Skip to main content
Log in

A new nonfullerene acceptor with an extended π conjugation core enables ternary organic solar cells approaching 19% efficiency

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In organic solar cells (OSCs), it is an effective way to improve the power conversion efficiency (PCE) by adding a guest component with appropriate absorption and energy levels in the host system. Herein, a new nonfullerene acceptor (NFA) named TBF-2Cl was developed by the strategy of expanding the π conjugated core of 2,2′-(((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDT-4Cl) with two benzene rings. With increase of benzene units, TBF-2Cl exhibits higher lowest unoccupied molecular orbital (LUMO) level of −3.75 eV than that of one benzene unit based NFA IDT-4Cl and fluorene core based NFA F-2Cl, which facilitates enhancing the open-circuit voltage (Voc) of ternary devices. Moreover, TBF-2Cl film shows a medium optical bandgap with the absorption range from 500–800 nm, being well complementary with the wide bandgap polymer donor D18 and narrow bandgap NFA CH-6F. Accordingly, a remarkable PCE of 18.92% with a high short-circuit current density (Jsc) of 27.40 mA·cm−2, a fill factor (FF) of 0.749, especially an outstanding Voc of 0.922 V was achieved for the optimal ternary device based on D18:TBF-2Cl:CH-6F, surpassing the binary counterpart (17.08%). The findings provide insight into the development of new guest acceptors for obtaining more efficient OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, P.; Li, G.; Zhan, X. W.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142.

    Article  CAS  Google Scholar 

  2. Gillett, A. J.; Privitera, A.; Dilmurat, R.; Karki, A.; Qian, D. P.; Pershin, A.; Londi, G.; Myers, W. K.; Lee, J.; Yuan, J. et al. The role of charge recombination to triplet excitons in organic solar cells. Nature 2021, 597, 666–671.

    Article  CAS  PubMed  Google Scholar 

  3. Ge, J. F.; Xie, L.; Peng, R. X.; Ge, Z. Y. Organic photovoltaics utilizing small-molecule donors and Y-series nonfullerene acceptors. Adv. Mater. 2023, 35, 2206566.

    Article  CAS  Google Scholar 

  4. Sun, Y. N.; Meng, L. X.; Wan, X. J.; Guo, Z. Q.; Ke, X.; Sun, Z. H.; Zhao, K.; Zhang, H. T.; Li, C. X.; Chen, Y. S. Flexible high-performance and solution-processed organic photovoltaics with robust mechanical stability. Adv. Funct. Mater. 2021, 31, 2010000.

    Article  CAS  Google Scholar 

  5. Sun, Y. N.; Liu, T.; Kan, Y. Y.; Gao, K.; Tang, B.; Li, Y. L. Flexible organic solar cells: Progress and challenges. Small Sci. 2021, 1, 2100001.

    Article  CAS  Google Scholar 

  6. Xue, P. Y.; Cheng, P.; Han, R. P. S.; Zhan, X. W. Printing fabrication of large-area non-fullerene organic solar cells. Mater. Horiz. 2022, 9, 194–219.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, S. C.; Chen, H. B.; Wang, P. R.; Li, S. T.; Li, Z. X.; Huang, Y. Z.; Liu, J.; Yao, Z. Y.; Li, C. X.; Wan, X. J. et al. A large area organic solar module with non-halogen solvent treatment, high efficiency, and decent stability. Solar RRL 2023, 7, 2300029.

    Article  CAS  Google Scholar 

  8. Zou, W. T.; Han, C. Y.; Zhang, X.; Qiao, J. W.; Yu, J. F.; Xu, H. J.; Gao, H. H.; Sun, Y. N.; Kan, Y. Y.; Hao, X. T. et al. A bithiazole-substituted donor for high-efficiency thick ternary organic solar cells via regulation of crystallinity and miscibility. Adv. Energy Mater. 2023, 13, 2300784.

    Article  CAS  Google Scholar 

  9. Cui, Y.; Xu, Y.; Yao, H. F.; Bi, P. Q.; Hong, L.; Zhang, J. Q.; Zu, Y. F.; Zhang, T.; Qin, J. Z.; Ren, J. Z. et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

    Article  CAS  Google Scholar 

  10. Xu, X. P.; Jing, W. W.; Meng, H. F.; Guo, Y. Y.; Yu, L. Y.; Li, R. P.; Peng, Q. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 2023, 35, 2208997.

    Article  CAS  Google Scholar 

  11. Han, C. Y.; Wang, J. X.; Zhang, S.; Chen, L. L.; Bi, F. Z.; Wang, J. J.; Yang, C. M.; Wang, P. C.; Li, Y. H.; Bao, X. C. Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions. Adv. Mater. 2023, 35, 2208986.

    Article  CAS  Google Scholar 

  12. Xiao, C.; Wang, X. C.; Zhong, T.; Zhou, R. X.; Zheng, X. F.; Liu, Y. R.; Hu, T. Y.; Luo, Y. X.; Sun, F. B.; Xiao, B. et al. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells. Adv. Sci. 2023, 10, 2206580.

    Article  CAS  Google Scholar 

  13. Chen, Z. Y.; Zhu, J. T.; Yang, D. B.; Song, W.; Shi, J. Y.; Ge, J. F.; Guo, Y. T.; Tong, X. Y.; Chen, F.; Ge, Z. Y. Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ. Sci. 2023, 16, 3119–3127.

    Article  CAS  Google Scholar 

  14. Chen, T. Y.; Li, S. X.; Li, Y. K.; Chen, Z.; Wu, H. T.; Lin, Y.; Gao, Y.; Wang, M. T.; Ding, G. Y.; Min, J. et al. Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Adv. Mater. 2023, 35, 2300400.

    Article  CAS  Google Scholar 

  15. Fan, B. B.; Zhong, W. K.; Gao, W.; Fu, H. T.; Lin, F. R.; Wong, R. W. Y.; Liu, M.; Zhu, C. H.; Wang, C.; Yip, H. L. et al. Understanding the role of removable solid additives: Selective interaction contributes to vertical component distributions. Adv. Mater. 2023, 35, 2302861.

    Article  CAS  Google Scholar 

  16. Liu, K. R.; Jiang, Y. Y.; Liu, F.; Ran, G. L.; Huang, F.; Wang, W. X.; Zhang, W. K.; Zhang, C.; Hou, J. H.; Zhu, X. Z. Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 2023, 35, 2300363.

    Article  CAS  Google Scholar 

  17. Jia, Z. R.; Ma, Q.; Chen, Z.; Meng, L.; Jain, N.; Angunawela, I.; Qin, S. C.; Kong, X. L.; Li, X. J.; Yang, Y. et al. Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 2023, 14, 1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng, Z.; Wang, J. Q.; Bi, P. Q.; Ren, J. Z.; Wang, Y. F.; Yang, Y.; Liu, X. Y.; Zhang, S. Q.; Hou, J. H. Tandem organic solar cell with 20.2% efficiency. Joule 2022, 6, 171–184.

    Article  CAS  Google Scholar 

  19. Fu, J. H.; Fong, P. W. K.; Liu, H.; Huang, C. S.; Lu, X. H.; Lu, S. R.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C. M.; Yang, Y. et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, C. Y.; Wu, Z. H.; Qiu, N. L.; Li, C. X.; Lu, Y. Selenophene-containing small-molecule donor with a medium band gap enables high-efficiency ternary organic solar cells. ACS Appl. Mater. Interfaces 2023, 15, 9764–9772.

    Article  CAS  Google Scholar 

  21. Zou, Y. L.; Chen, H. B.; Bi, X. Q.; Xu, X. Y.; Wang, H. B.; Lin, M. L.; Ma, Z. F.; Zhang, M. T.; Li, C. X.; Wan, X. J. et al. Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells. Energy Environ. Sci. 2022, 15, 3519–3533.

    Article  CAS  Google Scholar 

  22. Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  23. Liang, H. Z.; Chen, H. B.; Wang, P. R.; Zhu, Y.; Zhang, Y. X.; Feng, W. Y.; Ma, K. Q.; Lin, Y.; Ma, Z. F.; Long, G. K. et al. Molecular packing and dielectric property optimization through peripheral halogen swapping enables binary organic solar cells with an efficiency of 18.77%. Adv. Funct. Mater. 2023, 33, 2301573.

    Article  CAS  Google Scholar 

  24. Lv, J.; Yang, Q. G.; Deng, W. Y.; Chen, H. Y.; Kumar, M.; Zhao, F. Q.; Lu, S. R.; Hu, H. L.; Kan, Z. P. Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination. Chem. Eng. J. 2023, 465, 142822.

    Article  CAS  Google Scholar 

  25. Shao, Y. M.; Gao, Y.; Sun, R.; Zhang, M. M.; Min, J. A versatile and low-cost polymer donor based on 4-chlorothiazole for highly efficient polymer solar cells. Adv. Mater. 2023, 35, 2208750.

    Article  CAS  Google Scholar 

  26. Zhang, Z. L.; Wu, J. N.; Lin, J.; Zhang, R.; Lv, J. F.; Yu, L. F.; Guo, X.; Zhang, M. J. Enhancing intermolecular packing and light harvesting through asymmetric non-fullerene acceptors for achieving 18.7% efficiency ternary organic solar cells. J. Mater. Chem. A 2023, 11, 15553–15560.

    Article  CAS  Google Scholar 

  27. Huang, T. H.; Zhang, Z. L.; Wang, D. J.; Zhang, Y.; Deng, Z. Q.; Huang, Y.; Liao, Q. G.; Zhang, J. 18.7% efficiency ternary organic solar cells using two non-fullerene acceptors with excellent compatibility. ACS Appl. Energy Mater. 2023, 6, 3126–3134

    Article  CAS  Google Scholar 

  28. Meng, L. X.; Zhang, Y. M.; Wan, X. J.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R. X. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, C.; Zhang, M.; Zhou, Q. J.; Chen, S. S.; Kim, S.; Yao, J.; Zhang, Z.; Bai, Y.; Chen, Q.; Chang, B. W. et al. Diffusion-limited accepter alloy enables highly efficient and stable organic solar cells. Adv. Funct. Mater. 2023, 33, 2214392.

    Article  CAS  Google Scholar 

  30. Zhan, L. L.; Li, S. X.; Li, Y. K.; Sun, R.; Min, J.; Chen, Y. Y.; Fang, J.; Ma, C. Q.; Zhou, G. Q.; Zhu, H. M. et al. Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Adv. Energy Mater. 2022, 12, 2201076.

    Article  CAS  Google Scholar 

  31. Meng, F.; Qin, Y.; Zheng, Y. T.; Zhao, Z. H.; Sun, Y. N.; Yang, Y. G.; Gao, K.; Zhao, D. B. Structural fusion yields guest acceptors that enable ternary organic solar cells with 18.77 % efficiency. Angew. Chem., Int. Ed. 2023, 62, e202217173.

    Article  CAS  Google Scholar 

  32. Chen, Z. H.; Yao, H. F.; Wang, J. W.; Zhang, J. Q.; Zhang, T.; Li, Z.; Qiao, J. W.; Xiu, S.; Hao, X. T.; Hou, J. H. Restrained energetic disorder for high-efficiency organic solar cells via a solid additive. Energy Environ. Sci. 2023, 16, 2637–2645.

    Article  CAS  Google Scholar 

  33. Li, Y.; Cai, Y. H.; Xie, Y. P.; Song, J. H.; Wu, H. B.; Tang, Z.; Zhang, J.; Huang, F.; Sun, Y. M. A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy Environ. Sci. 2021, 14, 5009–5016.

    Article  CAS  Google Scholar 

  34. Liu, G. C.; Xia, R. X.; Huang, Q. R.; Zhang, K.; Hu, Z. C.; Jia, T.; Liu, X.; Yip, H. L.; Huang, F. Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell. Adv. Funct. Mater. 2021, 31, 2103283.

    Article  CAS  Google Scholar 

  35. Sun, Y. N.; Nian, L.; Kan, Y. Y.; Ren, Y.; Chen, Z. H.; Zhu, L.; Zhang, M.; Yin, H.; Xu, H. J.; Li, J. F. et al. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 2022, 6, 2835–2848.

    Article  CAS  Google Scholar 

  36. Zhang, C. Y.; Li, J.; Deng, W. Y.; Dai, J. P.; Yu, J. F.; Lu, G. H.; Hu, H. L.; Wang, K. 18.9% Efficiency ternary organic solar cells enabled by isomerization engineering of chlorine-substitution on small molecule donors. Adv. Funct. Mater. 2023, 33, 2301108.

    Article  CAS  Google Scholar 

  37. Ma, R. J.; Zhou, K. K.; Sun, Y. N.; Liu, T.; Kan, Y. Y.; Xiao, Y. Q.; Dela Peña, T. A.; Li, Y. X.; Zou, X. H.; Xing, Z. S. et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 6, 725–734.

    Article  Google Scholar 

  38. Yan, X.; Wu, J. N.; Lv, J. F.; Zhang, L.; Zhang, R.; Guo, X.; Zhang, M. J. Highly efficient ternary solar cells with reduced non-radiative energy loss and enhanced stability via two compatible non-fullerene acceptors. J. Mater. Chem. A 2022, 10, 15605–15613.

    Article  CAS  Google Scholar 

  39. Cai, Y. H.; Li, Y.; Wang, R.; Wu, H. B.; Chen, Z. H.; Zhang, J.; Ma, Z. F.; Hao, X. T.; Zhao, Y.; Zhang, C. F. et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733.

    Article  CAS  Google Scholar 

  40. Duan, T. N.; Feng, W. Y.; Li, Y. L.; Li, Z. X.; Zhang, Z.; Liang, H. Z.; Chen, H. B.; Zhong, C.; Jeong, S.; Yang, C. et al. Electronic configuration tuning of centrally extended non-fullerene acceptors enabling organic solar cells with efficiency approaching 19%. Angew. Chem., Int. Ed. 2023, 62, e202308832.

    Article  CAS  Google Scholar 

  41. Wan, J.; Wu, Y.; Sun, R.; Qiao, J. W.; Hao, X. T.; Min, J. An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency. Energy Environ. Sci. 2022, 16, 5192–5201.

    Article  Google Scholar 

  42. Zhou, M. W.; Liao, C. T.; Duan, Y. W.; Xu, X. P.; Yu, L. Y.; Li, R. P.; Peng, Q. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology. Adv. Mater. 2023, 35, 2208279

    Article  CAS  Google Scholar 

  43. Wen, J.; Lin, H.; Yu, X.; Li, M. L.; Du, X. Y.; Luo, J. Y.; Yang, G.; Zheng, C. J.; Tao, S. L. Efficient and stable ternary organic solar cells using liquid crystal small molecules with multiple synergies. ACS Appl. Energy Mater. 2022, 5, 12809–12816.

    Article  CAS  Google Scholar 

  44. Li, X. F.; Meng, H. F.; Shen, F. G.; Su, D.; Huo, S. Y.; Shan, J. H.; Huang, J. H.; Zhan, C. L. Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor. Dyes Pigm. 2019, 166, 196–202.

    Article  CAS  Google Scholar 

  45. Qiu, N. L.; Liu, C. Y.; Lang, H. J.; Xu, J. Y.; Su, R.; Jiang, J.; Tian, J. Q.; Li, J. S. Efficient all-small-molecule organic solar cells based on a fluorinated small-molecule donor. New J. Chem. 2022, 46, 8500–8506.

    Article  CAS  Google Scholar 

  46. Rau, U.; Blank, B.; Müller, T. C. M.; Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 2017, 7, 044016.

    Article  Google Scholar 

  47. Wang, Y. M.; Qian, D. P.; Cui, Y.; Zhang, H. T.; Hou, J. H.; Vandewal, K.; Kirchartz, T.; Gao, F. Optical gaps of organic solar cells as a reference for comparing voltage losses. Adv. Energy Mater. 2018, 8, 1801352.

    Article  Google Scholar 

  48. Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Relating the open-circuit voltage to interface molecular properties of donor: Acceptor bulk heterojunction solar cells. Phys. Rev. B 2010, 81, 125204.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52173010) and Jining University (Nos. 2022HHKJ11 and 2019BSZX01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nailiang Qiu or Yan Lu.

Electronic Supplementary Material

12274_2023_6293_MOESM1_ESM.pdf

A new nonfullerene acceptor with an extended π conjugation core enables ternary organic solar cells approaching 19% efficiency

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Qiu, N., Li, Z. et al. A new nonfullerene acceptor with an extended π conjugation core enables ternary organic solar cells approaching 19% efficiency. Nano Res. 17, 4062–4068 (2024). https://doi.org/10.1007/s12274-023-6293-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6293-7

Keywords

Navigation