Skip to main content
Log in

In3+-doped Sr2Fe1.5Mo0.5O6−δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Promoting the oxygen reduction reaction (ORR) is critical for commercialization of intermediate-temperature solid oxide fuel cells (IT-SOFCs), where Sr2Fe1.5Mo0.5O6−δ (SFM) is a promising cathode by working as a mixed ionic and electronic conductor. In this work, doping of In3+ greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr2Fe1.5Mo0.5−xInxO6−δ (SFMInx), and thus effectively promotes the ORR performance. As a typical example, SFMIn0.1 reduces the polarization resistance (Rp) from 0.089 to 0.046 Q·cm2 at 800 °C, which is superior to those doped with other metal elements. In addition, SFMIn0.1 increases the peak power density from 0.92 to 1.47 W·cm−2 at 800 °C with humidified H2 as the fuel, indicating that In3+ doping at the Mo site can effectively improve the performance of SOFC cathode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S. W.; Wan, Y. H.; Xu, Z. Q.; Xue, S. S.; Zhang, L. J.; Zhang, B. Z.; Xia, C. R. Bismuth doped La0.75Sr0.25Cr0.5Mn0.5O3−δ perovskite as a novel redox-stable efficient anode for solid oxide fuel cells. J. Mater. Chem. A 2020, 8, 11553–11563.

    Article  CAS  Google Scholar 

  2. Zhang, B. Z.; Wan, Y. H.; Hua, Z. H.; Tang, K. B.; Xia, C. R. Tungsten-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells. ACS Appl. Energy Mater. 2021, 4, 8401–8409.

    Article  CAS  Google Scholar 

  3. Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T. S.; Mcevoy, A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004, 3, 17–27.

    Article  CAS  Google Scholar 

  4. Gou, M. L.; Ren, R. Z.; Sun, W.; Xu, C. M.; Meng, X. G.; Wang, Z. H.; Qiao, J. S.; Sun, K. N. Nb-doped Sr2Fe1.5Mo0.5O6−δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells. Ceram. Int. 2019, 45, 15696–15704.

    Article  Google Scholar 

  5. Bellino, M. G.; Sacanell, J. G.; Lamas, D. G.; Leyva, A. G.; Walsöe de Reca, N. E. Hugh-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J. Am. Chem. Soc. 2007, 129, 3066–3067.

    Article  CAS  Google Scholar 

  6. Zhang, L. H.; Sun, W.; Xu, C. M.; Ren, R. Z.; Yang, X. X.; Qiao, J. S.; Wang, Z. H.; Sun, K. N. Attenuating a metal-oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 14091–14098.

    Article  CAS  Google Scholar 

  7. Ding, H. P.; Zhou, D. S.; Liu, S.; Wu, W.; Yang, Y. T.; Yang, Y. C.; Tao, Z. T. Electricity generation in dry methane by a durable ceramic fuel cell with high-performing and coking-resistant layered perovskite anode. Appl. Energy 2019, 233–234, 37–43.

    Article  Google Scholar 

  8. Yu, X. D.; Wang, Z. H.; Ren, R. Z.; Ma, M. J.; Xu, C. M.; Qiao, J. S.; Sun, W.; Sun, K. N. In situ self-reconstructed nanoheterostructure catalysts for promoting oxygen reduction reaction. ACS Energy Lett. 2022, 7, 2961–2969.

    Article  CAS  Google Scholar 

  9. Shen, L. Y.; Du, Z. H.; Zhang, Y.; Dong, X.; Zhao, H. L. Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3−δ as promising cathodes for intermediate temperature solid oxide fuel cell. Appl. Catal. B: Environ. 2021, 295, 120264.

    Article  CAS  Google Scholar 

  10. Wang, S. B.; Xu, J. S.; Wu, M.; Song, Z. Y.; Wang, L.; Zhang, L. L.; Yang, J.; Long, W.; Zhang, L. Cobalt-free perovskite cathode BaFe0.9Nb0.1O3−δ for intermediate-temperature solid oxide fuel cell. J. Alloys Compd. 2021, 872, 159701.

    Article  CAS  Google Scholar 

  11. Hashim, S. S.; Liang, F. L.; Zhou, W.; Sunarso, J. Cobalt-free perovskite cathodes for solid oxide fuel cells. ChemElectroChem 2019, 6, 3549–3569.

    Article  CAS  Google Scholar 

  12. Li, H.; Lü, Z. Highly active and stable tin-doped perovskite-type oxides as cathode materials for solid oxide fuel cells. Electrochim. Acta 2020, 361, 137054.

    Article  CAS  Google Scholar 

  13. Zhang, B. Z.; Zhang, S. W.; Han, H. R.; Tang, K. B.; Xia, C. R. Cobalt-free double perovskite oxide as a promising cathode for solid oxide fuel cells. ACS Appl. Mater. Interfaces 2023, 15, 8253–8262.

    Article  CAS  Google Scholar 

  14. Zhang, B. Z.; Zhang, S. W.; Zhang, Z.; Tang, K. B.; Xia, C. R. Metal-supported solid oxide electrolysis cell for direct CO2 electrolysis using stainless steel based cathode. J. Power Sources 2023, 556, 232467.

    Article  CAS  Google Scholar 

  15. Pan, X.; Wang, Z. B.; He, B. B.; Wang, S. R.; Wu, X. J.; Xia, C. R. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. Int. J. Hydrogen Energy 2013, 38, 4108–4115.

    Article  CAS  Google Scholar 

  16. Dai, N. N.; Feng, J.; Wang, Z. H.; Jiang, T. Z.; Sun, W.; Qiao, J. S.; Sun, K. N. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5−xNixMo0.5O6−δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. J. Mater. Chem. A 2013, 1, 14147–14153.

    Article  CAS  Google Scholar 

  17. Gu, L. N.; Meng, G. Y. Preparation of Sm-doped ceria (SDC) nanowires and tubes by gas-liquid co-precipitation at room temperature. Mater. Res. Bull. 2008, 43, 1555–1561.

    Article  CAS  Google Scholar 

  18. Wang, Y.; Zhang, L.; Xia, C. R. Enhancing oxygen surface exchange coefficients of strontium-doped lanthanum manganates with electrolytes. Int. J. Hydrogen Energy 2012, 37, 2182–2186.

    Article  CAS  Google Scholar 

  19. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

    Article  CAS  Google Scholar 

  20. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  21. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.

    Article  CAS  Google Scholar 

  22. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  23. Muøoz-García, A. B.; Bugaris, D. E.; Pavone, M.; Hodges, J. P.; Huq, A.; Chen, F. L.; zur Loye, H. C.; Carter, E. A. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6−δ, an electrode material for symmetric solid oxide fuel cells. J. Am. Chem. Soc. 2012, 134, 6826–6833.

    Article  Google Scholar 

  24. Mastrikov, Y. A.; Merkle, R.; Kotomin, E. A.; Kuklja, M. M.; Maier, J. Formation and migration of oxygen vacancies in La1−xSrxCo1−yFeyO3−δ perovskites: Insight from ab initio calculations and comparison with Ba1−xSrxCo1−yFeyO3−δ. Phys. Chem. Chem. Phys. 2013, 15, 911–918.

    Article  CAS  Google Scholar 

  25. Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658.

    Article  CAS  Google Scholar 

  26. Liu, Q.; Bugaris, D. E.; Xiao, G. L.; Chmara, M.; Ma, S. G.; zur Loye, H. C.; Amiridis, M. D.; Chen, F. L. Sr2Fe1.5Mo0.5O6δ as a regenerative anode for solid oxide fuel cells. J. Power Sources 2011, 196, 9148–9153.

    Article  CAS  Google Scholar 

  27. Gou, Y. J.; Li, G. D.; Ren, R. Z.; Xu, C. M.; Qiao, J. S.; Sun, W.; Sun, K. N.; Wang, Z. H. Pr-doping motivating the phase transformation of the BaFeO3−δ perovskite as a high-performance solid oxide fuel cell cathode. ACS Appl. Mater. Interfaces 2021, 13, 20174–20184.

    Article  CAS  Google Scholar 

  28. Zhang, S. W.; Zhu, K.; Hu, X. Y.; Peng, R. R.; Xia, C. R. Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6−δ perovskite as a ceramic anode for solid oxide fuel cells. J. Mater. Chem. A 2021, 9, 24336–24347.

    Article  CAS  Google Scholar 

  29. Yang, Y.; Shi, N.; Xie, Y.; Li, X. Y.; Hu, X. Y.; Zhu, K.; Huan, D. M.; Peng, R. R.; Xia, C. R.; Lu, Y. L. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells. Electrochim. Acta 2021, 389, 138453.

    Article  CAS  Google Scholar 

  30. Deka, D. J.; Kim, J.; Gunduz, S.; Ferree, M.; Co, A. C.; Ozkan, U. S. Temperature-induced changes in the synthesis gas composition in a high-temperature H2O and CO2 co- electrolysis system. Appl. Catal. A: Gen. 2020, 602, 117697.

    Article  CAS  Google Scholar 

  31. Meng, J. L.; Liu, X. J.; Han, L.; Bai, Y. J.; Yao, C. G.; Deng, X. L.; Niu, X. D.; Wu, X. J.; Meng, J. Improved electrochemical performance by doping cathode materials Sr2Fe1.5Mo0.5−xTaxO6−δ (0.0 ≤ x ≤ 0.15) for Solid State Fuel Cell. J. Power Sources 2014, 247, 845–851.

    Article  CAS  Google Scholar 

  32. Shao, Z. P.; Xiong, G. X.; Tong, J. H.; Dong, H.; Yang, W. S. Ba effect in doped Sr(Co0.8Fe0.2)O3−δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep. Purif. Technol. 2001, 25, 419–429.

    Article  CAS  Google Scholar 

  33. Sun, W.; Li, P. Q.; Xu, C. M.; Dong, L. K.; Qiao, J. S.; Wang, Z. H.; Rooney, D.; Sun, K. N. Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 2017, 343, 237–245.

    Article  CAS  Google Scholar 

  34. Liu, H. Y.; Zhu, X. F.; Cheng, M. J.; Cong, Y.; Yang, W. S. Novel Mn1.5Co1.5O4 spinel cathodes for intermediate temperature solid oxidefuel cells. Chem. Commun. 2011, 47, 2378–2380.

    Article  CAS  Google Scholar 

  35. Bouwmeester, H. J. M.; Den Otter, M. W.; Boukamp, B. A. Oxygen transport in La0.6Sr0.4Co1−yFeyO3−δ. J. Solid State Electrochem. 2004, 8, 599–605.

    Article  CAS  Google Scholar 

  36. ten Elshof, J. E.; Lankhorst, M. H. R.; Bouwmeester, H. J. M. Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3−δ. Solid State Ionics 1997, 99, 15–22.

    Article  CAS  Google Scholar 

  37. Yasuda, I.; Hikita, T. Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. J. Electrochem. Soc. 1994, 141, 1268–1273.

    Article  CAS  Google Scholar 

  38. Zhang, S. W.; Jiang, Y. N.; Han, H. R.; Li, Y. H.; Xia, C. R. Perovskite oxyfluoride ceramic with in situ exsolved Ni-Fe nanoparticles for direct CO2 electrolysis in solid oxide electrolysis cells. ACS Appl. Mater. Interfaces 2022, 14, 28854–28864.

    Article  CAS  Google Scholar 

  39. Liu, Q.; Dong, X. H.; Xiao, G. L.; Zhao, F.; Chen, F. L. A novel electrode material for symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482.

    Article  CAS  Google Scholar 

  40. Hayd, J.; Yokokawa, H.; Ivers-Tiffée, E. Hetero-interfaces at nanoscaled (La,Sr)CoO3∓δ thin-film cathodes enhancing oxygen surface-exchange properties. J. Electrochem. Soc. 2013, 160, F351–F359.

    Article  CAS  Google Scholar 

  41. Zhang, Y. X.; Chen, Y.; Chen, F. L. In-situ quantification of solid oxide fuel cell electrode microstructure by electrochemical impedance spectroscopy. J. Power Sources 2015, 277, 277–285.

    Article  CAS  Google Scholar 

  42. Sumi, H.; Yamaguchi, T.; Hamamoto, K.; Suzuki, T.; Fujishiro, Y. High performance of La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells. J. Power Sources 2013, 226, 354–358.

    Article  CAS  Google Scholar 

  43. Zhang, Y. X.; Chen, Y.; Yan, M. F.; Chen, F. L. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 2015, 283, 464–477.

    Article  CAS  Google Scholar 

  44. Adler, S. B.; Chen, X. Y.; Wilson, J. R. Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. J. Catal. 2007, 245, 91–109.

    Article  CAS  Google Scholar 

  45. Osinkin, D. A.; Beresnev, S. M.; Khodimchuk, A. V.; Korzun, I. V.; Lobachevskaya, N. I.; Suntsov, A. Y. Functional properties and electrochemical performance of Ca-doped Sr2−xCa;cFe1.5Mo0.5O6−δ as anode for solid oxide fuel cells. J. Solid State Electrochem. 2019, 23, 627–634.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Autonomous Region Key Research Project (No. 2022D02D31) and the Graduate Education Innovation Project (No. XJ2022G046). We acknowledge the Supercomputing Center of University of Science and Technology of China (USTC) for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changrong Xia or Ling Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhang, L., Zhu, K. et al. In3+-doped Sr2Fe1.5Mo0.5O6−δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell. Nano Res. 17, 407–415 (2024). https://doi.org/10.1007/s12274-023-6338-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6338-y

Keywords

Navigation