Skip to main content
Log in

Selective photocatalytic oxidation of methane to C1 oxygenates by regulating sizes and facets over Au/ZnO

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions, nevertheless confronting great challenges in efficiently activating C–H bonds and inhibiting over-oxidation. Herein, we propose a comprehensive strategy for the selective generation of reactive oxygen species (ROS) by regulating the sizes and facets of Au nanoparticles loaded on ZnO. For photocatalytic methane oxidation at ambient temperature, a high oxygenates yield of 36.4 mmol·g−1·h−1 with a nearly 100% selectivity has been achieved over the optimized 1.0% Au/ZnO-9.6 (1% Au with (111) facet and 9.6 nm size on ZnO) photocatalyst, exceeding most reported literatures. Mechanism investigations reveal that 1.0% Au/ZnO-9.6 with the medium size and Au (111) facet guarantees the favourable formation of superoxide radicals (·OOH) through mild oxygen reduction, ultimately leading to excellent photocatalytic methane oxidation performance. This work provides some guidance for the delicate design of photocatalysts for efficient photocatalytic methane oxidation and oxygen utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dummer, N. F.; Willock, D. J.; He, Q.; Howard, M. J.; Lewis, R. J.; Qi, G. D.; Taylor, S. H.; Xu, J.; Bethell, D.; Kiely, C. J. et al. Methane oxidation to methanol. Chem. Rev. 2023, 123, 6359–6411.

    Article  CAS  PubMed  Google Scholar 

  2. Li, X. Y.; Wang, C.; Tang, J. W. Methane transformation by photocatalysis. Nat. Rev. Mater. 2022, 7, 617–632.

    Article  CAS  Google Scholar 

  3. Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H. Q.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.

    Article  CAS  PubMed  Google Scholar 

  4. Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.

    Article  CAS  PubMed  Google Scholar 

  5. Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580–2591.

    Article  CAS  Google Scholar 

  6. Meng, X. G.; Cui, X. J.; Rajan, N. P.; Yu, L.; Deng, D. H.; Bao, X. H. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296–2325.

    Article  CAS  Google Scholar 

  7. Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

    Article  CAS  PubMed  Google Scholar 

  8. Qi, G. D.; Davies, T. E.; Nasrallah, A.; Sainna, M. A.; Howe, A. G. R.; Lewis, R. J.; Quesne, M.; Catlow, C. R. A.; Willock, D. J.; He, Q. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 2022, 5, 45–54.

    Article  CAS  Google Scholar 

  9. Song, H.; Meng, X. G.; Wang, Z. J.; Liu, H. M.; Ye, J. H. Solar-energy-mediated methane conversion. Joule 2019, 3, 1606–1636.

    Article  CAS  Google Scholar 

  10. Fan, Y. Y.; Zhou, W. C.; Qiu, X. Y.; Li, H. D.; Jiang, Y. H.; Sun, Z. H.; Han, D. X.; Niu, L.; Tang, Z. Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 2021, 4, 509–515.

    Article  Google Scholar 

  11. Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592–1602.

    Article  CAS  PubMed  Google Scholar 

  12. An, B.; Zhang, Q. H.; Zheng, B. S.; Li, M.; Xi, Y. Y.; Jin, X.; Xue, S.; Li, Z. T.; Wu, M. B.; Wu, W. T. Sulfone-decorated conjugated organic polymers activate oxygen for photocatalytic methane conversion. Angew. Chem., Int. Ed. 2022, 61, e202204661.

    Article  CAS  Google Scholar 

  13. Xie, J. J.; Jin, R. X.; Li, A.; Bi, Y. P.; Ruan, Q. S.; Deng, Y. C.; Zhang, Y. J.; Yao, S. Y.; Sankar, G.; Ma, D. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 2018, 1, 889–896.

    Article  CAS  Google Scholar 

  14. Guo, H. M.; Wu, L.; Nie, S. Y.; Yang, D. R.; Wang, X. Ultrathin zirconium-porphyrin based nanobelts as photo-coupled electrocatalysis for CH4 oxidation to CO. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5929-y.

  15. Luo, L.; Fu, L.; Liu, H. F.; Xu, Y. X.; Xing, J. L.; Chang, C. R.; Yang, D. Y.; Tang, J. W. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, Y. H.; Li, S. Y.; Wang, S. K.; Zhang, Y.; Long, C.; Xie, J.; Fan, X. Y.; Zhao, W. S.; Xu, P.; Fan, Y. Y. et al. Enabling specific photocatalytic methane oxidation by controlling free radical type. J. Am. Chem. Soc. 2023, 145, 2698–2707.

    Article  CAS  PubMed  Google Scholar 

  17. Feng, N. D.; Lin, H. W.; Song, H.; Yang, L. X.; Tang, D. M.; Deng, F.; Ye, J. H. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nat. Commun. 2021, 12, 4652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo, L. H.; Luo, J.; Li, H. L.; Ren, F. N.; Zhang, Y. F.; Liu, A. D.; Li, W. X.; Zeng, J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 2021, 12, 1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, X. X.; Li, Y. P.; Pan, X. Y.; Cortie, D.; Huang, X. T.; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo, L.; Gong, Z. Y.; Xu, Y. X.; Ma, J. N.; Liu, H. F.; Xing, J. L.; Tang, J. W. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740–750.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, W. B.; Low, J.; Mao, K. K.; Duan, D. L.; Chen, S. M.; Liu, W.; Pao, C. W.; Ma, J.; Sang, S. K.; Shu, C. et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J. Am. Chem. Soc. 2021, 143, 269–278.

    Article  CAS  PubMed  Google Scholar 

  22. Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Wang, X. S.; Kako, T.; Ye, J. H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507–20515.

    Article  CAS  PubMed  Google Scholar 

  23. Luo, L.; Han, X. Y.; Wang, K. R.; Xu, Y. X.; Xiong, L. Q.; Ma, J. N.; Guo, Z. X.; Tang, J. W. Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+. Nat. Commun. 2023, 14, 2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song, H.; Huang, H. M.; Meng, X. G.; Wang, Q.; Hu, H. L.; Wang, S. Y.; Zhang, H. W.; Jewasuwan, W.; Fukata, N.; Feng, N. D. et al. Atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite for efficient and selective photocatalytic CH4 oxidation to oxygenates. Angew. Chem., Int. Ed. 2023, 62, e202215057.

    Article  CAS  Google Scholar 

  25. Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Song, S.; Kako, T.; Ye, J. H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS Catal. 2020, 10, 14318–14326.

    Article  CAS  Google Scholar 

  26. Lin, S. R.; Tristan, J. B.; Wang, Y.; Bao, J. L. Dry reforming of methane on doped Ni nanoparticles: Feature-assisted optimizations and ranking of doping metals for direct activations of CH4 and CO2. Nano Res. 2022, 15, 9670–9682.

    Article  CAS  Google Scholar 

  27. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

    Article  CAS  PubMed  Google Scholar 

  28. Montemore, M. M.; Van Spronsen, M. A.; Madix, R. J.; Friend, C. M. O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 2018, 118, 2816–2862.

    Article  CAS  PubMed  Google Scholar 

  29. Xing, Y. C.; Yao, Z.; Li, W. Y.; Wu, W. T.; Lu, X. Q.; Tian, J.; Li, Z. T.; Hu, H.; Wu, M. B. Fe/Fe3 C boosts H2O2 utilization for methane conversion overwhelming O2 generation. Angew. Chem., Int. Ed. 2021, 133, 8971–8977.

    Article  Google Scholar 

  30. Wu, X. Y.; Zeng, Y.; Liu, H. C.; Zhao, J. Q.; Zhang, T. R.; Wang, S. L. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 2021, 14, 4584–4590.

    Article  CAS  Google Scholar 

  31. Jiang, Y. H.; Zhao, W. S.; Li, S. Y.; Wang, S. K.; Fan, Y. Y.; Wang, F.; Qiu, X. Y.; Zhu, Y. F.; Zhang, Y.; Long, C. et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering. J. Am. Chem. Soc. 2022, 144, 15977–15987.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, S. L.; Abdel-Mageed, A. M.; Mochizuki, C.; Ishida, T.; Murayama, T.; Rabeah, J.; Parlinska-Wojtan, M.; Brückner, A.; Behm, R. J. Controlling the O-vacancy formation and performance of Au/ZnO catalysts in CO2 reduction to methanol by the ZnO particle size. ACS Catal. 2021, 11, 9022–9033.

    Article  CAS  Google Scholar 

  33. Li, Z. H.; Boda, M. A.; Pan, X. Y.; Yi, Z. G. Photocatalytic oxidation of small molecular hydrocarbons over ZnO nanostructures: The difference between methane and ethylene and the impact of polar and nonpolar facets. ACS Sustainable Chem. Eng. 2019, 7, 19042–19049.

    Article  CAS  Google Scholar 

  34. Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 2020, 120, 464–525.

    Article  CAS  PubMed  Google Scholar 

  35. Feng, X.; Yang, J.; Duan, X. Z.; Cao, Y. Q.; Chen, B. X.; Chen, W. Y.; Lin, D.; Qian, G.; Chen, D.; Yang, C. H. et al. Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au-Ag/uncalcined titanium silicate-1 catalysts. ACS Catal. 2018, 8, 7799–7808.

    Article  CAS  Google Scholar 

  36. Ma, J. Y.; Tan, X. J.; Zhang, Q. Q.; Wang, Y.; Zhang, J. L.; Wang, L. Z. Exploring the size effect of pt nanoparticles on the photocatalytic nonoxidative coupling of methane. ACS Catal. 2021, 11, 3352–3360.

    Article  CAS  Google Scholar 

  37. Gallagher, R.; Zhang, X.; Altomare, A.; Lawrence, D.; Shawver, N.; Tran, N.; Beazley, M.; Chen, G. pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight. Nano Res. 2021, 14, 1167–1174.

    Article  CAS  Google Scholar 

  38. Liu, Y. Q.; Ma, H. Y.; Lei, D.; Lou, L. L.; Liu, S. X.; Zhou, W. Z.; Wang, G. C.; Yu, K. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catal. 2019, 9, 8306–8315.

    Article  CAS  Google Scholar 

  39. Hu, J. X.; Fan, N. B.; Chen, C.; Wu, Y. Q.; Wei, Z. H.; Xu, B.; Peng, Y.; Shen, M. R.; Fan, R. L. Facet engineering in Au nanoparticles buried in p-Si photocathodes for enhanced photoelectrochemical CO2 reduction. Appl. Catal. B Environ. 2023, 327, 122438.

    Article  CAS  Google Scholar 

  40. Cai, X. J.; Fang, S. Y.; Hu, Y. H. Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au-Pd/TiO2-what is the role of each component in the system. J. Mater. Chem. A 2021, 9, 10796–10802.

    Article  CAS  Google Scholar 

  41. Wu, X. Y.; Tang, Z. Y.; Zhao, X. X.; Luo, X.; Pennycook, S. J.; Wang, S. L. Visible- light driven room-temperature coupling of methane to ethane by atomically dispersed Au on WO3. J. Energy Chem. 2021, 61, 195–202.

    Article  CAS  Google Scholar 

  42. Li, Q.; Li, F. T. Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chem. Eng. J. 2021, 421, 129915.

    Article  CAS  Google Scholar 

  43. Wang, X. Y.; Zhou, P.; Zhou, Q.; Zhang, Q. H.; Ning, H.; Wu, M. B.; Wu, W. T. Tandem photocatalytic production of H2O2 and propylene oxide on 5-bromoisatin modified carbon nitride. Chem. Eng. J. 2023, 476, 146488.

    Article  CAS  Google Scholar 

  44. Nakamura, R.; Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 2004, 126, 1290–1298.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0708700), the National Natural Science Foundation of China (Nos. 22322815, 22179146, 51672309, 51172285, and 51372277), the Major Scientific and Technological Innovation Project of Shandong Province (No. 2020CXGC010402), the Fundamental Research Funds for Central Universities (No. 18CX07009A), YanKuang Group Co., Ltd. (No. YKZB2020-167), the Young Taishan Scholar Program of Shandong Province (No. tsqn20182027), Taishan Scholar Project (No. ts201712020), and the Technological Leading Scholar of10000 Talent Project (No. W03020508).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingbo Wu or Wenting Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Wang, X., Tan, X. et al. Selective photocatalytic oxidation of methane to C1 oxygenates by regulating sizes and facets over Au/ZnO. Nano Res. 17, 3810–3818 (2024). https://doi.org/10.1007/s12274-023-6323-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6323-5

Keywords

Navigation