Skip to main content
Log in

The proximity between hydroxyl and single atom determines the catalytic reactivity of Rh1/CeO2 single-atom catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The local structure of the metal single-atom site is closely related to the catalytic activity of metal single-atom catalysts (SACs). However, constructing SACs with homogeneous metal active sites is a challenge due to the surface heterogeneity of the conventional support. Herein, we prepared two Rh1/CeO2 SACs (0.5Rh1/r-CeO2 and 0.5Rh1/c-CeO2, respectively) using two shaped CeO2 (rod and cube) exposing different facets, i.e., CeO2 (111) and CeO2 (100). In CO oxidation reaction, the T100 of 0.5Rh1/r-CeO2 SACs is 120 °C, while the T100 of 0.5Rh1/c-CeO2 SACs is as high as 200 °C. Via in-situ CO diffuse reflectance infrared Fourier transform spectroscopy (CO-DRIFTS), we found that the proximity between OH group and Rh single atom on the plane surface plays an important role in the catalytic activity of Rh1/CeO2 SAC system in CO oxidation. The Rh single atom trapped at the CeO2 (111) crystal surface forms the Rh1(OH)adjacent species, which is not found on the CeO2 (100) crystal surface at room temperature. Furthermore, during CO oxidation, the OH group far from Rh single atom on the 0.5Rh1/c-CeO2 disappears and forms Rh1(OH)adjacent species when the temperature is above 150 °C. The formation of Rh1(OH)adjacentCO intermediate in the reaction is pivotal for the excellent catalytic activity, which explains the difference in the catalytic activity of Rh single atoms on two different CeO2 planes. The formed Rh1(OH)adjacent-O-Ce structure exhibits good stability in the reducing atmosphere, maintaining the Rh atomic dispersion after CO oxidation even when pre-reduced at high temperature of 500 °C. Density functional theory (DFT) calculations validate the unique activity and reaction path of the intermediate Rh1(OH)adjacentCO species formed. This work demonstrates that the proximity between metal single atom and hydroxyl can determine the formation of active intermediates to affect the catalytic performances in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  2. Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.

    Article  CAS  Google Scholar 

  3. Wu, D. F.; Liu, S. X.; Zhong, M. Q.; Zhao, J. F.; Du, C. C.; Yang, Y. L.; Sun, Y. F.; Lin, J. D.; Wan, S. L.; Wang, S. et al. Nature and dynamic evolution of Rh single atoms trapped by CeO2 in CO hydrogenation. ACS Catal. 2022, 12, 12253–12267.

    Article  CAS  Google Scholar 

  4. Lou, Y.; Cai, Y. F.; Hu, W. D.; Wang, L.; Dai, Q. G.; Zhan, W. C.; Guo, Y. L.; Hu, P.; Cao, X. M.; Liu, J. Y. et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS Catal. 2020, 10, 6094–6101.

    Article  CAS  Google Scholar 

  5. Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

    Article  CAS  Google Scholar 

  6. Xiong, Y.; Sun, W. M.; Xin, P. Y.; Chen, W. X.; Zheng, X. S.; Yan, W. S.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Wang, D. S. et al. Gramscale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.

    Article  CAS  Google Scholar 

  7. Zhang, Z.; Li, H. Y.; Wu, D. F.; Zhang, L. N.; Li, J. W.; Xu, J. L.; Lin, S.; Datye, A. K.; Xiong, H. F. Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coord. Chem. Rev. 2022, 460, 214469.

    Article  CAS  Google Scholar 

  8. Xie, S. H.; Liu, L. P.; Lu, Y.; Wang, C. Y.; Cao, S. F.; Diao, W. J.; Deng, J. G.; Tan, W.; Ma, L.; Ehrlich, S. N. et al. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J. Am. Chem. Soc. 2022, 144, 21255–21266.

    Article  CAS  Google Scholar 

  9. Hülsey, M. J.; Zhang, B.; Ma, Z. R.; Asakura, H.; Do, D. A.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z. L.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330.

    Article  Google Scholar 

  10. Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

    Article  Google Scholar 

  11. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    Article  CAS  Google Scholar 

  12. Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-Atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Edit. 2022, 61, e202117347.

    Article  CAS  Google Scholar 

  13. Jones, J.; Xiong, H. F.; Delariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  14. Shi, Y. J.; Zhou, Y. W.; Lou, Y.; Chen, Z. P.; Xiong, H. F.; Zhu, Y. F. Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Adv. Sci. 2022, 9, 2201520.

    Article  CAS  Google Scholar 

  15. Zeng, M. Y.; Cheng, L.; Gu, Q. Q.; Yang, B.; Yu, B. Y.; Xu, J.; Zhang, Y.; Pan, C. S.; Cao, X. M.; Lou, Y. et al. ZSM-5-confined Cr1-O4 active sites boost methane direct oxidation to C1 oxygenates under mild conditions. EES Catal. 2023, 1, 153–161.

    Article  CAS  Google Scholar 

  16. Yao, C. H.; Fan, H. H.; Adogwa, A.; Xiong, H. F.; Yang, M.; Liu, F. D.; Chen, Z. P.; Lou, Y. Recent advances in carbon dioxide selective hydrogenation and biomass valorization via single-atom catalysts. Resour. Chem. Mater. 2023, 2, 189–207.

    CAS  Google Scholar 

  17. Chen, Y.; Wan, Q.; Cao, L. R.; Gao, Z.; Lin, J.; Li, L.; Pan, X. L.; Lin, S.; Wang, X. D.; Zhang, T. Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation. J. Catal. 2022, 415, 174–185.

    Article  CAS  Google Scholar 

  18. Ma, Z. W.; Zhao, S. L.; Pei, X. P.; Xiong, X. M.; Hu, B. New insights into the support morphology-dependent ammonia synthesis activity of Ru/CeO2 catalysts. Catal. Sci. Technol. 2017, 7, 191–199.

    Article  CAS  Google Scholar 

  19. Jiang, D.; Wan, G.; Garcia-Vargas, C. E.; Li, L. Z.; Pereira-Hernández, X. I.; Wang, C. M.; Wang, Y. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation. ACS Catal. 2020, 10, 11356–11364.

    Article  CAS  Google Scholar 

  20. Han, B.; Li, T. B.; Zhang, J. Y.; Zeng, C. B.; Matsumoto, H.; Su, Y.; Qiao, B. T.; Zhang, T. A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation. Chem. Commun. 2020, 56, 4870–4873.

    Article  CAS  Google Scholar 

  21. Song, B. C.; Choi, D.; Xin, Y.; Bowers, C. R.; Hagelin-Weaver, H. Ultra-low loading Pt/CeO2 catalysts: Ceria facet effect affords improved pairwise selectivity for parahydrogen enhanced NMR spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 4038–4042.

    Article  CAS  Google Scholar 

  22. Chen, S. Y.; Li, S. D.; You, R. Y.; Guo, Z. Y.; Wang, F.; Li, G. X.; Yuan, W. T.; Zhu, B. E.; Gao, Y.; Zhang, Z. et al. Elucidation of active sites for CH4 catalytic oxidation over Pd/CeO2 via tailoring metal-support interactions. ACS Catal. 2021, 11, 5666–5677.

    Article  CAS  Google Scholar 

  23. Hu, B. T.; Sun, K. A.; Zhuang, Z. W.; Chen, Z.; Liu, S. J.; Cheong, W. C.; Chen, C.; Hu, M. Z.; Cao, X.; Ma, J. G. et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: Enhanced stabilization and catalytic properties. Adv. Mater. 2022, 34, 2107721.

    Article  CAS  Google Scholar 

  24. Zhang, B.; Asakura, H.; Yan, N. Atomically dispersed Rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Ind. Eng. Chem. Res. 2017, 56, 3578–3587.

    Article  CAS  Google Scholar 

  25. Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

    Article  CAS  Google Scholar 

  26. Zhang, L. N.; Bao, Q. Q.; Zhang, B. J.; Zhang, Y. B.; Wan, S. L.; Wang, S.; Lin, J. D.; Xiong, H. F.; Mei, D. H.; Wang, Y. Distinct role of surface hydroxyls in single-atom Pt1/CeO2 catalyst for room-temperature formaldehyde oxidation: Acid-base versus redox. JACS Au 2022, 2, 1651–1660.

    Article  CAS  Google Scholar 

  27. Agarwal, S.; Lefferts, L.; Mojet, B. L.; Ligthart, D. A. J. M.; Hensen, E. J. M.; Mitchell, D. R. G.; Erasmus, W. J.; Anderson, B. G.; Olivier, E. J.; Neethling, J. H. et al. Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity. ChemSusChem 2013, 6, 1898–1906.

    Article  CAS  Google Scholar 

  28. Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; DeLaRiva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. M. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 2017, 7, 6887–6891.

    Article  CAS  Google Scholar 

  29. Agarwal, S.; Zhu, X.; Hensen, E. J. M.; Lefferts, L.; Mojet, B. L. Defect chemistry of ceria nanorods. J. Phys. Chem. C 2014, 118, 4131–4142.

    Article  CAS  Google Scholar 

  30. Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y. Q.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K. et al. CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets. Appl. Catal. B: Environ. 2019, 243, 36–46.

    Article  CAS  Google Scholar 

  31. Li, X. M.; Liu, K. H.; Wang, W. L.; Bai, X. D. Atomic-scale imaging of the defect dynamics in ceria nanowires under heating by in situ aberration- corrected TEM. Sci. China Chem. 2019, 62, 1704–1709.

    Article  CAS  Google Scholar 

  32. Alcala, R.; DeLaRiva, A.; Peterson, E. J.; Benavidez, A.; Garcia-Vargas, C. E.; Jiang, D.; Pereira-Hernández, X. I.; Brongersma, H. H.; ter Veen, R.; Staněk, J. et al. Atomically dispersed dopants for stabilizing ceria surface area. Appl. Catal. B: Environ. 2021, 284, 119722.

    Article  CAS  Google Scholar 

  33. Asokan, C.; Thang, H. V.; Pacchioni, G.; Christopher, P. Reductant composition influences the coordination of atomically dispersed Rh on anatase TiO2. Catal. Sci. Technol. 2020, 10, 1597–1601.

    Article  CAS  Google Scholar 

  34. Hoffman, A. J.; Asokan, C.; Gadinas, N.; Schroeder, E.; Zakem, G.; Nystrom, S. V.; Getsoian, A.; Christopher, P.; Hibbitts, D. Experimental and theoretical characterization of Rh single atoms supported on γ-Al2O3 with varying hydroxyl contents during NO reduction CO. ACS Catal. 2022, 12, 11697–11715.

    Article  CAS  Google Scholar 

  35. Thang, H. V.; Pacchioni, G. On the real nature of Rh single-atom catalysts dispersed on the ZrO2 surface. ChemCattChem 2020, 12, 2595–2604.

    Article  CAS  Google Scholar 

  36. Khivantsev, K.; Vargas, C. G.; Tian, J. S.; Kovarik, L.; Jaegers, N. R.; Szanyi, J.; Wang, Y. Economizing on precious metals in three-way catalysts: Thermally stable and highly active single-atom rhodium on ceria for NO abatement under dry and industrially relevant Conditions. Angew. Chem., Int. Edit. 2021, 60, 391–398.

    Article  CAS  Google Scholar 

  37. Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084.

    Article  CAS  Google Scholar 

  38. Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

    Article  CAS  Google Scholar 

  39. Liu, L. J.; Yao, Z. J.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO. ChemCatChem 2011, 3, 978–989.

    Article  CAS  Google Scholar 

  40. Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z. L.; Manivannan, A.; Zhi, M. J.; Li, M.; Wu, N. Q. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 2009, 131, 12290–12297.

    Article  CAS  Google Scholar 

  41. Badri, A.; Binet, C.; Lavalley, J. C. An FTIR study of surface ceria hydroxy groups during a redox process with H2. J. Chem. Soc., Faraday Trans. 1996, 92, 4669–4673.

    Article  CAS  Google Scholar 

  42. Laachir, A.; Perrichon, V.; Badri, A.; Lamotte, J.; Catherine, E.; Lavalley, J. C.; El Fallah, J.; Hilaire, L.; Le Normand, F.; Quéméré, E. et al. Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. J. Chem. Soc., Faraday Trans. 1991, 87, 1601–1609.

    Article  CAS  Google Scholar 

  43. Song, W. Y.; Jansen, A. P. J.; Hensen, E. J. M. A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms. Faraday Discuss. 2013, 162, 281–292.

    Article  CAS  Google Scholar 

  44. Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409.

    Article  CAS  Google Scholar 

  45. Lu, Y. B.; Zhou, S. L.; Kuo, C. T.; Kunwar, D.; Thompson, C.; Hoffman, A. S.; Boubnov, A.; Lin, S.; Datye, A. K.; Guo, H. et al. Unraveling the intermediate reaction complexes and critical role of support-derived oxygen atoms in CO oxidation on single-atom Pt/CeO2. ACS Catal. 2021, 11, 8701–8715.

    Article  CAS  Google Scholar 

  46. Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernández, X. I.; Purdy, S. C.; ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978–3990.

    Article  CAS  Google Scholar 

  47. Jang, M. G.; Yoon, S.; Shin, D.; Kim, H. J.; Huang, R.; Yang, E.; Kim, J.; Lee, K. S.; An, K.; Han, J. W. Boosting support reducibility and metal dispersion by exposed surface atom control for highly active supported metal catalysts. ACS Catal. 2022, 12, 4402–4414.

    Article  CAS  Google Scholar 

  48. Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water- mediated Mars-Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 aatelytS. ACS Catal. 2017, 7, 887–891.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National High-Level Talent Fund and the National Natural Science Foundation of China (Nos. 22072118, 22372138, 22388102, 21973013, and 22373017). We also thank financial support from State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University. Part of the fund was supported by Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) (No. HRTP-[2022]-3) and the Fundamental Research Funds for the Central Universities (No. 20720220008). The computations were performed at the Hefei Advanced Computing Center and Supercomputing Center of Fujian. The XAS experiments used resources at the 8-ID beamline of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory (No. DE-SC0012704). J. Huang thank the National Natural Science Foundation of China (Nos. U20A20336 and 21935009) and the Natural Science Foundation of Hebei Province (No. B2020203037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sen Lin or Haifeng Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Zhou, S., Du, C. et al. The proximity between hydroxyl and single atom determines the catalytic reactivity of Rh1/CeO2 single-atom catalysts. Nano Res. 17, 397–406 (2024). https://doi.org/10.1007/s12274-023-6333-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6333-3

Keywords

Navigation