Skip to main content
Log in

OH regulator of highly dispersed Ru sites on host Pd nanocrystals for selective ethanol electro-oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The ethanol oxidation reaction (EOR) is crucial in direct alcohol fuel cells and chemical production. However, the electro-oxidation of ethanol molecules to produce acetaldehyde and carbon monoxide can poison the active sites of nanocatalysts, resulting in reduced performance and posing challenges in achieving high activity and selectivity for ethanol oxidation. In this study, we employed a dynamic seed-mediated method to precisely modify highly dispersed Ru sites onto well-defined Pd nanocrystals. The oxyphilic Ru sites serve as “OH valves”, regulating water dissociation, while the surrounding Pd atomic arrangements control electronic states for the oxidation dehydrogenation of carbonaceous intermediates. Specifically, Ru0.040@Pd nanocubes (Ru:Pd = 0.04 at.%), featuring (100) facets in Ru-Pd4 configurations, demonstrate an outstanding mass activity of 6.53 \({\rm{A}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{Pd}}}}^{ - 1}\) in EOR under alkaline conditions, which is 6.05 times higher than that of the commercial Pd/C catalyst (1.08 \({\rm{A}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{Pd}}}}^{ - 1}\)). Through in-situ experiments and theoretical investigations, we elucidate that the hydrophilic Ru atoms significantly promote the dynamic evolution of H2O dissociation into OHads species, while the electron redistribution from Ru to adjacent Pd concurrently adjusts the selective oxidation of C2 intermediates. This host–guest interaction accelerates the subsequent oxidation of carbonaceous intermediates (CH3COads) to acetate, while preventing the formation of toxic CHx and CO species, which constitutes the rate-determining step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, W.; Li, G.; Cui, S. S.; Park, G. S.; Oh, R.; Chen, W. X.; Cheng, X. Y.; Zhang, J. M.; Li, W. Z.; Ji, L. F. et al. Ga-modification near-surface composition of Pt-Ga/C catalyst facilitates high-efficiency electrochemical ethanol oxidation through a C2 intermediate. J. Am. Chem. Soc. 2023, 145, 17220–17231.

    Article  CAS  PubMed  Google Scholar 

  2. Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang, J. F.; Wang, G. Z.; Chang, X. X.; Yang, Z. Z.; Wang, H.; Li, B. Y.; Zhang, W.; Kovarik, L.; Du, Y. G.; Orlovskaya, N. et al. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. Nat. Commun. 2023, 14, 1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, X.; Wang, T.; Wang, C.; Hübner, R.; Eychmüller, A.; Zhan, J. H.; Cai, B. Bimetallic Pt-Hg aerogels for electrocatalytic upgrading of ethanol to acetate. Small 2023, 19, 2207557.

    Article  CAS  Google Scholar 

  5. Chen, T.; Xu, S.; Zhao, T. T.; Zhou, X. H.; Hu, J. Q.; Xu, X.; Liang, C. J.; Liu, M.; Ding, W. P. Accelerating ethanol complete electrooxidation via introducing ethylene as the precursor for the C-C bond splitting. Angew. Chem., Int. Ed. 2023, 62, e202308057.

    Article  CAS  Google Scholar 

  6. Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd Nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

    Article  CAS  Google Scholar 

  7. Chu, M. Y.; Huang, J. L.; Gong, J.; Qu, Y.; Chen, G. L.; Yang, H.; Wang, X. C.; Zhong, Q. X.; Deng, C. W.; Cao, M. H. et al. Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Res. 2022, 15, 3920–3926.

    Article  CAS  Google Scholar 

  8. Ye, N.; Sheng, W. C.; Zhang, R. G.; Yan, B. H.; Jiang, Z.; Fang, T. Interfacial electron engineering of PdSn-Nb N/C for highly efficient cleavage of the C-C bonds in alkaline ethanol electrooxidation. Small, in press, DOI: https://doi.org/10.1002/smll.202304990.

  9. Wang, W. C.; Shi, X. T.; He, T. O.; Zhang, Z. R.; Yang, X. L.; Guo, Y. J.; Chong, B.; Zhang, W. M.; Jin, M. S. Tailoring amorphous PdCu nanostructures for efficient C-C cleavage in ethanol electrooxidation. Nano Lett. 2022, 22, 7028–7033.

    Article  CAS  PubMed  Google Scholar 

  10. Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater., in press, DOI:https://doi.org/10.1002/adma.202308653.

  11. Hu, G. F.; Shang, L.; Sheng, T.; Chen, Y. G.; Wang, L. Y. PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 2020, 30, 2002281.

    Article  CAS  Google Scholar 

  12. Chen, X. T.; Granda-Marulanda, L. P.; McCrum, I. T.; Koper, M. T. M. How palladium inhibits Co poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nat. Commun. 2022, 13, 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Y. J.; Pei, J. J.; Chen, Z.; Li, A.; Ji, S. F.; Rong, H. P.; Xu, Q.; Wang, T.; Zhang, A. J.; Tang, H. L. et al. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 2022, 22, 7563–7571.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y.; Zheng, M.; Li, Y. R.; Chen, J.; Ye, J. Y.; Ye, C. L.; Li, S. N.; Wang, J.; Zhu, Y. F.; Sun, S. G. et al. Oxygen-bridged long-range dual sites boost ethanol electrooxidation by facilitating C-C bond cleavage. Nano Lett. 2023, 23, 8194–8202.

    Article  CAS  PubMed  Google Scholar 

  15. Lv, H.; Sun, L. Z.; Wang, Y. Z.; Liu, S. H.; Liu, B. Highly curved, quasi-single-crystalline mesoporous metal nanoplates promote C-C bond cleavage in ethanol oxidation electrocatalysis. Adv. Mater. 2022, 34, 2203612.

    Article  CAS  Google Scholar 

  16. Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.

    Article  CAS  PubMed  Google Scholar 

  17. Shao, M. H.; Yu, T.; Odell, J. H.; Jin, M. S.; Xia, Y. N. Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem. Commun. 2011, 47, 6566–6568.

    Article  CAS  Google Scholar 

  18. Xu, B. Y.; Liu, T. Y.; Liang, X. C.; Dou, W. J.; Geng, H. B.; Yu, Z. Y.; Li, Y. F.; Zhang, Y.; Shao, Q.; Fan, J. M. et al. Pd-Sb rhombohedra with an unconventional rhombohedral phase as a trifunctional electrocatalyst. Adv. Mater. 2022, 34, 2206528.

    Article  CAS  Google Scholar 

  19. Xiao, L. P.; Li, G.; Yang, Z.; Chen, K.; Zhou, R. S.; Liao, H. G.; Xu, Q. C.; Xu, J. Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100982.

    Article  CAS  Google Scholar 

  20. Zhang, Y.; Liu, X. Z.; Liu, T. Y.; Ma, X. Y.; Feng, Y. G.; Xu, B. Y.; Cai, W. B.; Li, Y. F.; Su, D.; Shao, Q. et al. Rhombohedral Pd-Sb nanoplates with Pd-terminated surface: An efficient bifunctional fuel-cell catalyst. Adv. Mater. 2022, 34, 2202333.

    Article  CAS  Google Scholar 

  21. Zhao, F. L.; Li, C. Z.; Yuan, Q.; Yang, F.; Luo, B.; Xie, Z. X.; Yang, X. T.; Zhou, Z. Y.; Wang, X. Trimetallic palladium-copper-cobalt alloy wavy nanowires improve ethanol electrooxidation in alkaline medium. Nanoscale 2019, 11, 19448–19454.

    Article  CAS  PubMed  Google Scholar 

  22. Fang, X.; Wang, L. Q.; Shen, P. K.; Cui, G. F.; Bianchini, C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J. Power Sources 2010, 195, 1375–1378.

    Article  CAS  Google Scholar 

  23. Pei, A.; Li, G.; Zhu, L. H.; Huang, Z. N.; Ye, J. Y.; Chang, Y. C.; Osman, S. M.; Pao, C. W.; Gao, Q. S.; Chen, B. H. et al. Nickel hydroxide-supported Ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation. Adv. Funct. Mater. 2022, 32, 2208587.

    Article  CAS  Google Scholar 

  24. Li, J. S.; Li, L. M.; Ma, X. Y.; Wang, J.; Zhao, J.; Zhang, Y.; He, R.; Yang, Y. Y.; Cabot, A.; Zhu, Y. F. Unraveling the role of iron on Ni-Fe alloy nanoparticles during the electrocatalytic ethanol-to-acetate process. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-6049-4.

  25. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

    Article  CAS  Google Scholar 

  26. Zhang, Z. T.; Yang, S. M.; Jiang, R.; Sheng, T.; Shi, C. F.; Chen, Y. G.; Wang, L. Y. Intensifying uneven charge distribution via geometric distortion engineering in atomaically dispersed M-Nx/S sites for efficient oxygen electroreduction. Nano Res. 2022, 15, 8928–8935.

    Article  CAS  Google Scholar 

  27. Liu, J. C.; Luo, F.; Li, J. Electrochemical potential-driven shift of frontier orbitals in M-N-C single-atom catalysts leading to inverted adsorption energies. J. Am. Chem. Soc. 2023, 145, 25264–25273.

    Article  CAS  PubMed  Google Scholar 

  28. Han, A.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 22275009), SINOPEC (Contact No. 421028), and Fundamental Research Funds for the Central Universities (No. XK2020-02). We thank the BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueguang Chen, Chunfeng Shi or Leyu Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Chen, Y., Wu, R. et al. OH regulator of highly dispersed Ru sites on host Pd nanocrystals for selective ethanol electro-oxidation. Nano Res. 17, 3863–3871 (2024). https://doi.org/10.1007/s12274-023-6368-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6368-5

Keywords

Navigation