Skip to main content
Log in

Synthetic brochosomes: design, synthesis, and applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Brochosomes, which are nanoscopic buckyball-shaped granules produced by leafhoppers, are one of the most intricate structures discovered in nature. Various functions of brochosomes have been proposed but only a few have been experimentally validated due to the challenge of fabricating their synthetic counterparts. Advancements in micro- and nanofabrication have recently led to the emergence of synthetic brochosomes, opening up new possibilities for innovative applications. This review explores the early discovery of natural brochosomes and their geometrical features, followed by the recent progress in fabricating synthetic brochosomes and their applications. Perspectives on future applications and challenges in the scalable manufacturing of synthetic brochosomes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tulloch, G. S.; Shapiro, J. E.; Cochran, G. W. The occurrence of ultramicroscopic bodies with leafhoppers and mosquitoes. Bull. Brooklyn Entomol. Soc. 1952, 47, 41–42.

    Google Scholar 

  2. Tulloch, G. S.; Shapiro, J. E. Brochosomes. Bull. Brooklyn Entomol. Soc. 1953, 48, 57.

    Google Scholar 

  3. Tulloch, G. S.; Shapiro, J. E. Brochosomes and leafhoppers. Science 1954, 120, 232–232.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Rakitov, R. A. Secretion of brochosomes during the ontogenesis of a leafhopper, Oncometopia orbona (F) (Insecta, Homoptera, Cicadellidae). Tissue Cell 2000, 32, 28–39.

    Article  CAS  PubMed  Google Scholar 

  5. Rakitov, R. A. Secretory products of the Malpighian tubules of Cicadellidae (Hemiptera Membracoidea): An ultrastructural study. Int. J. Insect Morphol. Embryol. 1999, 28, 179–193.

    Article  Google Scholar 

  6. Rakitov, R. A. Powdering of egg nests with brochosomes and related sexual dimorphism in leafhoppers (Hemiptera: Cicadellidae). Zool. J. Linn. Soc. 2004, 140, 353–381.

    Article  Google Scholar 

  7. de Azevedo-Filho, W. S.; Carvalho, G. S. Brochosomes-for-eggs of the Proconiini (Hemiptera: Cicadellidae, Cicadellinae) species associated with orchards of Citrus sinensis (L) Osbeck in Rio Grande do Sul, Brazil. Neotrop. Entomol. 2005, 34, 387–394.

    Article  Google Scholar 

  8. de Azevedo Filho, W. S.; Botton, M.; Paladini, A.; Carvalho, G. S.; Ringenberg, R.; Lopes, J. R. S. Egg brochosomes of proconiini (Hemiptera: Cicadellidae, Cicadellinae) species associated with cultivation of grapevines. Sci. Agric. 2008, 65, 209–213.

    Article  Google Scholar 

  9. Day, M. F.; Briggs, M. The origin and structure of brochosomes. J. Ultrastruct. Res. 1958, 2, 239–244.

    Article  CAS  PubMed  Google Scholar 

  10. Smith, D. S.; Littau, V. C. Cellular specialization in the excretory epithelia of an insect, Macrosteles fascifrons Stål (Homoptera). J. Biophys. Biochem. Cytol. 1960, 8, 103–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gouranton, J.; Maillet, P. L. Origine et structure des brochosomes. J. Microscopie 1967, 6, 53–64.

    CAS  Google Scholar 

  12. Rakitov, R.; Moysa, A. A.; Kopylov, A. T.; Moshkovskii, S. A.; Peters, R. S.; Meusemann, K.; Misof, B.; Dietrich, C. H.; Johnson, K. P.; Podsiadlowski, L. et al. Brochosomins and other novel proteins from brochosomes of leafhoppers (Insecta, Hemiptera, Cicadellidae). Insect Biochem. Mol. Biol. 2018, 94, 10–17.

    Article  CAS  PubMed  Google Scholar 

  13. Rakitov, R. A. Post- moulting behaviour associated with Malpighian tubule secretions in leafhoppers and treehoppers (Auchenorrhyncha: Membracoidea). Eur. J. Entomol. 1996, 93, 167–184.

    Google Scholar 

  14. Storey, H. H.; Nichols, R. F. W. Defaecation by a Jassid species. Proc. Roy. Entomol. Soc. Lond. Ser. A Gen. Entomol. 1937, 12, 149–150.

    Google Scholar 

  15. Vidano, C.; Arzone, A. “Wax-area” in cicadellids and its connection with brochosomes from Malpighian tubules. Mitt. Schweiz. Entomol. Ges. 1984, 57, 444–445.

    Google Scholar 

  16. Dong, H. Y.; Huang, M. Analysis of the anointing and grooming behavior of several adult insects in Typhlocybinae (Hemiptera: Cicadellidae). J. Insect Behav. 2013, 26, 540–549.

    Article  Google Scholar 

  17. Navone, P. Origine, struttura e funzioni di escreti e secreti entomatici di aspetto ceroso distribuiti sul corpo mediante zampe. Ann. Fac. Sci. Agr. Univ. Stud. Torino 1987, 14, 237–294.

    Google Scholar 

  18. Rakitov, R.; Gorb, S. N. Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state. Proc. Roy. Soc. B: Biol. Sci. 2013, 280, 20122391.

    Article  Google Scholar 

  19. Rakitov, R.; Gorb, S. N. Brochosomes protect leafhoppers (Insecta, Hemiptera, Cicadellidae) from sticky exudates. J. Roy. Soc. Interface 2013, 10, 20130445.

    Article  Google Scholar 

  20. Arzone, A. Brocosomi: Origine, forma, funzione. Atti Accad. Naz. Ital. Entomol. Rc. 1986, 34, 59–71.

    Google Scholar 

  21. Mayse, M. A. Observations on the occurrence of chalky deposits on forewings of Oncometopia orbona (F) (Homoptera: Cicadellidae). J. Ark. Acad. Sci. 1981, 35, 84–86.

    Google Scholar 

  22. Hix, R. Egg- laying and brochosome production observed in glassy-winged sharpshooter. Calif. Agric. 2001, 55, 19–22.

    Article  Google Scholar 

  23. Humphrey, E. C.; Dworakowska, I. The natural history of brochosomes in Yakuza ganunga (Hemiptera, Auchenorrhyncha, Cicadellidae, Typhlocybinae, Erythroneurini). Dnnisia 2002, 4, 433–454.

    Google Scholar 

  24. Swain, R. B. Notes on the oviposition and life-history of the leafhopper Oncometopia undata Fabr. (Homoptera: Cicadellidae). Entomol. News 1936, 47, 264–266.

    Google Scholar 

  25. Yang, S. K.; Sun, N.; Stogin, B. B.; Wang, J.; Huang, Y.; Wong, T. S. Ultra-antireflective synthetic brochosomes. Nat. Commun. 2017, 8, 1285.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Shih, M. S.; Chen, H. Y.; Li, P. C.; Yang, H. T. Frooadband omnidirectional antireflection coatings inspired by embroidered ball-like structures on leafhoppers. Appl. Surf. Sci. 2020, 532, 147397.

    Article  CAS  Google Scholar 

  27. Riley, C. V.; Howard, L. O. The glassy-winged sharpshooter. Insect Life 1893, 5, 150–154.

    Google Scholar 

  28. Rakitov, R. A. The covering formed by brochosomes on the cuticle of leafhoppers (Homoptera, Cicadellidae). Entomol. Rev. 1995, 74, 90–103.

    Google Scholar 

  29. Lei, C. W.; Chen, R. Y.; Yang, H. T. Leafhopper wing-inspired broadband omnidirectional antireflective embroidered ball-like structure arrays using a nonlithography-based methodology. Langmuir 2020, 36, 5296–5302.

    Article  CAS  PubMed  Google Scholar 

  30. Si, Y. S.; Huang, T. Q.; Xie, H. Q.; Chen, M. Synthesis of biomimetic brochosome-shaped microspheres via droplets assembly strategy. Chem. Mater. 2022, 34, 7271–7279.

    Article  CAS  Google Scholar 

  31. Pan, Q.; Zhang, H. F.; Yang, Y. P.; Cheng, C. W. 3D brochosomes-like TiO2/WO3/BiVO4 arrays as photoanode for photoelectrochemical hydrogen production. Small 2019, 15, 1900924.

    Article  Google Scholar 

  32. Zhu, K.; Yang, K.; Zhang, Y. Z.; Yang, Z. Y.; Qian, Z. T.; Li, N.; Li, L.; Jiang, G. H.; Wang, T. Y.; Zong, S. F. et al. Wearable SERS sensor based on omnidirectional plasmonic nanovoids array with ultra-high sensitivity and stability. Small 2022, 18, 2201508.

    Article  CAS  Google Scholar 

  33. Zhao, W. D.; Zhang, Y. X.; Yang, J. J.; Li, J. M.; Feng, Y.; Quan, M. H.; Yang, Z.; Xiao, S. Y. Synergistic plasmon resonance coupling and light capture in ordered nanoarrays as ultrasensitive and reproducible SERS substrates. Nanoscale 2020, 12, 18056–18066.

    Article  CAS  PubMed  Google Scholar 

  34. Si, Y. S.; Huang, T. Q.; Li, Q. J.; Huang, Y. T.; Gao, S. P.; Chen, M.; Wu, L. M. Hierarchical macro-mesoporous polymeric carbon nitride microspheres with narrow bandgap for enhanced photocatalytic hydrogen production. Adv. Mater. Interfaces 2018, 5, 1801241.

    Article  Google Scholar 

  35. Liu, Z. Q.; Li, W.; Sheng, W. B.; Liu, S. Y.; Li, R.; Li, Q.; Li, D. Y.; Yu, S.; Li, M.; Li, Y. S. et al. Tunable hierarchically structured meso-macroporous carbon spheres from a solvent-mediated polymerization-induced self-assembly. J. Am. Chem. Soc. 2023, 145, 5310–5319.

    Article  CAS  PubMed  Google Scholar 

  36. Clapham, P. B.; Hutley, M. C. Reduction of lens reflexion by the “moth eye” principle. Nature 1973, 244, 281–282.

    Article  ADS  Google Scholar 

  37. Miller, W. H.; Bernard, G. D.; Allen, J. L. The optics of insect compound eyes. Science 1968, 162, 760–767.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Shavit, K.; Wagner, A.; Schertel, L.; Farstey, V.; Akkaynak, D.; Zhang, G.; Upcher, A.; Sagi, A.; Yallapragada, V. J.; Haataja, J. et al. A tunable reflector enabling crustaceans to see but not be seen. Science 2023, 379, 695–700.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Li, Y. F.; Zhang, J. H.; Yang, B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 2010, 5, 117–127.

    Article  Google Scholar 

  40. Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804.

    Article  CAS  Google Scholar 

  41. Banerjee, P.; Burks, G. R.; Bialik, S. B.; Nassr, M.; Bello, E.; Alleyne, M.; Freeman, B. D.; Barrick, J. E.; Schroeder, C. M.; Milliron, D. J. Nanostructure- derived antireflectivity in leafhopper brochosomes. Adv. Photonics Res. 2023, 4, 2200343.

    Article  CAS  Google Scholar 

  42. Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99.

    Article  ADS  Google Scholar 

  43. Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

    Article  CAS  Google Scholar 

  44. Cassie, A. B. D.; Baxter, S. Large contact angles of plant and animal surfaces. Nature 1945, 155, 21–22.

    Article  ADS  CAS  Google Scholar 

  45. Ding, Q. Q.; Kang, Y. L.; Li, W. L.; Sun, G. F.; Liu, H.; Li, M.; Ye, Z. R.; Zhou, M.; Zhou, J. G.; Yang, S. K. Bioinspired brochosomes as broadband and omnidirectional surface-enhanced Raman scattering substrates. J. Phys. Chem. Lett. 2019, 10, 6484–6491.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, H.; Xu, C.; Xia, Q. D.; Ying, Y. B.; Li, Q.; Zhao, X. Y.; Zhang, Y. J.; Yang, S. K. Tailorable and angle-independent colors from synthetic brochosomes. ACS Nano 2023, 17, 2257–2265.

    Article  CAS  PubMed  Google Scholar 

  47. Hua, C. Z.; Cheng, Z. Q.; Ma, Y. C.; He, H. Y.; Xu, G.; Liu, Y.; Yang, S. K.; Han, G. R. Enhanced electrochromic tungsten oxide by bio-inspired brochosomes. J. Electrochem. Soc. 2021, 168, 042503.

    Article  ADS  CAS  Google Scholar 

  48. Skliutas, E.; Lebedevaite, M.; Kabouraki, E.; Baldacchini, T.; Ostrauskaite, J.; Vamvakaki, M.; Farsari, M.; Juodkazis, S.; Malinauskas, M. Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 2021, 10, 1211–1242.

    Article  CAS  Google Scholar 

  49. Kelly, B. E.; Bhattacharya, I.; Heidari, H.; Shusteff, M.; Spadaccini, C. M.; Taylor, H. K. Volumetric additive manufacturing via tomographic reconstruction. Science 2019, 363, 1075–1079.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A. et al. Continuous liquid interface production of 3D objects. Science 2015, 347, 1349–1352.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Han, F.; Gu, S. Y.; Klimas, A.; Zhao, N.; Zhao, Y. X.; Chen, S. C. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 2022, 378, 1325–1331.

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Bacteria as workers in the living factory: Metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 2001, 19, 15–20.

    Article  CAS  PubMed  Google Scholar 

  53. Kolinko, I.; Lohße, A.; Borg, S.; Raschdorf, O.; Jogler, C.; Tu, Q.; Pósfai, M.; Tompa, É.; Plitzko, J. M.; Brachmann, A. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 2014, 9, 193–197.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Choi, Y.; Park, T. J.; Lee, D. C.; Lee, S. Y. Recombinant Escherichia coli as a biofactory for various single- and multielement nanomaterials. Proc. Natl. Acad. Sci. USA 2018, 115, 5944–5949.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iravani, S.; Varma, R. S. Biofactories: Engineered nanoparticles via genetically engineered organisms. Green Chem. 2019, 21, 4583–4603.

    Article  CAS  Google Scholar 

  56. Edwards, D. A.; Hanes, J.; Caponetti, G.; Hrkach, J.; Ben-Jebria, A.; Eskew, M. L.; Mintzes, J.; Deaver, D.; Lotan, N.; Langer, R. Large porous particles for pulmonary drug delivery. Science 1997, 276, 1868–1872.

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

    Article  CAS  PubMed  Google Scholar 

  58. Mukherjee, R.; Krishnan, R.; Lu, T. M.; Koratkar, N. Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 2012, 1, 518–533.

    Article  CAS  Google Scholar 

  59. Wang, Y.; Huang, X. L.; Liu, H. W.; Qiu, W. L.; Feng, C.; Li, C.; Zhang, S. H.; Liu, H. K.; Dou, S. X.; Wang, Z. M. Nanostructure engineering strategies of cathode materials for room-temperature Na- S batteries. ACS Nano 2022, 16, 5103–5130.

    Article  CAS  PubMed  Google Scholar 

  60. Jain, R.; Lakhnot, A. S.; Bhimani, K.; Sharma, S.; Mahajani, V.; Panchal, R. A.; Kamble, M.; Han, F. D.; Wang, C. S.; Koratkar, N. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 2022, 7, 736–746.

    Article  ADS  CAS  Google Scholar 

  61. Chen, G. Y.; Seo, J.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomaterials for photovoltaics. Chem. Soc. Rev. 2013, 42, 8304–8338.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, L. X.; Luo, C. H.; Zhang, J. H.; He, X.; Shen, Y.; Yan, B.; Huang, Y.; Xia, F.; Jiang, L. Synergistic effect of bio-inspired nanochannels: Hydrophilic DNA probes at inner wall and hydrophobic coating at outer surface for highly sensitive detection. Small 2022, 18, 2201925.

    Article  CAS  Google Scholar 

  63. Yang, X.; Wang, J. H.; Gao, Z. F.; Zhang, W. Q.; Zhu, H.; Song, Y. J.; Wang, Q.; Liu, M. J.; Jiang, L.; Huang, Y. et al. An orthogonal dual-regulation strategy for sensitive biosensing applications. Natl. Sci. Rev. 2022, 9, nwac048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, Y.; Liu, L. X.; Yang, X.; Zhang, X. Y.; Yan, B.; Wu, L.; Feng, P. J.; Lou, X. D.; Xia, F.; Song, Y. L. et al. A diverse micromorphology of photonic crystal chips for multianalyte sensing. Small 2021, 17, 2006723.

    Article  CAS  Google Scholar 

  65. Jakšić, Z.; Obradov, M.; Jakšić, O. Brochosome-inspired metal-containing particles as biomimetic building blocks for nanoplasmonics: Conceptual generalizations. Biomimetics 2021, 6, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang, X. G.; Zhang, X. L.; Luo, C. L.; Liu, Z. Q.; Chen, Y. Y.; Dong, S. L.; Jiang, C. Z.; Yang, S. K.; Wang, F. B.; Xiao, X. H. Volume-enhanced Raman scattering detection of viruses. Small 2019, 11, 1805516.

    Article  Google Scholar 

  67. Yang, S. K.; Dai, X. M.; Stogin, B. B.; Wong, T. S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268–273.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research Award (Nos. N00014-20-1-2095 and N00014-23-1-2173, Program manager: Dr. Kristy L. Hentchel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tak-Sing Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Choi, J. & Wong, TS. Synthetic brochosomes: design, synthesis, and applications. Nano Res. 17, 734–742 (2024). https://doi.org/10.1007/s12274-023-6362-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6362-y

Keywords

Navigation