Skip to main content
Log in

Heterointerface engineering of assembled CoP2 on N-modified carbon as efficient trifunctional electrocatalysts for Zn-Air batteries and overall water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Enhancing catalytic activity through modulating the interaction between N-doped carbon and metal phosphides clusters is an effective approach. Herein, the electronic structure modulation of CoP2 supported N-modified carbon (CoP2/NC) has been designed and prepared as efficient electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Notably, CoP2/NC-1 catalyst exhibits impressive performance in alkaline media, with an ORR half-wave potential of 0.84 V, as well as OER and HER overpotentials of 290 and 129 mV (at 10 mA·cm−2), respectively. In addition, CoP2/NC-1 produces a power density as high as 172.9 mW·cm−2, and excellent reversibility of 100 h at 20 mA·cm−2 in home-made Zn-air batteries. The experimental results demonstrate that the synergistic interactions between N modified carbon substrate and CoP2 material significantly enhance the kinetics of ORR, OER, and HER. Density functional theory (DFT) calculations reveal the strong electrons redistribution of CoP2 induced by high-density N atoms at the interface, thus optimizing the key intermediates and significantly lower the energy barrier of reactions. These electronic adjustments of CoP2 greatly enhance its kinetics of ORR/OER/HER, leading to faster reactions. This study provides profound insights into the specific modification of CoP2 by N-doped carbon, enabling the construction of efficient catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

    Article  Google Scholar 

  2. Qu, S. X.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Dynamic stretching-electroplating metal-coated textile for a flexible and stretchable zinc-air battery. Carbon Energy 2022, 4, 867–877.

    Article  CAS  Google Scholar 

  3. Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

    Article  CAS  Google Scholar 

  4. Liu, J. J.; Zheng, M. T.; Li, J. T.; Yuan, Y. F.; Li, C. H.; Zhang, S. Q.; Yang, L.; Bai, Z. Y.; Lu, J. Lithiation-induced defect engineering to promote oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2209753.

    Article  CAS  Google Scholar 

  5. Zhang, J. T.; Liu, X. Z.; Ji, Y. J.; Liu, X. R.; Su, D.; Zhuang, Z. B.; Chang, Y. C.; Pao, C. W.; Shao, Q.; Hu, Z. W. et al. Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nat. Commun. 2023, 14, 1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin, X. T.; Sun, Q.; Kim, J. T.; Li, X. F.; Zhang, J. J.; Sun, X. L. Superoxide-based Na−O2 batteries: Background, current status and future prospects. Nano Energy 2023, 112, 108466.

    Article  CAS  Google Scholar 

  7. Wang, J. M.; Liu, X. J.; Li, L. H.; Liu, R.; Liu, Y. R.; Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. Heterogeneous assembling 3D free-standing Co@carbon membrane enabling efficient fluid and flexible zinc-air batteries. Nano Res. 2023, 16, 9327–9334.

    Article  CAS  Google Scholar 

  8. Li, M.; Wu, Z. Z.; Zheng, M. T.; Chen, H.; Gould, T.; Zhang, S. Q. First-principles exploration of 2D benzenehexathiolate coordination nanosheets for broadband electrochromic devices. Adv. Funct. Mater. 2022, 32, 2202763.

    Article  CAS  Google Scholar 

  9. Zhao, L.; Zhu, J. B.; Zheng, Y.; Xiao, M. L.; Gao, R.; Zhang, Z.; Wen, G. B.; Dou, H. Z.; Deng, Y. P.; Yu, A. P. et al. Materials engineering toward durable electrocatalysts for proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102665.

    Article  CAS  Google Scholar 

  10. Xu, B. Y.; Liu, T. Y.; Liang, X. C.; Dou, W. J.; Geng, H. B.; Yu, Z. Y.; Li, Y. F.; Zhang, Y.; Shao, Q.; Fan, J. M. et al. Pd−Sb rhombohedra with an unconventional rhombohedral phase as a trifunctional electrocatalyst. Adv. Mater. 2022, 34, 2206528.

    Article  CAS  Google Scholar 

  11. He, X. D.; Han, X.; Zhou, X. Y.; Chen, J. D.; Wang, J.; Chen, Y.; Yu, L. H.; Zhang, N.; Li, J.; Wang, S. et al. Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA·cm−2. Appl. Catal. B: Environ. 2023, 331, 122683.

    Article  CAS  Google Scholar 

  12. Jin, M. Y.; Teng, M. Y.; Wang, S.; Yang, K. Q.; Wang, J.; Jin, H. L. Interface engineering of crystalline/amorphous Pt/TeOx nanocapsules for efficient alkaline hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 16593–16600.

    Article  CAS  Google Scholar 

  13. Zheng, H. Z.; Ma, F.; Yang, H. C.; Wu, X. G.; Wang, R.; Jia, D. L.; Wang, Z. X.; Lu, N. D.; Ran, F.; Peng, S. L. Mn, N Co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res. 2022, 15, 1942–1948.

    Article  CAS  Google Scholar 

  14. Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.

    Article  CAS  Google Scholar 

  15. Jiang, X.; Xie, Q. F.; Lu, G. X.; Wang, Y.; Liu, T. F.; Liu, Y. J.; Tao, X. Y.; Nai, J. W. Synthesis of NiSe2/Fe3O4 nanotubes with heteroepitaxy configuration as a high-efficient oxygen evolution electrocatalyst. Small Methods 2022, 6, 2200377.

    Article  CAS  Google Scholar 

  16. Zhou, Y. N.; Hu, W. H.; Zhen, Y. N.; Dong, B.; Dong, Y. W.; Fan, R. Y.; Liu, B.; Liu, D. P.; Chai, Y. M. Metallic MoOx layer promoting high-valence Mo doping into CoP nanowires with ultrahigh activity for hydrogen evolution at 2000 mA·cm−2. Appl. Catal. B: Environ. 2022, 309, 121230.

    Article  CAS  Google Scholar 

  17. Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N−FeCo encapsulated n-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

    Article  Google Scholar 

  18. Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.

    Article  CAS  Google Scholar 

  19. Song, H. Q.; Yu, J. K.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv. Energy Mater. 2022, 12, 2102573.

    Article  CAS  Google Scholar 

  20. Liu, H.; Liu, Z. H.; Wang, Y.; Zhang, J. Q.; Yang, Z. X.; Hu, H.; Zhao, Q. S.; Ning, H.; Zhi, L. J.; Wu, M. B. Carbon dots-oriented synthesis of fungus-like CoP microspheres as a bifunctional electrocatalyst for efficient overall water splitting. Carbon 2021, 182, 327–334.

    Article  CAS  Google Scholar 

  21. Wu, J. C.; Wang, Z. F.; Guan, T. T.; Zhang, G. L.; Zhang, J.; Han, J.; Guan, S. Q.; Wang, N.; Wang, J. L.; Li, K. X. Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting. Carbon Energy 2023, 5, e268.

    Article  CAS  Google Scholar 

  22. Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.

    Article  CAS  PubMed  Google Scholar 

  23. Jin, J. C.; Peng, Y. H.; Xu, Y. T.; Han, K.; Zhang, A. R.; Yang, X. B.; Xia, Z. G. Bright green emission from self-trapped excitons triggered by Sb3+ doping in Rb4CdCl6. Chem. Mater. 2022, 34, 5717–5725.

    Article  CAS  Google Scholar 

  24. Kong, F. T.; Cui, X. Z.; Huang, Y. F.; Yao, H. L.; Chen, Y. F.; Tian, H.; Meng, G.; Chen, C.; Chang, Z. W.; Shi, J. L. N-doped carbon electrocatalyst: Marked ORR activity in acidic media without the contribution from metal sites. Angew. Chem., Int. Ed. 2022, 61, e202116290.

    Article  CAS  Google Scholar 

  25. Zaman, S.; Douka, A. I.; Noureen, L.; Tian, X. L.; Ajmal, Z.; Wang, H. J. Oxygen reduction performance measurements: Discrepancies against benchmarks. Battery Energy 2023, 2, 20220060.

    Article  Google Scholar 

  26. Niu, S. W.; Fang, Y. Y.; Rao, D. W.; Liang, G. J.; Li, S. Y.; Cai, J. Y.; Liu, B.; Li, J. M.; Wang, G. M. Reversing the nucleophilicity of active sites in CoP2 enables exceptional hydrogen evolution catalysis. Small 2022, 18, 2106870.

    Article  CAS  Google Scholar 

  27. Li, H.; Wen, P.; Itanze, D. S.; Kim, M. W.; Adhikari, S.; Lu, C.; Jiang, L.; Qiu, Y. J.; Geyer, S. M. Retracted: Phosphorus-rich colloidal cobalt diphosphide (CoP2) nanocrystals for electrochemical and photoelectrochemical hydrogen evolution. Adv. Mater. 2019, 31, 1900813.

    Article  Google Scholar 

  28. He, X. D.; Zhang, Y. J.; Wang, J.; Li, J.; Yu, L. H.; Zhou, F.; Li, J.; Shen, X. J.; Wang, X.; Wang, S. et al. Biomass-derived Fe2N@NCNTs from bioaccumulation as an efficient electrocatalyst for oxygen reduction and Zn-air battery. ACS Sustain. Chem. Eng. 2022, 10, 9105–9112.

    Article  CAS  Google Scholar 

  29. Németh, P.; Lancaster, H. J.; Salzmann, C. G.; McColl, K.; Fogarassy, Z.; Garvie, L. A. J.; Illés, L.; Pecz, B.; Murri, M.; Corà, F. et al. Shock-formed carbon materials with intergrown sp3- and sp2-bonded nanostructured units. Proc. Natl. Acad. Sci. USA 2022, 119, e2203672119.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moura, T. A.; Neves, W. Q.; Alencar, R. S.; Kim, Y. A.; Endo, M.; Vasconcelos, T. L.; Costa, D. G.; Candiotto, G.; Capaz, R. B.; Araujo, P. T. et al. Resonance Raman spectroscopy characterization of linear carbon chains encapsulated by multi-walled carbon nanotubes. Carbon 2023, 212, 118123.

    Article  CAS  Google Scholar 

  31. Li, X. W.; Yang, S.; Liu, M. H.; Liu, S. J.; Miao, Q. Y.; Duan, Z. L.; Qiao, P. Z.; Lin, J. Y.; Sun, F. F.; Xu, Q. et al. Immobilization of platinum nanoparticles on covalent organic framework-derived carbon for oxygen reduction catalysis. Small Struct. 2023, 4, 2200320.

    Article  CAS  Google Scholar 

  32. Arrigo, R.; Schuster, M. E.; Xie, Z. L.; Yi, Y.; Wowsnick, G.; Sun, L. L.; Hermann, K. E.; Friedrich, M.; Kast, P.; Hävecker, M. et al. Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal. 2015, 5, 2740–2753.

    Article  CAS  Google Scholar 

  33. Quílez-Bermejo, J.; García-Dalí, S.; Daouli, A.; Zitolo, A.; Canevesi, R. L. S.; Emo, M.; Izquierdo, M. T.; Badawi, M.; Celzard, A.; Fierro, V. Advanced design of metal nanoclusters and single atoms embedded in C1N1-derived carbon materials for ORR, HER, and OER. Adv. Funct. Mater. 2023, 33, 2300405.

    Article  Google Scholar 

  34. Vijayakumar, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D. J.; Balamurugan, J.; Noh, H. S.; Kwon, D.; Kim, Y. H.; Lee, H. MOF-derived CoP-nitrogen-doped Carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem. Eng. J. 2022, 428, 131115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872209, 52171145, 21972106, and 22105146), Zhejiang Province Natural Science Foundation project key project (No. LZ20B030001), and Zhejiang Provincial Special Support Program for High-level Talents (No. 2019R52042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Wang, Jiadong Chen or Huile Jin.

Electronic Supplementary Material

12274_2023_6321_MOESM1_ESM.pdf

Heterointerface engineering of assembled CoP2 on N-modified carbon as efficient trifunctional electrocatalysts for Zn-Air batteries and overall water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, Z., Wang, J. et al. Heterointerface engineering of assembled CoP2 on N-modified carbon as efficient trifunctional electrocatalysts for Zn-Air batteries and overall water splitting. Nano Res. 17, 3801–3809 (2024). https://doi.org/10.1007/s12274-023-6321-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6321-7

Keywords

Navigation