Skip to main content
Log in

Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Regulating the electronic structure of Bi-based materials by alloying engineering is promising to promote the electrocatalytic activity, but it remains some challenges to be solved. In this study, a facile electrochemical co-deposition strategy is developed to synthesize the bimetallic Bi9Cu1 alloy nanosheet on carbon cloth (Bi9Cu1/CC), which represents a novel self-supporting electrode for the electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR). The Bi9Cu1/CC catalyst has achieved a remarkable catalytic performance with high Faradaic efficiencies (FE) of over 90% for formate at wide potentials from −0.7 to −1.2 V vs. reversible hydrogen electrode (RHE). Moreover, the reversible Zn-CO2 battery can be driven by Bi9Cu1/CC cathode with a largest power density of 1.4 mW·cm−2, and superior operating stability. The systematic characterizations and electrochemical results confirm that the improved catalytic active sites, the enhanced mass/charge transport and the optimal reaction kinetics of Bi nanosheet are realized for CO2RR by Cu alloying. In situ attenuated total reflection infrared (ATR-IR) result confirms the bimetallic Bi-Cu active sites prefer to follow the ⋆OCHO conversion pathway. The density functional theory (DFT) calculations suggest that the Cu alloying contributes to the increased density of states near the Fermi surface of Bi and the optimized adsorption of ⋆OCHO intermediates on the Bi sites, resulting in the excellent catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong, H. X.; Ghorbani-Asl, M.; Ly, K. H.; Zhang, J. C.; Ge, J.; Wang, M. C.; Liao, Z. Q.; Makarov, D.; Zschech, E.; Brunner, E. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 2020, 11, 1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    Article  CAS  Google Scholar 

  3. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  PubMed  Google Scholar 

  4. Li, L. G.; Huang, Y.; Li, Y. G. Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2020, 2, 100024.

    Article  Google Scholar 

  5. Han, N.; Sun, M. Z.; Zhou, Y.; Xu, J.; Cheng, C.; Zhou, R.; Zhang, L.; Luo, J.; Huang, B. L.; Li, Y. G. Alloyed palladium-silver nanowires enabling ultrastable carbon dioxide reduction to formate. Adv. Mater. 2021, 33, 2005821.

    Article  CAS  Google Scholar 

  6. Fan, J.; Zhao, X.; Mao, X. N.; Xu, J.; Han, N.; Yang, H.; Pan, B. B.; Li, Y. S.; Wang, L.; Li, Y. G. Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 2021, 33, 2100910.

    Article  CAS  Google Scholar 

  7. Ye, R. Z.; Zhu, J. Y.; Tong, Y.; Feng, D. M.; Chen, P. Z. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate. J. Energy Chem. 2023, 83, 180–188.

    Article  CAS  Google Scholar 

  8. Ye, R. Z.; Tong, Y.; Feng, D. M.; Chen, P. Z. A topological chemical transition strategy of bismuth-based materials for high-efficiency electrocatalytic carbon dioxide conversion to formate. J. Mater. Chem. A 2023, 11, 4691–4702.

    Article  CAS  Google Scholar 

  9. Ding, P.; Zhao, H. T.; Li, T. S.; Luo, Y. S.; Fan, G. Y.; Chen, G.; Gao, S. Y.; Shi, X. F.; Lu, S. Y.; Sun, X. P. Metal-based electrocatalytic conversion of CO2 to formic acid/formate. J. Mater. Chem. A 2020, 8, 21947–21960.

    Article  CAS  Google Scholar 

  10. Peng, C.; Yang, S. T.; Luo, G.; Yan, S.; Chen, N.; Zhang, J. B.; Chen, Y. S.; Wang, X. C.; Wang, Z. Q.; Wei, W. et al. Ampere-level CO2-to-formate electrosynthesis using highly exposed bismuth (110) facets modified with sulfur-anchored sodium cations. Chem 2023, 9, 2830–2840.

    Article  CAS  Google Scholar 

  11. Blom, M. J. W.; van Swaaij, W. P. M.; Mul, G.; Kersten, S. R. A. Mechanism and micro kinetic model for electroreduction of CO2 on Pd/C: The role of different palladium hydride phases. ACS Catal. 2021, 11, 6883–6891.

    Article  CAS  Google Scholar 

  12. Luo, Y. Q.; Zhang, K. F.; Li, Y. G.; Wang, Y. H. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 2021, 3, 1313–1332.

    Article  CAS  Google Scholar 

  13. Zhang, J.; Pan, B. B.; Li, Y. G. Modulating electrochemical CO2 reduction at interfaces. Sci. Bull. 2022, 67, 1844–1848.

    Article  CAS  Google Scholar 

  14. Zhang, X. L.; Guo, S. X.; Gandionco, K. A.; Bond, A. M.; Zhang, J. Electrocatalytic carbon dioxide reduction: From fundamental principles to catalyst design. Mater. Today Adv. 2020, 7, 100074.

    Article  Google Scholar 

  15. Mu, Z. Y.; Han, N.; Xu, D.; Tian, B. L.; Wang, F. Y.; Wang, Y. Q.; Sun, Y. M.; Liu, C.; Zhang, P. K.; Wu, X. J. et al. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat. Commun. 2022, 13, 6911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, H. Q.; Xiao, N.; Wang, Y. W.; Liu, C.; Zhang, S. J.; Zhang, H. H.; Bai, J. P.; Xiao, J.; Li, C.; Guo, Z. et al. Promoting the electroreduction of CO2 with oxygen vacancies on a plasma-activated SnOx/carbon foam monolithic electrode. J. Mater. Chem. A 2020, 8, 1779–1786.

    Article  CAS  Google Scholar 

  17. Li, L.; Ozden, A.; Guo, S. Y.; Garcia de Arquer, F. P.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, W. T.; Wen, L. S.; Gao, J.; Chen, S. Z.; He, Z. Q.; Wang, D.; Shen, Y.; Song, S. Facile treatment tuning the morphology of Pb with state-of-the-art selectivity in CO2 electroreduction to formate. Chem. Commun. 2021, 57, 7418–7421.

    Article  CAS  Google Scholar 

  19. Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, D. F.; Xu, Y.; Wang, H. X.; Qiu, X. Q. Highly efficient and stable indium single-atom catalysts for electrocatalytic reduction of CO2 to formate. Chem. Commun. 2022, 58, 3007–3010.

    Article  CAS  Google Scholar 

  21. Sun, Y. D.; Wang, F. F.; Liu, F.; Zhang, S. K.; Zhao, S. L.; Chen, J.; Huang, Y.; Liu, X. J.; Wu, Y. P.; Chen, Y. H. Accelerating Pd electrocatalysis for CO2-to-formate conversion across a wide potential window by optimized incorporation of Cu. ACS Appl. Mater. Interfaces 2022, 14, 8896–8905.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Z. Y.; Chi, M. F.; Veith, G. M.; Zhang, P. F.; Lutterman, D. A.; Rosenthal, J.; Overbury, S. H.; Dai, S.; Zhu, H. Y. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: The elucidation of size and surface condition effects. ACS Catal. 2016, 6, 6255–6264.

    Article  CAS  Google Scholar 

  23. Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

    Article  CAS  Google Scholar 

  24. Wei, H. L.; Tan, A. D.; Xiang, Z. P.; Zhang, J.; Piao, J. H.; Liang, Z. X.; Wan, K.; Fu, Z. Y. Modulating p-orbital of bismuth nanosheet by nickel doping for electrocatalytic carbon dioxide reduction reaction. ChemSusChem 2022, 15, e202200752.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118625.

    Article  CAS  Google Scholar 

  26. Pang, R. C.; Tian, P. F.; Jiang, H. L.; Zhu, M. H.; Su, X. Z.; Wang, Y.; Yang, X. L.; Zhu, Y. H.; Song, L.; Li, C. Z. Tracking structural evolution: Operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. Natl. Sci. Rev. 2021, 8, nwaa187.

    Article  CAS  PubMed  Google Scholar 

  27. Chang, S.; Xuan, Y. M.; Duan, J. J.; Zhang, K. High-performance electroreduction CO2 to formate at Bi/nafion interface. Appl. Catal. B: Environ 2022, 306, 121135.

    Article  CAS  Google Scholar 

  28. Ma, X.; Tian, J. J.; Wang, M.; Shen, M.; Zhang, L. X. Polymeric carbon nitride supported Bi nanoparticles as highly efficient CO2 reduction electrocatalyst in a wide potential range. J. Colloid Interface Sci. 2022, 608, 1676–1684.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, Y. F.; Zhang, X. D.; Xu, D. F.; Li, W. Z.; Liu, M.; Qiu, X. Q. Efficient three-phase electrocatalytic CO2 reduction to formate on superhydrophobic Bi–C interfaces. Chem. Commun. 2021, 57, 6011–6014.

    Article  CAS  Google Scholar 

  30. Wang, M.; Liu, S.; Chen, B.; Huang, M. J.; Peng, C. Co-regulation of intermediate binding and water activation in sulfur-doped bismuth nanosheets for electrocatalytic CO2 reduction to formate. Chem. Eng. J. 2023, 451, 139056.

    Article  CAS  Google Scholar 

  31. Zhang, G. X.; Zheng, X. L.; Cui, X. M.; Wang, J.; Liu, J. H.; Chen, J. F.; Xu, Q. Doping of vanadium into bismuth oxide nanoparticles for electrocatalytic CO2 reduction. ACS Appl. Nano Mater. 2022, 5, 15465–15472.

    Article  CAS  Google Scholar 

  32. Zhao, Y.; Liu, X. L.; Liu, Z. X.; Lin, X.; Lan, J.; Zhang, Y. L.; Lu, Y. R.; Peng, M.; Chan, T. S.; Tan, Y. W. Spontaneously Sn-doped Bi/BiOx core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano Lett. 2021, 21, 6907–6913.

    Article  CAS  PubMed  Google Scholar 

  33. Cui, R. X.; Yuan, Q.; Zhang, C.; Yang, X.; Ji, Z. R.; Shi, Z. L.; Han, X. Q.; Wang, Y. Y.; Jiao, J. Q.; Lu, T. B. Revealing the behavior of interfacial water in Te-doped Bi via operando infrared spectroscopy for improving electrochemical CO2 reduction. ACS Catal. 2022, 12, 11294–11300.

    Article  CAS  Google Scholar 

  34. Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108.

    Article  CAS  Google Scholar 

  35. Mun, Y.; Lee, S.; Cho, A.; Kim, S.; Han, J. W.; Lee, J. Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. Appl. Catal. B: Environ. 2019, 246, 82–88.

    Article  CAS  Google Scholar 

  36. Xie, Q. X.; Larrazábal, G. O.; Ma, M.; Chorkendorff, I.; Seger, B.; Luo, J. S. Copper-indium hydroxides derived electrocatalysts with tunable compositions for electrochemical CO2 reduction. J. Energy Chem. 2021, 63, 278–284.

    Article  CAS  Google Scholar 

  37. Chen, M. X.; Wan, S. P.; Zhong, L. X.; Liu, D. B.; Yang, H. B.; Li, C. C.; Huang, Z. Q.; Liu, C. T.; Chen, J.; Pan, H. G. et al. Dynamic restructuring of Cu-doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem., Int. Ed. 2021, 60, 26233–26237.

    Article  CAS  Google Scholar 

  38. Jia, L.; Yang, H.; Deng, J.; Chen, J. M.; Zhou, Y.; Ding, P.; Li, L. G.; Han, N.; Li, Y. G. Copper-bismuth bimetallic microspheres for selective electrocatalytic reduction of CO2 to formate. Chin. J. Chem. 2019, 37, 497–500.

    Article  CAS  Google Scholar 

  39. Xiong, Y. S.; Wei, B.; Wu, M.; Hu, B. C.; Zhu, F. F.; Hao, J. H.; Shi, W. D. Rapid synthesis of amorphous bimetallic copper-bismuth electrocatalysts for efficient electrochemical CO2 reduction to formate in a wide potential window. J. CO2 Util. 2021, 51, 101621.

    Article  CAS  Google Scholar 

  40. Wang, Y. T.; Cheng, L.; Zhu, Y. H.; Liu, J. Z.; Xiao, C. Q.; Chen, R. Z.; Zhang, L.; Li, Y. H.; Li, C. Z. Tunable selectivity on copper-bismuth bimetallic aerogels for electrochemical CO2 reduction. Appl. Catal. B: Environ. 2022, 317, 121650.

    Article  CAS  Google Scholar 

  41. Shen, H. D.; Zhao, Y. K.; Zhang, L.; He, Y.; Yang, S. W.; Wang, T. S.; Cao, Y. L.; Guo, Y.; Zhang, Q. Y.; Zhang, H. P. In-situ constructuring of copper-doped bismuth catalyst for highly efficient CO2 electrolysis to formate in ampere-level. Adv. Energy Mater. 2023, 13, 2202818

    Article  CAS  Google Scholar 

  42. Yin, Z. Y.; Yu, C.; Zhao, Z. L.; Guo, X. F.; Shen, M. Q.; Li, N.; Muzzio, M.; Li, J. R.; Liu, H.; Lin, H. H. et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 2019, 19, 8658–8663.

    Article  CAS  PubMed  Google Scholar 

  43. Li, K. X.; Zhou, G. R.; Tong, Y.; Ye, Y. T.; Chen, P. Z. Interface engineering of a hierarchical p-modified Co/Ni3P heterostructure for highly efficient water electrolysis coupled with hydrazine degradation. ACS Sustain. Chem. Eng. 2023, 11, 14186–14196.

    Article  CAS  Google Scholar 

  44. Li, K. X.; Tong, Y.; He, J. F.; Liu, X. Y.; Chen, P. Z. Anion-modulated CoP electrode as bifunctional electrocatalyst for anion-exchange membrane hydrazine-assisted water electrolyser. Mater. Horiz., in press, DOI: https://doi.org/10.1039/D3MH00872J.

  45. Li, K. X.; He, J. F.; Guan, X. Z.; Tong, Y.; Ye, Y. T.; Chen, L.; Chen, P. Z. Phosphorus-modified amorphous high-entropy CoFeNiCrMn compound as high-performance electrocatalyst for hydrazine-assisted water electrolysis. Small, in press, DOI: https://doi.org/10.1002/smll.202302130.

  46. Liu, P.; Liu, H. L.; Zhang, S.; Wang, J.; Wang, C. A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO2 reduction catalysts by enhancing CO2 adsorption and electron transfer. J. Colloid Interface Sci. 2021, 602, 740–747.

    Article  CAS  PubMed  Google Scholar 

  47. Salehi-Khojin, A.; Jhong, H. R. M.; Rosen, B. A.; Zhu, W.; Ma, S. C.; Kenis, P. J. A.; Masel, R. I. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 2013, 117, 1627–1632.

    Article  CAS  Google Scholar 

  48. Zhao, S. Q.; Tang, Z. Y.; Guo, S. J.; Han, M. M.; Zhu, C.; Zhou, Y. J.; Bai, L.; Gao, J.; Huang, H.; Li, Y. Y. et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst. ACS Catal. 2018, 8, 188–197.

    Article  CAS  Google Scholar 

  49. Zu, M. Y.; Zhang, L.; Wang, C. W.; Zheng, L. R.; Yang, H. G. Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction. J. Mater. Chem. A 2018, 6, 16804–16809.

    Article  CAS  Google Scholar 

  50. Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2201125.

    Article  CAS  Google Scholar 

  51. He, Y. C.; Ma, D. D.; Zhou, S. H.; Zhang, M.; Tian, J. J.; Zhu, Q. L. Integrated 3D open network of interconnected bismuthene arrays for energy-efficient and electrosynthesis-assisted electrocatalytic CO2 reduction. Small 2022, 18, 2105246.

    Article  CAS  Google Scholar 

  52. Shen, H. F.; Jin, H. Y.; Li, H. B.; Wang, H. R.; Duan, J. J.; Jiao, Y.; Qiao, S. Z. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun. 2023, 14, 2843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem., Int. Ed. 2020, 59, 15014–15020.

    Article  CAS  Google Scholar 

  54. Yao, K. L.; Wang, H. B.; Yang, X. T.; Huang, Y.; Kou, C. D.; Jing, T.; Chen, S. H.; Wang, Z. Y.; Liu, Y. C.; Liang, H. Y. Metal-organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B: Environ. 2022, 311, 121377.

    Article  CAS  Google Scholar 

  55. Wang, X. S.; Wang, W. H.; Zhang, J. Q.; Wang, H. Z.; Yang, Z. X.; Ning, H.; Zhu, J. X.; Zhang, Y. L.; Guan, L.; Teng, X. L. et al. Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction. Chem. Eng. J. 2021, 426, 131867.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22205205). The Zhejiang Provincial Natural Science Foundation of China (No. LQ22B030008) and the Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant (Nos. 21062337-Y and 22062312-Y).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Tong, Shuangfei Xiang or Pengzuo Chen.

Electronic Supplementary Material

12274_2023_6269_MOESM1_ESM.pdf

Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhu, J., Tong, Y. et al. Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries. Nano Res. 17, 3684–3692 (2024). https://doi.org/10.1007/s12274-023-6269-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6269-7

Keywords

Navigation