Skip to main content
Log in

The unique spontaneous polarization property and application of ferroelectric materials in photocatalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The unique spontaneous polarization property of ferroelectric material makes it to be a special catalyst in photocatalysis. The spontaneous polarization property can induce the formation of built-in electric field, which can improve the separation of photoelectrons and holes to affect photocatalytic performance. The internal electric field induced by spontaneous polarization can be influenced by multiple factors such as the morphology, the concentration of defect, the type of doped heteroatoms, as well as the composition of heterostructures. Besides, the preparation method, pretreating temperature, the strength of prepolarized external electric field of ferroelectric-based photocatalysts as well as the strength of external mechanical force or external magnetic field in photocatalytic reactions can influence the photocatalytic effectivity via influencing spontaneous polarization-induced internal electric field. Thus, it is urgently to unveil the mystery of structure-activity relationships for ferroelectric materials-based photocatalysts, which is usually uncertain. With this in mind, this review was provided for the role of various complex influencing factors on ferroelectric materials-based photocatalysis based on the latest advancement in the fields of new energy development, environmental remediation. In the beginning, the basic structure and properties of ferroelectric material are given. Then, popular synthesis methods of ferroelectric-based photocatalysts are summarized. After that, two main mechanisms of ferroelectric photocatalysis are discussed. The research progress of ferroelectric photocatalysis is then given emphatically according to the classification of photocatalytic reactions. Finally, the problems existing nowadays and the challenges facing in the future on the application of ferroelectric materials-based photocatalysts are outlined in the summary and outlook section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sayed, M.; Yu, J. G.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484–10537.

    Article  CAS  PubMed  Google Scholar 

  2. Bie, C. B.; Wang, L. X.; Yu, J. G. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574.

    Article  CAS  Google Scholar 

  3. Ren, P. N.; Gao, Z. Y.; Montini, T.; Zhao, Z. T.; Ta, N.; Huang, Y. K.; Luo, N. C.; Fonda, E.; Fornasiero, P.; Wang, F. Seepwise photoassisted decomposition of carbohydrates to H2. Joule 2023, 7, 333–349.

    Article  CAS  Google Scholar 

  4. Zhang, C. F.; Shen, X. J.; Jin, Y. C.; Cheng, J. L.; Cai, C.; Wang, F. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization. Chem. Rev. 2023, 123, 4510–4601.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S.; Bae, H. S.; Choi, W. Selective control and characteristics of water oxidation and dioxygen reduction in environmental photo(electro)catalytic systems. Acc. Chem. Res. 2023, 56, 867–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, M.; Zhou, H. R.; Wang, F. Photocatalytic production of syngas from biomass. Acc. Chem. Res. 2023, 56, 1057–1069.

    Article  CAS  PubMed  Google Scholar 

  7. Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, R. T.; Ren, Z. F.; Liang, Y.; Zhang, G. H.; Dittrich, T.; Liu, R. Z.; Liu, Y.; Zhao, Y.; Pang, S.; An, H. Y. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 2022, 610, 296–301.

    Article  CAS  PubMed  Google Scholar 

  9. Mao, X. W.; Chen, P. Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 2022, 21, 331–337.

    Article  CAS  PubMed  Google Scholar 

  10. Yuan, S. X.; Su, K.; Feng, Y. X.; Zhang, M.; Lu, T. B. Lattice-matched in-uitu construction of 2D/2D T-SrTiO3/CsPbBr3 heterostructure for efficient photocatalysis of CO2 reduction. Chin. Chem. Lett. 2023, 34, 107682.

    Article  CAS  Google Scholar 

  11. Chen, Z. Y.; Li, S. H.; Mo, Q. J.; Zhang, L.; Su, C. Y. Dual-functional photocatalysis boosted by electrostatic assembly of porphyrinic metal-organic framework heterojunction composites with CdS quantum dots. Chin. Chem. Lett. 2023, 34, 108196.

    Article  CAS  Google Scholar 

  12. Li, G.; Wang, P.; He, M.; Yuan, X. L.; Tang, L. L.; Li, Z. X. Cerium-based nanomaterials for photo/electrocatalysis. Sci. China Chem. 2023, 66, 2204–2220.

    Article  CAS  Google Scholar 

  13. Wang, S. Y.; Gao, Y. Y.; Miao, S.; Liu, T. F.; Mu, L. C.; Li, R. G.; Fan, F. T.; Li, C. Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 2017, 139, 11771–11778.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

    Article  CAS  PubMed  Google Scholar 

  15. Sun, Z. X.; Sun, K.; Gao, M. L.; Metin, Ö.; Jiang, H. L. Optimizing Pt electronic states through formation of a Schottky junction on nonreducible metal-organic frameworks for enhanced photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202206108.

    Article  CAS  Google Scholar 

  16. Bai, L. Q.; Huang, H. W.; Zhang, S. G.; Hao, L.; Zhang, Z. L.; Li, H. F.; Sun, L.; Guo, L. N.; Huang, H. T.; Zhang, Y. H. Photocatalysis-assisted Co3O4/g-C3N4 p-n junction all-solid-state supercapacitors: A bridge between energy storage and photocatalysis. Adv. Sci. 2020, 7, 2001939.

    Article  CAS  Google Scholar 

  17. Zhang, S. L.; Wang, Q. J.; Zhang, P.; Wang, J.; Li, Y.; Lu, C.; Sarwar, M. T.; Dong, X. B.; Zhao, Q. H.; Tang, A. D. et al. Nanoclay-modulated interfacial chemical bond and internal electric field at the Co3O4/TiO2 p-n junction for efficient charge separation. Small 2023, 19, 2300770.

    Article  CAS  Google Scholar 

  18. Jiang, X. Y.; Zhang, Z. Y.; Sun, M. H.; Liu, W. Z.; Huang, J. D.; Xu, H. Y. Self- assembly of highly-dispersed phosphotungstic acid clusters onto graphitic carbon nitride nanosheets as fascinating molecular-scale Z-scheme heterojunctions for photocatalytic solar-to-fuels conversion. Appl. Catal. B: Environ. 2021, 281, 119473.

    Article  CAS  Google Scholar 

  19. Liu, C.; Feng, Y.; Han, Z. T.; Sun, Y.; Wang, X. Q.; Zhang, Q. F.; Zou, Z. G. Z-scheme N-doped K4Nb6O17/g-C3N4 heterojunction with superior visible-light-driven photocatalytic activity for organic pollutant removal and hydrogen production. Chin. J. Catal. 2021, 42, 164–174.

    Article  CAS  Google Scholar 

  20. Zhou, H. R.; Wang, M.; Wang, F. Oxygnn-controlled photoreforming of biopolyols to CO over Z-scheme CdS@g-C3N4. Chem 2022, 8, 465–479.

    Article  CAS  Google Scholar 

  21. Li, T. R.; Song, Y. Y.; Jiang, J. J.; Li, M. Y.; Ma, Y. H.; Dong, S. S. NiCo2O4/BiOCl/Bi24O3lBr10 ternary Z-scheme heterojunction enhance peroxymonosulfate activation under visible light: Catalyst synthesis and reaction mechanism. Chin. Chem. Lett. 2023, 34, 107503.

    Article  CAS  Google Scholar 

  22. Xiao, R. X.; Zhang, J.; Jiang, T. T.; Zhou, Y. F.; Wang, Y.; Xu, W. J.; Feng, Y. H. Highly ordered Janus CdS-Au-TiO2 Z-ccheme structure with high efficiency in photocatalysis. Sci. China Chem. 2023, 66, 1722–1730.

    Article  CAS  Google Scholar 

  23. Bi, F.; Su, Y. T.; Zhang, Y. L.; Chen, M. L.; Darr, J. A.; Weng, X. L.; Wu, Z. B. Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation. Appl. Catal. B: Environ. 2022, 366, 121109.

    Article  Google Scholar 

  24. Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

    Article  CAS  Google Scholar 

  25. Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv. Mater. 2016, 28, 4059–4064.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, J.; Chen, X. B.; Bai, Y.; Li, C.; Gao, Y.; Li, R. G.; Li, C. Boosting photocatalytic water splitting by tuning built-in electric field at phase junction. J. Mater. Chem. A 2019, 7, 10264–10272.

    Article  CAS  Google Scholar 

  27. Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68.

    Article  Google Scholar 

  28. Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3−x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87–96.

    Article  CAS  Google Scholar 

  29. Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

    Article  CAS  Google Scholar 

  30. Chao, Y. G.; Zhang, W. Y.; Zhou, P.; Chen, H.; Lu, S. Y.; Li, M. G.; Zhang, Q. H.; Gu, L.; Guo, S. J. An in-situ NH4+-etched strategy for anchoring atomic Mo site on ZnIn2S4 hierarchical nanotubes for superior hydrogen photocatalysis. Sci. China Chem. 2021, 64, 1716–1722.

    Article  CAS  Google Scholar 

  31. Li, X. B.; Tung, C. H.; Wu, L. Z. Quantum dot assembly for light-driven multielectron redox reactions, such as hydrogen evolution and CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 10804–10811.

    Article  CAS  Google Scholar 

  32. Li, S.; Zhao, Z. C.; Zhao, J. Z.; Zhang, Z. T.; Li, X.; Zhang, J. M. Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl. Nano Mater. 2020, 3, 1063–1079.

    Article  CAS  Google Scholar 

  33. Wan, T. L.; Ge, L.; Pan, Y. L.; Yuan, Q. H.; Liu, L.; Sarina, S.; Kou, L. Z. Catalysis based on ferroelectrics: Controllable chemical reaction with boosted efficiency. Nanoscale 2021, 13, 7096–7107.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y.; Zhang, M. J.; Wang, Z.; He, J. D.; Zhang, J.; Ye, S.; Wang, X. L.; Li, D. F.; Yin, H.; Zhu, Q. H. et al. Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts. Nat. Commun. 2022, 13, 4245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshida, S.; Fujita, K.; Akamatsu, H.; Hernandez, O.; Sen Gupta, A.; Brown, F. G.; Padmanabhan, H.; Gibbs, A. S.; Kuge, T.; Tsuji, R. et al. Ferroelectric Sr3Zr2O7: Competition between hybrid improper ferroelectric and antiferroelectric mechanisms. Adv. Funct. Mater. 2018, 28, 1801856.

    Article  Google Scholar 

  36. Zhou, X. F.; Shen, B.; Zhai, J. W.; Hedin, N. Reactive oxygenated species generated on iodide-doped BiVO4/BaTiO3 heterostructures with Ag/Cu nanoparticles by coupled piezophototronic effect and plasmonic excitation. Adv. Funct. Mater. 2021, 31, 2009594.

    Article  CAS  Google Scholar 

  37. Wang, R. C.; Xu, L. L.; Liu, Q. S.; Shi, Q.; Liu, X. J. Search for simple β-AIMIIO2-type intrinsic ferroelectric semiconductors with simultaneous robust built-in electric field and full-spectrum absorption for superior photocatalysts. J. Mater. Chem. A 2023, 11, 5233–5244.

    Article  CAS  Google Scholar 

  38. Yang, Z.; Li, X. L.; Gao, L. J.; Zhang, W.; Wang, X. Z.; Liu, H. X.; Wang, S. F.; Pan, C. F.; Guo, L. J. Ferro-pyro-phototronic effect enhanced self-powered, flexible and ultra-stable photodetectors based on highly crystalized 1D/3D ferroelectric perovskite film. Nano Energy 2022, 102, 107743.

    Article  CAS  Google Scholar 

  39. Kang, Y. Y.; Qi, H. Z.; Wan, G. D.; Zhen, C.; Xu, X. X.; Yin, L. C.; Wang, L. Z.; Liu, G.; Cheng, H. M. Ferroelectric polarization enabled spatially selective adsorption of redox mediators to promote Z-scheme photocatalytic overall water splitting. Joule 2022, 6, 1876–1886.

    Article  CAS  Google Scholar 

  40. Assavachin, S.; Osterloh, F. E. Ferroelectric polarization in BaTiO3 nanocrystals controls photoelectrochemical water oxidation and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 18825–18833.

    Article  CAS  PubMed  Google Scholar 

  41. Amdouni, W.; Fricaudet, M.; Otoničar, M.; Garcia, V.; Fusil, S.; Kreisel, J.; Maghraoui-Meherzi, H.; Dkhil, B. BiFeO3 nanoparticles: The “Holy-Grail” of piezo-photocatalysts. Adv. Mater. 2023, 35, 2301841.

    Article  CAS  Google Scholar 

  42. Zhao, Z.; Wang, D. D.; Gao, R.; Wen, G. B.; Feng, M.; Song, G. X.; Zhu, J. B.; Luo, D.; Tan, H. Q.; Ge, X. et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites. Angew. Chem., Int. Ed. 2021, 60, 11910–11918.

    Article  CAS  Google Scholar 

  43. Khan, M. A.; Nadeem, M. A.; Idriss, H. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review. Surf. Sci. Rep. 2016, 71, 1–31.

    Article  CAS  Google Scholar 

  44. Li, Y.; Li, J.; Yang, W. G.; Wang, X. D. Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting. Nanoscale Horiz. 2020, 5, 1174–1187.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, Y.; Wang, H.; Zhao, W.; Zhao, X. L.; Xu, J. J.; Chen, H. Y. Dark-field imaging of cation exchange synthesis of Cu2−xS@Au2S@Au nanoplates toward the plasmonic enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 6515–6521.

    Article  CAS  PubMed  Google Scholar 

  46. Hermans, Y.; Olivier, C.; Junge, H.; Klein, A.; Jaegermann, W.; Toupance, T. Sunlight selective photodeposition of CoOx(OH)y and NiOx(OH)y on truncated bipyramidal BiVO4 for highly efficient photocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 53910–53920.

    Article  CAS  PubMed  Google Scholar 

  47. Zhen, C.; Ren, Z. H.; Kang, Y. Y.; Wang, L. Z.; Liu, G. PbTiO3 based single-domain ferroelectric photocatalysts for water splitting. Acc. Mater. Res. 2023, 4, 591–603.

    Article  CAS  Google Scholar 

  48. Qi, L.; Ruan, S. C.; Zeng, Y. J. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 2021, 33, 2005098.

    Article  CAS  Google Scholar 

  49. Valasek, J. Piezo-electric and allied phenomena in rochelle salt. Phys. Rev. 1921, 17, 475–481.

    Article  CAS  Google Scholar 

  50. Su, R.; Shen, Y. J.; Li, L. L.; Zhang, D. W.; Yang, G.; Gao, C. B.; Yang, Y. D. Silver- modified nanosized ferroelectrics as a novel photocatalyst. Small 2015, 11, 202–207.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, K.; Ouyang, B. S.; Bowen, C. R.; Yang, Y. Enhanced photocurrent via ferro-pyro-phototronic effect in ferroelectric BaTiO3 materials for a self-powered flexible photodetector system. Nano Energy 2020, 77, 105152.

    Article  CAS  Google Scholar 

  52. Jian, G.; Jiao, Y.; Meng, Q. Z.; Guo, Y. H.; Wang, F. W.; Zhang, J. Q.; Wang, C.; Moon, K. S.; Wong, C. P. Excellent high-temperature piezoelectric energy harvesting properties in flexible polyimide/3D PbTiO3 flower composites. Nano Energy 2021, 82, 105778.

    Article  CAS  Google Scholar 

  53. Kwon, O.; Seol, D.; Qiao, H. M.; Kim, Y. Recent progress in the nanoscale evaluation of piezoelectric and ferroelectric properties via scanning probe microscopy. Adv. Sci. 2020, 7, 1901391.

    Article  CAS  Google Scholar 

  54. Yu, H. J.; Chen, F.; Li, X. W.; Huang, H. W.; Zhang, Q. Y.; Su, S. Q.; Wang, K. Y.; Mao, E. Y.; Mei, B.; Mul, G. et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 2021, 12, 4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gou, J.; Bai, H.; Zhang, X. L.; Huang, Y. L.; Duan, S. S.; Ariando, A.; Yang, S. A.; Chen, L.; Lu, Y. H.; Wee, A. T. S. Two-dimensional ferroelectricity in a single-element bismuth monolayer. Nature 2023, 617, 67–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu, H. J.; Huang, H. W.; Reshak, A. H.; Auluck, S.; Liu, L. Z.; Ma, T. Y.; Zhang, Y. H. Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoeeduction. Appl. Catal. B: Environ. 2021, 284, 119709.

    Article  CAS  Google Scholar 

  57. Xie, Z. S.; Tang, X. L.; Shi, J. F.; Wang, Y. J.; Yuan, G. L.; Liu, J. M. Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method. Nano Energy 2022, 98, 107247.

    Article  CAS  Google Scholar 

  58. Chen, F.; Huang, H. W.; Guo, L.; Zhang, Y. H.; Ma, T. Y. The role of polarization in photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 10061–10073.

    Article  CAS  Google Scholar 

  59. Molinari, A.; Witte, R.; Neelisetty, K. K.; Gorji, S.; Kübel, C.; Münch, I.; Wöhler, F.; Hahn, L.; Hengsbach, S.; Bade, K. et al. Configurable resistive response in BaTiO3 ferroelectric memristors via electron beam radiation. Adv. Mater. 2020, 32, 1907541.

    Article  CAS  Google Scholar 

  60. Huang, H. W.; Tu, S. C.; Du, X.; Zhang, Y. H. Ferroelectric spontaneous polarization steering charge carriers migration for promoting photocatalysis and molecular oxygen activation. J. Colloid Interface Sci. 2018, 509, 113–122.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, Y.; Ye, S.; Xie, H. C.; Zhu, J.; Shi, Q.; Ta, N.; Chen, R. T.; Gao, Y. Y.; An, H. Y.; Nie, W. et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater. 2020, 32, 1906513.

    Article  CAS  Google Scholar 

  62. Morris, M. R.; Pendlebury, S. R.; Hong, J.; Dunn, S.; Durrant, J. R. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv. Mater. 2016, 28, 7123–7128.

    Article  CAS  PubMed  Google Scholar 

  63. Li, L. N.; Liu, X. T.; He, C.; Wang, S. S.; Ji, C. M.; Zhang, X. Y.; Sun, Z. H.; Zhao, S. G.; Hong, M. C.; Luo, J. H. A potential Sn-based hybrid perovskite ferroelectric semiconductor. J. Am. Chem. Soc. 2020, 142, 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  64. Xu, X. L.; Chen, S. J.; Wu, Z.; Jia, Y. M.; Xiao, L. B.; Liu, Y. S. Strong pyro-electro-chemical coupling of Ba0.7Sr0.3TiO3@Ag pyroelectric nanoparticles for room-temperature pyrocatalysis. Nano Energy 2018, 50, 581–588.

    Article  CAS  Google Scholar 

  65. Wang, C. Y.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Pyroelectric catalysis. Nano Energy 2020, 78, 105371.

    Article  CAS  Google Scholar 

  66. Wu, J.; Qin, N.; Bao, D. H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51.

    Article  CAS  Google Scholar 

  67. Li, N.; Zhu, R. X.; Cheng, X. X.; Liu, H. J.; Zhang, Z. Y.; Huang, Y. L.; Chu, Y. H.; Chen, L. Q.; Ikuhara, Y.; Gao, P. Dislocation-induced large local polarization inhomogeneity of ferroelectric materials. Scr. Mater. 2021, 194, 113624.

    Article  CAS  Google Scholar 

  68. Zhou, X. F.; Yan, F.; Wu, S. H.; Shen, B.; Zeng, H. R.; Zhai, J. W. Remarkable piezophoto coupling catalysis behavior of BiOX/BaTiO3 (X = Cl, Br, Cl0.166Br0.834) piezoelectric composites. Small 2020, 16, 2001573.

    Article  CAS  Google Scholar 

  69. Jing, L. Q.; Xu, Y. G.; Xie, M.; Li, Z.; Wu, C. C.; Zhao, H.; Wang, J.; Wang, H.; Yan, Y. B.; Zhong, N. et al. Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects. Nano Energy 2023, 112, 108508.

    Article  CAS  Google Scholar 

  70. Feng, Y. W.; Xu, M. J.; Liu, H.; Li, W.; Li, H. X.; Bian, Z. F. Charge separation and interfacial selectivity induced by synergistic effect of ferroelectricity and piezoelectricity on PbTiO3 monocrystalline nanoplates. Nano Energy 2020, 73, 104768.

    Article  CAS  Google Scholar 

  71. Xu, X. G.; Lin, X. J.; Yang, F. H.; Huang, S. F.; Cheng, X. Piezophotocatalytic activity of Bi0.5Na0.5TiO3@TiO2 composite catalyst with heterojunction for degradation of organic dye molecule. J. Phys. Chem. C 2020, 124, 24126–24134.

    Article  CAS  Google Scholar 

  72. Wu, J. R.; Wang, W. W.; Tian, Y.; Song, C. X.; Qiu, H.; Xue, H. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants. Nano Energy 2020, 77, 105122.

    Article  CAS  Google Scholar 

  73. Wang, Z. P.; Song, J. M.; Gao, F.; Su, R.; Zhang, D. W.; Liu, Y.; Xu, C. C.; Lou, X. J.; Yang, Y. D. Developing a ferroelectric nanohybrid for enhanced photocatalysis. Chem. Commun. 2017, 53, 7596–7599.

    Article  CAS  Google Scholar 

  74. Li, S. G.; Bai, L. Q.; Ji, N.; Yu, S.; Lin, S. X.; Tian, N.; Huang, H. W. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J. Mater. Chem. A 2020, 8, 9268–9277.

    Article  CAS  Google Scholar 

  75. Park, S.; Lee, C. W.; Kang, M. G.; Kim, S.; Kim, H. J.; Kwon, J. E.; Park, S. Y.; Kang, C. Y.; Hong, K. S.; Nam, K. T. A ferroelectric photocatalyst for enhancing hydrogen evolution: Polarized particulate suspension. Phys. Chem. Chem. Phys. 2014, 16, 10408–10413.

    Article  CAS  PubMed  Google Scholar 

  76. Cui, Y. F.; Sun, H. H.; Shen, G. D.; Jing, P. P.; Pu, Y. P. Effect of dual-cocatalyst surface modification on photodegradation activity, pathway, and mechanisms with highly efficient Ag/BaTiO3/MnOx. Langmuir 2020, 36, 498–509.

    Article  CAS  PubMed  Google Scholar 

  77. Chen, F.; Ren, Z. H.; Gong, S. Y.; Li, X.; Shen, G.; Han, G. R. Selective deposition of silver oxide on single-domain ferroelectric nanoplates and their efficient visible-light photoactivity. Chem.—Eur. J. 2016, 22, 12160–12165.

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, H.; Mao, Q. Y.; Jian, L.; Dong, Y. M.; Zhu, Y. F. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. Chin. J. Catal. 2022, 43, 1774–1804.

    Article  CAS  Google Scholar 

  79. Chao, C. Y.; Zhou, Y. S.; Li, H.; He, W. W.; Fa, W. J. Polarization-induced selective growth of Au islands on single-domain ferroelectric PbTiO3 nanoplates with enhanced photocatalytic activity. Appl. Surf. Sci. 2019, 466, 274–281.

    Article  CAS  Google Scholar 

  80. Jiang, S.; Ren, Z. H.; Li, M.; Gong, S. Y.; Yu, Y. F.; Pei, J. Y.; Wei, X.; Shen, G.; Han, G. R. Single- crystal heterostructured PbTiO3/CdS nanorods with enhanced visible-light-driven photocatalytic performance. RSCAdv. 2015, 5, 54454–54459.

    CAS  Google Scholar 

  81. Li, W.; Wang, F.; Li, M.; Chen, X.; Ren, Z. H.; Tian, H.; Li, X.; Lu, Y. H.; Han, G. R. Polarization-dependent epitaxial growth and photocatalytic performance of ferroelectric oxide heterostructures. Nano Energy 2018, 45, 304–310.

    Article  CAS  Google Scholar 

  82. Xu, T. T.; Niu, P.; Wang, S. L.; Li, L. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3. J. Mater. Sci. Technol. 2021, 74, 128–135.

    Article  CAS  Google Scholar 

  83. Huang, X. Y.; Wang, K. Q.; Wang, Y. Z.; Wang, B.; Zhang, L. L.; Gao, F.; Zhao, Y.; Feng, W. H.; Zhang, S. Y.; Liu, P. Enhanced charge carrier separation to improve hydrogen production efficiency by ferroelectric spontaneous polarization electric field. Appl. Catal. B: Environ. 2018, 227, 322–329.

    Article  CAS  Google Scholar 

  84. Wang, P. L.; Fan, S. Y.; Li, X. Y.; Wang, J.; Liu, Z. Y.; Bai, C. P.; Tadé, M. O.; Liu, S. M. Piezotronic effect and hierarchical Z-scheme heterostructure stimulated photocatalytic H2 evolution integrated with C–N coupling of benzylamine. Nano Energy 2021, 89, 106349.

    Article  CAS  Google Scholar 

  85. Lin, B.; Chaturvedi, A.; Di, J.; You, L.; Lai, C.; Duan, R. H.; Zhou, J. D.; Xu, B. R.; Chen, Z. H.; Song, P. et al. Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution. Nano Energy 2020, 76, 104972.

    Article  CAS  Google Scholar 

  86. Zhen, C.; Yu, J. C.; Liu, G.; Cheng, H. M. Selective deposition of redox co-catalyst(s) to improve the photocatalytic activity of single-domain ferroelectric PbTiO3 nanoplates. Chem. Commun. 2014, 50, 10416–10419.

    Article  CAS  Google Scholar 

  87. Liu, G.; Ma, L.; Yin, L. C.; Wan, G. D.; Zhu, H. Z.; Zhen, C.; Yang, Y. Q.; Liang, Y.; Tan, J.; Cheng, H. M. Selective chemical epitaxial growth of TiO2 islands on ferroelectric PbTiO3 crystals to boost photocatalytic activity. Joule 2018, 2, 1095–1107.

    Article  CAS  Google Scholar 

  88. You, H. L.; Li, S. Q.; Fan, Y. L.; Guo, X. Y.; Lin, Z. Z.; Ding, R.; Cheng, X.; Zhang, H.; Lo, T. W. B.; Hao, J. H. et al. Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles. Nat. Commun. 2022, 13, 6144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

    Article  CAS  Google Scholar 

  90. Luo, N. C.; Montini, T.; Zhang, J.; Fornasiero, P.; Fonda, E.; Hou, T. T.; Nie, W.; Lu, J. M.; Liu, J. X.; Heggen, M. et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nat. Energy 2019, 4, 575–584.

    Article  CAS  Google Scholar 

  91. Roeffaers, M. B. J.; Sels, B. F.; Uji-i, H.; De Schryver, F. C.; Jacobs, P. A.; De Vos, D. E.; Hofkens, J. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 2006, 439, 572–575.

    Article  CAS  PubMed  Google Scholar 

  92. Lim, K.; Ropp, C.; Barik, S.; Fourkas, J.; Shapiro, B.; Waks, E. Nanostructure-induced distortion in single-emitter microscopy. Nano Lett. 2016, 16, 5415–5419.

    Article  CAS  PubMed  Google Scholar 

  93. Sharma, M.; Vaish, R.; Ibrahim, S. M. Effect of poling condition on piezocatalysis activity of BaTiO3-cement composites. Mater. Lett. 2020, 280, 128583.

    Article  CAS  Google Scholar 

  94. Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

    Article  CAS  Google Scholar 

  95. Qi, K. Z.; Liu, S. Y.; Qiu, M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin. J. Catal. 2018, 39, 867–875.

    Article  CAS  Google Scholar 

  96. Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in- one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.

    Article  CAS  Google Scholar 

  97. Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci. Bull. 2020, 65, 934–943.

    Article  CAS  Google Scholar 

  98. Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

    Article  CAS  Google Scholar 

  99. Tu, S. C.; Zhang, Y. H.; Reshak, A. H.; Auluck, S.; Ye, L. Q.; Han, X. P.; Ma, T. Y.; Huang, H. W. Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15. Nano Energy 2019, 56, 840–850.

    Article  CAS  Google Scholar 

  100. Wang, M.; Khan, M. A.; Mohsin, I.; Wicks, J.; Ip, A. H.; Sumon, K. Z.; Dinh, C. T.; Sargent, E. H.; Gates, I. D.; Kibria, M. G. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes. Energy Environ. Sci. 2021, 14, 2535–2548.

    Article  CAS  Google Scholar 

  101. Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344.

    Article  Google Scholar 

  102. Tong, F. X.; Liang, X. Z.; Wang, Z. Y.; Liu, Y. Y.; Wang, P.; Cheng, H. F.; Dai, Y.; Zheng, Z. K.; Huang, B. B. Probing the mechanism of plasmon-enhanced ammonia borane methanolysis on a CuAg alloy at a single-particle Level. ACS Catal. 2021, 11, 10814–10823.

    Article  CAS  Google Scholar 

  103. Gao, W. Q.; Liu, Q. L.; Zhang, S.; Yang, Y. Y.; Zhang, X. F.; Zhao, H.; Qin, W.; Zhou, W. J.; Wang, X. N.; Liu, H. et al. Electromagnetic induction derived micro-electric potential in metal-semiconductor core-shell hybrid nanostructure enhancing charge separation for high performance photocatalysis. Nano Energy 2020, 71, 104624.

    Article  CAS  Google Scholar 

  104. Gao, W. Q.; Lu, J. B.; Zhang, S.; Zhang, X. F.; Wang, Z. X.; Qin, W.; Wang, J. J.; Zhou, W. J.; Liu, H.; Sang, Y. H. Suppressing photoinduced charge recombination via the lorentz force in a photocatalytic system. Adv. Sci. 2019, 6, 1901244.

    Article  CAS  Google Scholar 

  105. Wang, J. L.; Jiang, H. J.; He, Z.; Liu, J. W.; Wang, R.; Huang, W. R.; Feng, L. T.; Ren, X. F.; Hou, Z. H.; Yu, S. H. Radial nanowire assemblies under rotating magnetic field enabled efficient charge separation. Nano Lett. 2020, 20, 2763–2769.

    Article  CAS  PubMed  Google Scholar 

  106. Hu, C.; Huang, H. W.; Chen, F.; Zhang, Y. H.; Yu, H.; Ma, T. Y. Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 2020, 30, 1908168.

    Article  CAS  Google Scholar 

  107. Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 2017, 56, 11860–11864.

    Article  CAS  Google Scholar 

  108. Li, J. F.; Liu, X. M.; Zheng, Y. F.; Cui, Z. D.; Jiang, H.; Li, Z. Y.; Zhu, S. L.; Wu, S. L. Achieving fast charge separation by ferroelectric ultrasonic interfacial engineering for rapid sonotherapy of bacteria-infected osteomyelitis. Adv. Mater. 2023, 35, 2210296.

    Article  CAS  Google Scholar 

  109. Cui, Y. F.; Briscoe, J.; Wang, Y. Q.; Tarakina, N. V.; Dunn, S. Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/α-Fe2O3 and the significance of interface morphology control. ACS Appl. Mater. Interfaces 2017, 9, 24518–24526.

    Article  CAS  PubMed  Google Scholar 

  110. Zhu, S. M.; Qian, X. J.; Lan, D. P.; Yu, Z. Y.; Wang, X. X.; Su, W. Y. Accelerating charge transfer for highly efficient visible-light-driven photocatalytic H2 production: In-situ constructing Schottky junction via anchoring Ni-P alloy onto defect-rich ZnS. Appl. Catal. B: Environ. 2020, 269, 118806.

    Article  CAS  Google Scholar 

  111. Zhong, W. W.; Shen, S. J.; He, M.; Wang, D.; Wang, Z. P.; Lin, Z. P.; Tu, W. G.; Yu, J. G. The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 258, 117967.

    Article  CAS  Google Scholar 

  112. Xu, S. Y.; Guo, L. M.; Sun, Q. J.; Wang, Z. L. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv. Funct. Mater. 2019, 29, 1808737.

    Article  Google Scholar 

  113. Zhai, Y. F.; Zhang, Y.; Yin, J.; Fan, X. Y. Enhanced photocatalytic property of Ag loaded on well-defined ferroelectric Na3VO2B6O11 crystals under visible light irradiation. Appl. Surf. Sci. 2019, 484, 981–989.

    Article  CAS  Google Scholar 

  114. Lan, S. Y.; Feng, J. X.; Xiong, Y.; Tian, S. H.; Liu, S. W.; Kong, L. J. Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: Finding of effective piezo-dechlorination. Environ. Sci. Technol. 2017, 51, 6560–6569.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, H. H.; Zhang, T.; Zhou, X. C. Dark- field spectroscopy: Development, applications and perspectives in single nanoparticle catalysis. J. Phys.: Condens. Matter 2019, 31, 473001.

    CAS  PubMed  Google Scholar 

  116. Lin, E. Z.; Kang, Z. H.; Wu, J.; Huang, R.; Qin, N.; Bao, D. H. BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism. Appl. Catal. B: Environ. 2021, 285, 119823.

    Article  CAS  Google Scholar 

  117. Zhou, L. P.; Dai, S. Q.; Xu, S.; She, Y. Q.; Li, Y. L.; Leveneur, S.; Qin, Y. L. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants. Appl. Catal. B: Environ. 2021, 291, 120019.

    Article  CAS  Google Scholar 

  118. Tian, W. R.; Han, J.; Wan, L. C.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; Lu, J. M. Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy 2023, 107, 108165.

    Article  CAS  Google Scholar 

  119. Zhang, Z.; Zou, C. T.; Yang, S. J.; Yang, Z. Y.; Yang, Y. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation. Chem. Eng. J. 2021, 410, 128430.

    Article  CAS  Google Scholar 

  120. Li, H. F.; Quan, X.; Chen, S.; Yu, H. T. Ferroelectric-enhanced Z-schematic electron transfer in BiVO4-BiFeO3-CuInS2 for efficient photocatalytic pollutant degradation. Appl. Catal. B: Environ. 2017, 209, 591–599.

    Article  CAS  Google Scholar 

  121. Lei, Y. Q.; Xu, S. Y.; Ding, M.; Li, L. L.; Sun, Q. J.; Wang, Z. L. Enhanced photocatalysis by synergistic piezotronic effect and exciton-plasmon interaction based on (Ag-Ag2S)/BaTiO3 heterostructures. Adv. Funct. Mater. 2020, 30, 2005716.

    Article  CAS  Google Scholar 

  122. Cui, Y. F.; Briscoe, J.; Dunn, S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-influence on the carrier separation and stern layer formation. Chem. Mater. 2013, 25, 4215–4223.

    Article  CAS  Google Scholar 

  123. Fan, X. Y.; Zang, L.; Zhang, M.; Qiu, H. S.; Wang, Z.; Yin, J.; Jia, H. Z.; Pan, S. L.; Wang, C. Y. A bulk boron-based photocatalyst for efficient dechlorination: K3B6O10Br. Chem. Mater. 2014, 26, 3169–3174.

    Article  CAS  Google Scholar 

  124. Zhao, C. Y.; Tian, W. M.; Sun, Q.; Yin, Z. X.; Leng, J.; Wang, S. P.; Liu, J. X.; Wu, K. F.; Jin, S. Y. Trap- enabled long-distance carrier transport in perovskite quantum wells. J. Am. Chem. Soc. 2020, 142, 15091–15097.

    Article  CAS  PubMed  Google Scholar 

  125. Zhou, Q.; Shi, Q. Y.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Rh- Doped SrTiO3 inverse opal with piezoelectric effect for enhanced visible-light-driven photodegradation of bisphenol A. Environ. Sci.:Nano 2020, 7, 2267–2277.

    CAS  Google Scholar 

  126. Kappadan, S.; Thomas, S.; Kalarikkal, N. Enhanced photocatalytic performance of BaTiO3/g-C3N4 heterojunction for the degradation of organic pollutants. Chem. Phys. Lett. 2021, 771, 138513.

    Article  CAS  Google Scholar 

  127. Zhang, Q.; Shi, Y. Y.; Shi, X. J.; Huang, T. T.; Lee, S.; Huang, Y.; Cao, J. J. Constructing Pd/ferroelectric Bi4Ti3O12 nanoflake interfaces for O2 activation and boosting NO photo-oxidation. Appl. Catal. B: Environ. 2022, 302, 120876.

    Article  CAS  Google Scholar 

  128. Dong, G. H.; Yang, L. P.; Wang, F.; Zang, L.; Wang, C. Y. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides. ACS Catal. 2016, 6, 6511–6519.

    Article  CAS  Google Scholar 

  129. Folli, A.; Bloh, J. Z.; Armstrong, K.; Richards, E.; Murphy, D. M.; Lu, L.; Kiely, C. J.; Morgan, D. J.; Smith, R. I.; McLaughlin, A. C. et al. Improving the selectivity of photocatalytic NOx abatement through improved O2 reduction pathways using Ti0.909W0.091O2Nx semiconductor nanoparticles: From characterization to photocatalytic performance. ACS Catal. 2018, 8, 6927–6938.

    Article  CAS  Google Scholar 

  130. Fujiwara, K.; Müller, U.; Pratsinis, S. E. Pd subnano-clusters on TiO2 for solar-light removal of NO. ACS Catal. 2016, 6, 1887–1893.

    Article  CAS  Google Scholar 

  131. Pramanik, R.; Sahukar, M. K.; Mohan, Y.; Praveenkumar, B.; Sangawar, S. R.; Arockiarajan, A. Effect of grain size on piezoelectric, ferroelectric and dielectric properties of PMN-PT ceramics. Ceram. Int. 2019, 45, 5731–5742.

    Article  CAS  Google Scholar 

  132. Muthuramalingam, M.; Jain Ruth, D. E.; Veera Gajendra Babu, M.; Ponpandian, N.; Mangalaraj, D.; Sundarakannan, B. Isothermal grain growth and effect of grain size on piezoelectric constant of Na0.5Bi0.5TiO3 ceramics. Scr. Mater. 2016, 112, 58–61.

    Article  CAS  Google Scholar 

  133. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single- atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  PubMed  Google Scholar 

  134. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21927811, 22002076, 22074082, 22106093, and 22276115), as well as the Excellent Youth Overseas Project of Shandong Province (No. 2023HWYQ-075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Li or Bo Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Xu, C., Li, L. et al. The unique spontaneous polarization property and application of ferroelectric materials in photocatalysis. Nano Res. 17, 3571–3585 (2024). https://doi.org/10.1007/s12274-023-6357-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6357-8

Keywords

Navigation