Skip to main content
Log in

Interfacial charge effects of supported-metal-cluster heterostructures on azo hydrogenation catalyzation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The impact of interfacial charge on catalytic performance of supported-metal-cluster (SMC) heterostructures remains unclear, hindering efforts to develop high-performance SMC catalysts. Herein we systematically investigated interfacial charge effects of SMCs using a model system of graphene-supported gold-nanoclusters (AuNCs/rGO) for azo hydrogenation. Three types of SMCs with different interfacial charges were synthesized by anchoring electropositive 2-aminoethanethiol (CSH), amphoteric cysteine (Cys), and electronegative 3-mercaptopropionic-acid (MPA) onto AuNCs/rGO, respectively. All three SMCs exhibited high and selective catalytic activity to azo-hydrogenation in four representative azo dyes. The catalytic activity of Cys@AuNCs/rGO was lower than that of CSH@AuNCs/rGO but higher than that of MPA@AuNCs/rGO. However, the cyclic stability of Cys@AuNCs/rGO was inferior to that of both CSH@AuNCs/rGO and MPA@AuNCs/rGO. Further mechanistic studies revealed that amino ligands modified CSH@AuNCs and Cys@AuNCs agglomerated into large-size gold nanoparticles on rGO surface during catalytic reaction under NaBH4 action, leading to reduced efficiency and cyclic stability. Conversely, non-amino ligand modified MPA@AuNCs only partially detached from rGO surface without agglomeration, resulting in better cyclic stability. Protection of amino groups in ligands such as modifying -NH3+ group in Cys into imine to form N-isobutyryl-L-cysteine (NIBC) substantially improved the cyclic stability while maintaining the high activity in the NIBC@AuNCs/rGO catalyst system. Our work provides an approach for developing a highly-active and stable SMC heterostructure catalyst via manipulating interfacial charges in SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.

    Article  CAS  Google Scholar 

  2. Zhang, L.; Zhu, J.; Li, X.; Mu, S.; Verpoory, F.; Xue, J.; Kou, Z.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2020, 1, 51–87.

    Article  Google Scholar 

  3. Xu, L.; Papanikolaou, K. G.; Lechner, B. A. J.; Je, L.; Somorjai, G. A.; Salmeron, M.; Mavrikakis, M. Formation of active sites on transition metals through reaction-driven migration of surface atoms. Science 2023, 380, 70–76.

    Article  CAS  PubMed  Google Scholar 

  4. Corma, A.; Concepción, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; López-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775–781.

    Article  CAS  PubMed  Google Scholar 

  5. Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 2022, 144, 3535–3542.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, Y. Z.; Wang, L.; Bo, T.; Chai, Z. F.; Gibson, J. K.; Shi, W. Q. Boosting hydrogen evolution in neutral medium by accelerating water dissociation with Ru clusters loaded on Mo2CTx MXene. Adv. Funct. Mater. 2023, 33, 2214375.

    Article  CAS  Google Scholar 

  7. Liu, G. H.; Nie, T. Q.; Wang, H. J.; Shen, T. Y.; Sun, X. L.; Bai, S.; Zheng, L. R.; Song, Y. F. Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: From nanoparticles to nanoclusters and single atoms. ACS Catal. 2022, 12, 10711–10717.

    Article  CAS  Google Scholar 

  8. Li, Y. R.; Yan, K. L.; Cao, Y. Q.; Ge, X. H.; Zhou, X. G.; Yuan, W. K.; Chen, D.; Duan, X. Z. Mechanistic and atomic-level insights into semihydrogenation catalysis to light olefins. ACS Catal. 2022, 12, 12138–12161.

    Article  CAS  Google Scholar 

  9. Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  10. Argo, A. M.; Odzak, J. F.; Lai, F. S.; Gates, B. C. Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters. Nature 2022, 415, 623–626.

    Article  Google Scholar 

  11. Fu, J. L.; Ren, D. Z.; Xiao, M. L.; Wang, K.; Deng, Y. P.; Luo, D.; Zhu, J. B.; Wen, G. B.; Zheng, Y.; Bai, Z. Y. et al. Manipulating Au-CeO2 interfacial structure toward ultrahigh mass activity and selectivity for CO2 reduction. ChemSusChem 2020, 13, 6621–6628.

    Article  CAS  PubMed  Google Scholar 

  12. Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z. T.; Yao, Q. F.; Chatt, A.; Xie, J. P.; Jin, R. C.; Akola, J. et al. Molecular-scale ligand effects in small gold-thiolate nanoclusters. J. Am. Chem. Soc. 2018, 140, 15430–15436.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, Y. H.; Wang, Z. Q.; Ye, B.; Huang, X. B.; Deng, H. Ligand effect over gold nanocatalysts towards enhanced gas-phase oxidation of alcohols. J. Catal. 2021, 400, 274–282.

    Article  CAS  Google Scholar 

  14. Brindle, J.; Sufyan, S. A.; Nigra, M. M. Support, composition, and ligand effects in partial oxidation of benzyl alcohol using gold-copper clusters. Catal. Sci. Technol. 2022, 12, 3846–3855.

    Article  CAS  Google Scholar 

  15. Zhang, J.; Deo, S.; Janik, M. J.; Medlin, J. W. Control of molecular bonding strength on metal catalysts with organic monolayers for CO2 Reduction. J. Am. Chem. Soc. 2020, 142, 5184–5193.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Q. G.; Yang, X. F.; Huang, Y. Q.; Xu, S. T.; Su, X.; Pan, X. L.; Xu, J. M.; Wang, A. Q.; Liang, C. H.; Wang, X. K. et al. A Schiff base modified gold catalyst for green and efficient H2 production from formic acid. Energy Environ. Sci. 2015, 8, 3204–3207.

    Article  CAS  Google Scholar 

  17. Kaźmierczak, K.; Ramamoorthy, R. K.; Moisset, A.; Viau, G.; Viola, A.; Giraud, M.; Peron, J.; Sicard, L.; Piquemal, J. Y.; Besson, M. et al. Importance of the decoration in shaped cobalt nanoparticles in the acceptor-less secondary alcohol dehydrogenation. Catal. Sci. Technol. 2020, 10, 4923–4937.

    Article  Google Scholar 

  18. Xiong, Y.; Wan, H.; Islam, M.; Wang, W.; Xie, L. L.; Lü, S. F.; Kabir, S. M. F.; Liu, H. H.; Mahmud, S. Hyaluronate macromolecules assist bioreduction (AuIII to Au0) and stabilization of catalytically active gold nanoparticles for azo contaminated wastewater treatment. Environ. Technol. Innov. 2021, 24, 102053.

    Article  CAS  Google Scholar 

  19. Wan, H.; Liu, Z. H.; He, Q. J.; Wei, D.; Mahmud, S.; Liu, H. H. Bioreduction (AuIII to Au0) and stabilization of gold nanocatalyst using Kappa carrageenan for degradation of azo dyes. Int. J. Biol. Macromol. 2021, 176, 282–290.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y.; Huang, L. P.; Mahmud, S.; Liu, H. H. Gold Nanoparticles biosynthesized using Ginkgo biloba leaf aqueous extract for the decolorization of azo-dyes and fluorescent detection of Cr(VI). J. Clust. Sci. 2023, 31, 549–560.

    Article  Google Scholar 

  21. Antony, A. M.; Kandathil, V.; Kempasiddaiah, M.; Shwetharani, R.; Balakrishna, R. G.; El-Bahy, S. M.; Hessien, M. M.; Mersal, G. A. M.; Ibrahim, M. M.; Patil, S. A. Graphitic carbon nitride supported palladium nanocatalyst as an efficient and sustainable catalyst for treating environmental contaminants and hydrogen evolution reaction. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 477, 129116.

    Article  Google Scholar 

  22. Ecer, Ü.; Şahan, T.; Zengin, A. Synthesis and characterization of an efficient catalyst based on MoS2 decorated magnetic pumice: An experimental design study for methyl orange degradation. J. Environ. Chem. Eng. 2021, 9, 105265.

    Article  CAS  Google Scholar 

  23. Vijayan, R.; Joseph, S.; Mathew, B. Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol. 2018, 12, 850–856.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen, J. H.; Wei, D.; Liu, Y.; Xiong, Y.; Peng, J. J.; Mahmud, S.; Liu, H. H. Gold/Konjac glucomannan bionanocomposites for catalytic degradation of mono-azo and di-azo dyes. Inorg. Chem. Commun. 2020, 120, 108156.

    Article  CAS  Google Scholar 

  25. Naseem, K.; Ali, F.; Tahir, M. H.; Afaq, M.; Yasir, H. M.; Ahmed, K.; Aljuwayid, A. M.; Habila, M. A. Investigation of catalytic potential of sodium dodecyl sulfate stabilized silver nanoparticles for the degradation of methyl orange dye. J. Mol. Struct. 2022, 1262, 132996.

    Article  CAS  Google Scholar 

  26. Tian, C.; Kasavajhala, K.; Belfon, K. A. A.; Raguette, L.; Huang, H.; Migues, A. N.; Bickel, J.; Wang, Y. Z.; Pincay, J.; Wu, Q. et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2020, 16, 528–552.

    Article  PubMed  Google Scholar 

  27. Jung, J.; Kang, S.; Han, Y. K. Ligand effects on the stability of thiol-stabilized gold nanoclusters: Au25(SR)18, Au38(SR)24, and Au102(SR)44. Nanoscale 2012, 4, 4206–4210.

    Article  CAS  PubMed  Google Scholar 

  28. Ackerson, C. J.; Jadzinsky, P. D.; Kornberg, R. D. Thiolate ligands for synthesis of water-soluble gold clusters. J. Am. Chem. Soc. 2005, 127, 6550–6551.

    Article  CAS  PubMed  Google Scholar 

  29. Deng, H. H.; Huang, K. Y.; Xiu, L.; Sun, W. M.; Yao, Q. F.; Fang, X. Y.; Huang, X.; Noreldeen, H. A. A.; Peng, H. P.; Xie, J. P. et al. Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level. Nat. Commun. 2022, 13, 3381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding, Y.; Maitra, S.; Wang, C.; Halder, S.; Zheng, R.; Barakat, T.; Roy, S.; Chen, L.; Su, B. Vacancy defect engineering in semiconductors for solar light-driven environmental remediation and sustainable energy production. Interdiscip. Mater. 2022, 213–255.

  31. Wang, L.; Hao. X.; Gao, Z.; Yang, Z.; Long, Y.; Luo, M.; Guan, J. Artificial nanomotors: fabrication, locomotion characterization, motion manipulation, and biomedical applications. Interdiscip. Mater. 2022, 1, 256–280.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52273110, 21975191, 52372271 and 22173070), the Knowledge Innovation Program of Wuhan Shuguang Project, and the Fundamental Research Funds for the Central Universities (WUT: 2023III013GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taolei Sun, Lei Shen or Guanbin Gao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Zhang, J., Zhang, Z. et al. Interfacial charge effects of supported-metal-cluster heterostructures on azo hydrogenation catalyzation. Nano Res. 17, 3853–3862 (2024). https://doi.org/10.1007/s12274-023-6358-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6358-7

Keywords

Navigation