes active defect sites for hydrogen evolution. ACS Appl. Mater. Interfaces 2019, 11, 25155–25162.

    Article  CAS  PubMed  Google Scholar 

  94. Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.

    Article  CAS  PubMed  Google Scholar 

  95. Tang, L.; Xu, R. Z.; Tan, J. Y.; Luo, Y. T.; Zou, J. Y.; Zhang, Z. T.; Zhang, R. J.; Zhao, Y.; Lin, J. H.; Zou, X. L. et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping. Adv. Funct. Mater. 2021, 31, 2006941.

    Article  CAS  Google Scholar 

  96. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, X.; Jiang, X. X.; Shao, G. G.; Xiang, H. Y.; Li, Z. W.; Jin, Y. Y.; Chen, Y.; Jiang, H. L.; Li, H. M.; Shui, J. L. et al. Activating the electrocatalysis of MoS2 basal plane for hydrogen evolution via atomic defect configurations. Small 2022, 18, 2200601.

    Article  CAS  Google Scholar 

  98. Lang, C. G.; Jiang, W. B.; Yang, C. J.; Zhong, H.; Chen, P. R.; Wu, Q. L.; Yan, X. C.; Dong, C. L.; Lin, Y.; Ouyang, L. Z. et al. Facile and scalable mechanochemical synthesis of defective MoS2 with Ru single atoms toward high-current-density hydrogen evolution. Small 2023, 19, 2300807.

    Article  CAS  Google Scholar 

  99. Son, E.; Lee, S.; Seo, J.; Kim, U.; Kim, S. H.; Baik, J. M.; Han, Y. K.; Park, H. Engineering the local atomic configuration in 2H TMDs for efficient electrocatalytic hydrogen evolution. ACS Nano 2023, 17, 10817–10826.

    Article  CAS  PubMed  Google Scholar 

  100. Wang, X.; Wu, J.; Zhang, Y. W.; Sun, Y.; Ma, K. K.; Xie, Y.; Zheng, W. H.; Tian, Z.; Kang, Z.; Zhang, Y. Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: From aggregated to atomic configuration. Adv. Mater., in press, https://doi.org/10.1002/adma.202206576.

  101. Aliaga, J.; Vera, P.; Araya, J.; Ballesteros, L.; Urzúa, J.; Farías, M.; Paraguay-Delgado, F.; Alonso-Núñez, G.; González, G.; Benavente, E. Electrochemical hydrogen evolution over hydrothermally synthesized Re-doped MoS2 flower-like microspheres. Molecules 2019, 24, 4631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bose, R.; Seo, M.; Jung, C. Y.; Yi, S. C. Comparative investigation of the molybdenum sulphide doped with cobalt and selenium towards hydrogen evolution reaction. Electrochim. Acta 2018, 271, 211–219.

    Article  CAS  Google Scholar 

  103. Dong, T.; Zhang, X.; Wang, P.; Chen, H. S.; Yang, P. Formation of Ni-doped MoS2 nanosheets on N-doped carbon nanotubes towards superior hydrogen evolution. Electrochim. Acta 2020, 338, 135885.

    Article  CAS  Google Scholar 

  104. Qin, Z. Y.; Loh, L.; Wang, J. Y.; Xu, X. M.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T. et al. Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 2019, 13, 10768–10775.

    Article  CAS  PubMed  Google Scholar 

  105. Yang, F.; Shang, J.; Kou, L. Z.; Li, C.; Deng, Z. C. Computational investigation of orderly doped transition metal dichalcogenides: Implications for nanoscale optoelectronic devices. ACS Appl. Nano Mater. 2022, 5, 3824–3831.

    Article  CAS  Google Scholar 

  106. Zhang, T. Y.; Liu, M. Z.; Fujisawa, K.; Lucking, M.; Beach, K.; Zhang, F.; Shanmugasundaram, M.; Krayev, A.; Murray, W.; Lei, Y. et al. Spatial control of substitutional dopants in hexagonal monolayer WS2: The effect of edge termination. Small 2023, 19, 2205800.

    Article  CAS  Google Scholar 

  107. Murai, Y.; Zhang, S. C.; Hotta, T.; Liu, Z.; Endo, T.; Shimizu, H.; Miyata, Y.; Irisawa, T.; Gao, Y. L.; Maruyama, M. et al. Versatile post-doping toward two-dimensional semiconductors. ACS Nano 2021, 15, 19225–19232.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

    Article  CAS  PubMed  Google Scholar 

  109. Jiang, A. N.; Zhang, B. H.; Li, Z. H.; Jin, G. X.; Hao, J. C. Vanadium-doped WS2 nanosheets grown on carbon cloth as a highly efficient electrocatalyst for the hydrogen evolution reaction. Chem. Asian J. 2018, 13, 1438–1446.

    Article  CAS  PubMed  Google Scholar 

  110. Kwon, I. S.; Kwak, I. H.; Zewdie, G. M.; Lee, S. J.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. MoSe2−VSe2−NbSe2 ternary alloy nanosheets to boost electrocatalytic hydrogen evolution reaction. Adv. Mater. 2022, 34, 2205524.

    Article  CAS  Google Scholar 

  111. Kwak, I. H.; Kwon, I. S.; Debela, T. T.; Abbas, H. G.; Park, Y. C.; Seo, J.; Ahn, J. P.; Lee, J. H.; Park, J.; Kang, H. S. Phase evolution of Re1−xMoxSe2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano 2020, 14, 11995–12005.

    Article  CAS  PubMed  Google Scholar 

  112. Kwon, I. S.; Kwak, I. H.; Kim, J. Y.; Debela, T. T.; Park, Y. C.; Park, J.; Kang, H. S. Concurrent vacancy and adatom defects of Mo1−xNbxSe2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 2021, 15, 5467–5477.

    Article  CAS  PubMed  Google Scholar 

  113. Kwak, I. H.; Kwon, I. S.; Kim, J. Y.; Zewdie, G. M.; Lee, S. J.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. Full composition tuning of W1−xNbxSe2 alloy nanosheets to promote the electrocatalytic hydrogen evolution reaction. ACS Nano 2022, 16, 13949–13958.

    Article  CAS  PubMed  Google Scholar 

  114. Lei, Y.; Pakhira, S.; Fujisawa, K.; Wang, X. Y.; Iyiola, O. O.; López, N. P.; Elías, A. L.; Rajukumar, L. P.; Zhou, C. J.; Kabius, B. et al. Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1−xS2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 2017, 11, 5103–5112.

    Article  CAS  PubMed  Google Scholar 

  115. Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852–2862.

    Article  CAS  PubMed  Google Scholar 

  116. Xu, K.; Wang, Y.; Zhao, Y. D.; Chai, Y. Modulation doping of transition metal dichalcogenide/oxide heterostructures. J. Mater. Chem. C 2017, 5, 376–381.

    Article  CAS  Google Scholar 

  117. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  118. Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

    Article  CAS  Google Scholar 

  119. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  120. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  121. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. 2021, 133, 19233–19239.

    Article  Google Scholar 

  122. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  123. Li, S. S.; Hong, J. H.; Gao, B.; Lin, Y. C.; Lim, H. E.; Lu, X. Y.; Wu, J.; Liu, S.; Tateyama, Y.; Sakuma, Y. et al. Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics. Adv. Sci. 2021, 8, 2004438.

    Article  CAS  Google Scholar 

  124. Chang, C.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhuang, Z. C.; Liu, S. J.; Li, J. M.; Liu, X.; Zhao, Q. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 2022, 15, 8613–8635.

    Article  CAS  Google Scholar 

  125. Li, J. W.; Yin, W. N.; Pan, J. A.; Zhang, Y. B.; Wang, F. S.; Wang, L. L.; Zhao, Q. External field assisted hydrogen evolution reaction. Nano Res. 2023, 16, 8638–8654.

    Article  Google Scholar 

  126. Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

    Article  CAS  Google Scholar 

  127. Tu, Y.; Xie, L. B.; Zhang, M. Y.; Liu, S. J.; Luo, Z. Z.; Wang, L. L.; Zhao, Q. Recent advances on liquid intercalation and exfoliation of transition metal dichalcogenides: From fundamentals to applications. Nano Res., in press, https://doi.org/10.1007/s12274-023-5946-x.

  128. Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 51902101), the Natural Science Foundation of Jiangsu Province (No. BK20201381), the Science Foundation of Nanjing University of Posts and Telecommunications (Nos. NY219144 and NY221046), and the National College Student Innovation and Entrepreneurship Training Program (No. 202210293171K).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longlu Wang or Zechao Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Y., Gu, C. et al. Diverse atomic structure configurations of metal-doped transition metal dichalcogenides for enhancing hydrogen evolution. Nano Res. 17, 3586–3602 (2024). https://doi.org/10.1007/s12274-023-6374-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6374-7

Keywords

Navigation