Skip to main content
Log in

Three-dimensional porous In2O3 arrays for self-powered transparent solar-blind photodetectors with high responsivity and excellent spectral selectivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transparent solar-blind ultraviolet photodetectors (SBUV PDs) have extensive applications in versatile scenarios, such as optical communication. However, it is still challenging to simultaneously achieve high responsivity, high transparency, and satisfying self-powered capability. Here, we demonstrated high-performance, transparent, and self-powered photoelectrochemical-type (PEC) SBUV PDs based on vertically grown ultrathin In2O3 nanosheet arrays (NAs) with a three-dimensional (3D) porous structure. The 3D porous structure simultaneously improves the transmittance in the visible light region, accelerates interfacial reaction kinetics, and promotes photogenerated carrier transport. The performance of In2O3 NAs photoanodes exceeds most reported self-powered PEC SBUV PDs, exhibiting a high transmittance of approximately 80% in the visible light region, a high responsivity of 86.15 mA/W for 254 nm light irradiation, a fast response speed of 15/18 ms, and good multicycle stability. The In2O3 NAs also show excellent spectral selectivity with an ultrahigh solar-blind rejection ratio of 1319.30, attributed to the quantum confinement effect induced by the ultrathin feature (2–3 nm). Furthermore, In2O3 NAs photoanodes show good capability in underwater optical communication. Our work demonstrated that a 3D porous structure is a powerful strategy to synchronously achieve high responsivity and transparency and provides a new perspective for designing high-performance, transparent, and self-powered PEC SBUV PDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, Q.; You, H. F.; Guo, H.; Wang, J.; Liu, B.; Xie, Z. L.; Chen, D. J.; Lu, H.; Zheng, Y. D.; Zhang, R. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light: Sci. Appl. 2021, 10, 94.

    Article  CAS  PubMed  Google Scholar 

  2. Long, M. S.; Shen, Z.; Wang, R. J.; Dong, Q. S.; Liu, Z. Y.; Hu, X.; Hou, J.; Lu, Y.; Wang, F.; Zhao, D. X. et al. Ultrasensitive solarblind ultraviolet photodetector based on FePSe3/MoS2 heterostructure response to 10.6 µm. Adv. Funct. Mater. 2022, 32, 2204230.

    Article  CAS  Google Scholar 

  3. Ping, Y.; Long, H. R.; Liu, H.; Chen, C.; Zhang, N. N.; Jing, H. M.; Lu, J. B.; Zhao, Y. W.; Yang, Z. M.; Li, W. et al. Polarization sensitive solar-blind ultraviolet photodetectors based on ultrawide bandgap KNb3O8 nanobelt with fringe-like atomic lattice. Adv. Funct. Mater. 2022, 32, 2111673.

    Article  CAS  Google Scholar 

  4. Yan, Y.; Yang, J. H.; Du, J.; Zhang, X. M.; Liu, Y. Y.; Xia, C. X.; Wei, Z. M. Cross-substitution promoted ultrawide bandgap up to 4.5 eV in a 2D semiconductor: Gallium thiophosphate. Adv. Mater. 2021, 33, 2008761.

    Article  CAS  Google Scholar 

  5. Fang, S.; Wang, D. H.; Wang, X. N.; Liu, X.; Kang, Y.; Yu, H. B.; Zhang, H. C.; Hu, W.; He, J. H.; Sun, H. D. et al. Tuning the charge transfer dynamics of the nanostructured GaN photoelectrodes for efficient photoelectrochemical detection in the ultraviolet band. Adv. Funct. Mater. 2021, 31, 2103007.

    Article  CAS  Google Scholar 

  6. Liu, X.; Wang, D. H.; Shao, P. F.; Sun, H. D.; Fang, S.; Kang, Y.; Liang, K.; Jia, H. F.; Luo, Y. M.; Xue, J. J. et al. Achieving record high external quantum efficiency > 86.7% in solar-blind photoelectrochemical photodetection. Adv. Funct. Mater. 2022, 32, 2201604.

    Article  CAS  Google Scholar 

  7. Luo, Y. M.; Wang, D. H.; Kang, Y.; Liu, X.; Fang, S.; Memon, M. H.; Yu, H. B.; Zhang, H. C.; Luo, D. Y.; Sun, X. Y. et al. Demonstration of photoelectrochemical-type photodetectors using seawater as electrolyte for portable and wireless optical communication. Adv. Opt. Mater. 2022, 10, 2102839.

    Article  CAS  Google Scholar 

  8. Xiao, S. D.; Yu, H. B.; Jia, H. F.; Memon, M. H.; Wang, R.; Zhang, H. C.; Sun, H. D. Performance evaluation of tunnel junction-based N-polar AlGaN deep-ultraviolet light-emitting diodes. Opt. Lett. 2022, 47, 4187–4190.

    Article  CAS  Google Scholar 

  9. Fang, H. J.; Zheng, C.; Wu, L. L.; Li, Y.; Cai, J.; Hu, M. X.; Fang, X. S.; Ma, R.; Wang, Q.; Wang, H. Solution-processed self-powered transparent ultraviolet photodetectors with ultrafast response speed for high-performance communication system. Adv. Funct. Mater. 2019, 29, 1809013.

    Article  Google Scholar 

  10. Kee, S.; Kim, N.; Park, B.; Kim, B. S.; Hong, S.; Lee, J. H.; Jeong, S.; Kim, A.; Jang, S. Y.; Lee, K. Highly deformable and see-through polymer light-emitting diodes with all-conducting-polymer electrodes. Adv. Mater. 2018, 30, 1703437.

    Article  Google Scholar 

  11. Rana, A. K.; Park, J. T.; Kim, J.; Wong, C. P. See-through metal oxide frameworks for transparent photovoltaics and broadband photodetectors. Nano Energy 2019, 64, 103952.

    Article  CAS  Google Scholar 

  12. Wang, D.; Li, Y. H.; Zhou, G. Q.; Gu, E.; Xia, R. X.; Yan, B. Y.; Yao, J. Z.; Zhu, H. M.; Lu, X. H.; Yip, H. L. et al. High-performance see-through power windows. Energy Environ. Sci. 2022, 15, 2629–2637.

    Article  CAS  Google Scholar 

  13. Ma, H. L.; Fang, H. J.; Liu, Y. Y.; Li, J. Q.; Jing, K.; Hong, J. W.; Wang, H. Fully transparent ultraviolet photodetector with ultrahigh responsivity enhanced by MXene-induced photogating effect. Adv. Opt. Mater. 2023, 11, 2300393.

    Article  CAS  Google Scholar 

  14. Feng, S. Y.; Liu, Z. T.; Feng, L. Z.; Wang, J. C.; Xu, H. N.; Deng, L. J.; Zhou, O. X.; Jiang, X.; Liu, B. D.; Zhang, X. L. High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging. J. Alloys Compd. 2023, 945, 169274.

    Article  CAS  Google Scholar 

  15. Mao, J. T.; Zhang, Y. Q.; Zhang, Y. N.; Lin, Y. N.; Feng, Y.; Hu, Y. Q.; Shafa, M.; Pan, Y. Wafer-Scale 1T′ MoTe2 for fast response self-powered wide-range photodetectors. ACS Appl. Mater. Interfaces 2023, 11, 28267–28276.

    Article  Google Scholar 

  16. Ouyang, T.; Zhao, X.; Xun, X. C.; Gao, F. F.; Zhao, B.; Bi, S. X.; Li, Q.; Liao, Q. L.; Zhang, Y. Boosting charge utilization in self-powered photodetector for real-time high-throughput ultraviolet communication. Adv. Sci. 2023, 10, 2301585.

    Article  CAS  Google Scholar 

  17. Vieira, E. M. F.; Silva, J. P. B.; Gwozdz, K.; Kaim, A.; Gomes, N. M.; Chahboun, A.; Gomes, M. J. M.; Correia, J. H. Disentangling the role of the SnO layer on the pyro-phototronic effect in ZnO-based self-powered photodetectors. Small 2023, 10, 2300607.

    Article  Google Scholar 

  18. Zhang, X. Y.; Li, Z. Q.; Yan, T. T.; Su, L.; Fang, X. S. Phase-modulated multidimensional perovskites for high-sensitivity self-powered UV photodetectors. Small 2023, 19, 2206310.

    Article  CAS  Google Scholar 

  19. Zuo, C. T.; Zhang, L. X.; Pan, X. Y.; Tian, H.; Yan, K. Y.; Cheng, Y. H.; Jin, Z. W.; Yi, C. Y.; Zhang, X. L.; Wu, W. Q. et al. Perovskite films with gradient bandgap for self-powered multiband photodetectors and spectrometers. Nano Res. 2023, 16, 10256–10262.

    Article  CAS  Google Scholar 

  20. Zhou, J. Y.; Chen, L. L.; Wang, Y. Q.; He, Y. M.; Pan, X. J.; Xie, E. Q. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors. Nanoscale 2016, 8, 50–73.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y. F.; Xue, Y. X.; Su, J.; Lin, Z. H.; Zhang, J. C.; Chang, J. J.; Hao, Y. Realization of cost-effective and high-performance solarblind ultraviolet photodetectors based on amorphous Ga2O3 prepared at room temperature. Mater. Today Adv. 2022, 16, 100324.

    Article  CAS  Google Scholar 

  22. Yu, H.; Qu, L. H.; Zhang, M. X.; Wang, Y. X.; Lou, C. Q.; Xu, Y.; Cui, M. Q.; Shao, Z. T.; Liu, X.; Hu, P. A. et al. Achieving high responsivity of photoelectrochemical solar-blind ultraviolet photodetectors via oxygen vacancy engineering. Adv. Opt. Mater. 2023, 11, 2202341.

    Article  CAS  Google Scholar 

  23. Wei, W. Q.; Wei, Z.; Li, R. Z.; Li, Z. H.; Shi, R.; Ouyang, S. X.; Qi, Y. H.; Philips, D. L.; Yuan, H. Subsurface oxygen defects electronically interacting with active sites on In2O3 for enhanced photothermocatalytic CO2 reduction. Nat. Commun. 2022, 13, 3199.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mori, T.; Kajihara, K.; Kanamura, K.; Toda, Y.; Hiramatsu, H.; Hosono, H. Indium-based ultraviolet-transparent electroconductive oxyfluoride InOF: Ambient-pressure synthesis and unique electronic properties in comparison with In2O3. J. Am. Chem. Soc. 2013, 135, 13080–13088.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, R. J.; Zhang, M.; Sun, X.; Chen, R. P.; Sun, X. Perylene-3,4,9,10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl. Catal. B: Environ. 2019, 254, 667–676.

    Article  CAS  Google Scholar 

  26. Lin, J.; Huang, Y.; Bando, Y.; Tang, C. C.; Li, C.; Golberg, D. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties. ACS Nano 2010, 4, 2452–2458.

    Article  CAS  PubMed  Google Scholar 

  27. Deng, B. W.; Song, H.; Wang, Q.; Hong, J. N.; Song, S.; Zhang, Y. W.; Peng, K.; Zhang, H. W.; Kako, T.; Ye, J. H. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure. Appl. Catal. Environ. 2023, 327, 122471.

    Article  CAS  Google Scholar 

  28. Cui, M. Q.; Shao, Z. T.; Qu, L. H.; Liu, X.; Yu, H.; Wang, Y. X.; Zhang, Y. X.; Fu, Z. D.; Huang, Y. W.; Feng, W. MOF-derived In2O3 microrods for high-performance photoelectrochemical ultraviolet photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 39046–39052.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, M. X.; Yu, H.; Li, H.; Jiang, Y.; Qu, L. H.; Wang, Y. X.; Gao, F.; Feng, W. Ultrathin In2O3 nanosheets toward high responsivity and rejection ratio visible-blind UV photodetection. Small 2023, 19, 2205623.

    Article  CAS  Google Scholar 

  30. Li, M.; Tu, X. L.; Su, Y. J.; Lu, J.; Hu, J.; Cai, B. F.; Zhou, Z. H.; Yang, Z.; Zhang, Y. F. Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 2018, 10, 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, S.; Song, P.; Liu, L.; Yang, Z. X.; Wang, Q. In2O3 nanosheets array directly grown on Al2O3 ceramic tube and their gas sensing performance. Ceram. Int. 2017, 43, 7942–7947.

    Article  CAS  Google Scholar 

  32. Patil, S. P.; Patil, V. L.; Vanalakar, S. A.; Shendage, S. S.; Pawar, S. A.; Kim, J. H.; Ryu, J.; Patil, D. R.; Patil, P. S. Porous In2O3 thick films as a low temperature NO2 gas detector. Mater. Lett. 2022, 306, 130916.

    Article  CAS  Google Scholar 

  33. Labram, J. G.; Treat, N. D.; Lin, Y. H.; Burgess, C. H.; McLachlan, M. A.; Anthopoulos, T. D. Energy quantization in solution-processed layers of indium oxide and their application in resonant tunneling diodes. Adv. Funct. Mater. 2016, 26, 1656–1663.

    Article  CAS  Google Scholar 

  34. Garcia-Domene, B.; Ortiz, H. M.; Gomis, O.; Sans, J. A.; Manjón, F. J.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, S. N.; Errandonea, D.; Martínez-García, D. et al. High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. J. Appl. Phys. 2012, 112, 123511.

    Article  Google Scholar 

  35. Lalitha, K.; Kumari, V. D.; Subrahmanyam, M. In2O3/TiO2 Nano photocatalysts for solar hydrogen production from methanol: Water mixtures. Indian J. Chem. 2014, 53A, 472–477.

    CAS  Google Scholar 

  36. Shruthi, J.; Jayababu, N.; Ghosal, P.; Reddy, M. V. R. Ultrasensitive sensor based on Y2O3-In2O3 nanocomposites for the detection of methanol at room temperature. Ceram. Int. 2019, 45, 21497–21504.

    Article  CAS  Google Scholar 

  37. Yang, C. S.; Pei, C. L.; Luo, R.; Liu, S. H.; Wang, Y. N.; Wang, Z. Y.; Zhao, Z. J.; Gong, J. L. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. J. Am. Chem. Soc. 2020, 142, 19523–19531.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, C.; Huan, Y. C.; Sun, D. J.; Lu, Y. L. Synthesis and NO2 sensing performances of CuO nanoparticles loaded In2O3 hollow spheres. J. Alloys Compd. 2020, 842, 155857.

    Article  CAS  Google Scholar 

  39. Zhang, Q.; Wang, S. P.; Wang, L. W.; Huang, Y. L.; Wang, Y. H.; Yu, K. F.; Gao, L. P. Vapor-phase modulated sphere-like In2O3@N-C complexes for improving gas sensitivity. J. Alloys Compd. 2021, 865, 158702.

    Article  CAS  Google Scholar 

  40. Jiang, M.; Zhang, J. Y.; Yang, W. X.; Wu, D. M.; Zhao, Y. K.; Wu, Y. Y.; Zhou, M.; Lu, S. L. Flexible self-powered photoelectrochemical photodetector with ultrahigh detectivity, ultraviolet/visible reject ratio, stability, and a quasi-invisible functionality based on lift-off vertical (Al,Ga)N nanowires. Adv. Mater. Int. 2022, 9, 2200028.

    Article  CAS  Google Scholar 

  41. Jiang, M.; Zhao, Y. K.; Bian, L. F.; Yang, W. X.; Zhang, J. Y.; Wu, Y. Y.; Zhou, M.; Lu, S. L.; Qin, H. Self-powered photoelectrochemical (Al,Ga)N photodetector with an ultrahigh ultraviolet/visible reject ratio and a quasi-invisible functionality for 360° omnidirectional detection. ACS Photonics 2021, 8, 3282–3290.

    Article  CAS  Google Scholar 

  42. Yang, X. X.; Liu, X.; Qu, L. H.; Gao, F.; Xu, Y.; Cui, M. Q.; Yu, H.; Wang, Y. X.; Hu, P. A.; Feng, W. Boosting photoresponse of self-powered InSe-based photoelectrochemical photodetectors via suppression of interface doping. ACS Nano 2022, 16, 8440–8448.

    Article  CAS  PubMed  Google Scholar 

  43. Yang, X. X.; Qu, L. H.; Gao, F.; Hu, Y. X.; Yu, H.; Wang, Y. X.; Cui, M. Q.; Zhang, Y. X.; Fu, Z. D.; Huang, Y. W. et al. High-performance broadband photoelectrochemical photodetectors based on ultrathin Bi2O2S nanosheets. ACS Appl. Mater. Interfaces 2022, 14, 7175–7183.

    Article  CAS  PubMed  Google Scholar 

  44. Fang, S.; Li, L. A.; Wang, D. H.; Chen, W.; Kang, Y.; Wang, W. Y.; Liu, X.; Luo, Y. M.; Yu, H. B.; Zhang, H. C. et al. Breaking the responsivity-bandwidth trade-off limit in GaN photoelectrodes for high-response and fast-speed optical communication application. Adv. Funct. Mater. 2023, 33, 2214408.

    Article  CAS  Google Scholar 

  45. Kang, Y.; Wang, D. H.; Gao, Y. Z.; Guo, S. Q.; Hu, K. J.; Liu, B. Y.; Fang, S.; Memon, M. H.; Liu, X.; Luo, Y. M. et al. Achieving record-high photoelectrochemical photoresponse characteristics by employing Co3O4 nanoclusters as hole charging layer for underwater optical communication. ACS Nano 2023, 17, 3901–3912.

    Article  CAS  PubMed  Google Scholar 

  46. Tan, J.; Kang, B.; Kim, K.; Kang, D.; Lee, H.; Ma, S.; Jang, G.; Lee, H.; Moon, J. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat. Energy 2022, 7, 537–547.

    Article  CAS  Google Scholar 

  47. Zhang, J. H.; Jiao, S. J.; Wang, D. B.; Ni, S. M.; Gao, S. Y.; Wang, J. Z. Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure. J. Mater. Chem. C 2019, 7, 6867–6871.

    Article  CAS  Google Scholar 

  48. Wang, D. H.; Liu, X.; Fang, S.; Huang, C.; Kang, Y.; Yu, H. B.; Liu, Z. L.; Zhang, H. C.; Long, R.; Xiong, Y. J. et al. Pt/AlGaN nanoarchitecture: Toward high responsivity, self-powered ultraviolet-sensitive photodetection. Nano Lett. 2021, 21, 120–129.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, J. H.; Jiao, S. J.; Wang, D. B.; Gao, S. Y.; Wang, J. Z.; Zhao, L. C. Nano tree-like branched structure with α-Ga2O3 covered by γ-Al2O3 for highly efficient detection of solar-blind ultraviolet light using self-powered photoelectrochemical method. Appl. Surf. Sci. 2021, 541, 148380.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from Fundamental Research Funds for the Central Universities (No. 2572023AW26) and the Innovation Foundation for the Doctoral Program of Forestry Engineering of Northeast Forestry University (No. LYGC202227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Yang, Feng Gao or Wei Feng.

Electronic Supplementary Material

12274_2023_6370_MOESM1_ESM.pdf

Three-dimensional porous In2O3 arrays for self-powered transparent solar-blind photodetectors with high responsivity and excellent spectral selectivity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Gao, X., Guan, H. et al. Three-dimensional porous In2O3 arrays for self-powered transparent solar-blind photodetectors with high responsivity and excellent spectral selectivity. Nano Res. 17, 4471–4477 (2024). https://doi.org/10.1007/s12274-023-6370-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6370-y

Keywords

Navigation