Skip to main content
Log in

Application of mannose-modified fullerene immunomodulator selectively polarizes tumor-associated macrophages potentiating antitumor immunity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polarization of tumor associated macrophages (TAMs) has been a promising therapeutic paradigm for tumor. However, how to achieve precise regulation of TAMs and high efficiency of tumor immunotherapy is still a huge challenge. Here, we report dicarboxy fullerene modified with mannose (DCFM) as an immunomodulator to selectively polarize TAMs and prominently boost anti-tumor immunity. The dicarboxy fullerene molecule was synthesized through the Prato reaction and further covalently bonded with mannose, obtaining the DCFM with well-defined structure. Due to the exist of mannose in DCFM, it could accurately recognize mannose receptor in TAMs. Our cellular experiment results showed that mannose modification could notably promote the uptake of DCFM by the immunosuppressive M2-type macrophages that effectively reprogrammed M2-type macrophages into anti-tumor M1-type macrophages, leading to enhance the phagocytosis of tumor cells by macrophages and inhibiting tumor cells migration. Subsequently, we observed that DCFM could significantly distribute into tumor tissues by in vivo fluorescence imaging. Importantly, DCFM exhibited a superior anti-tumor efficiency in the subcutaneous colorectal tumor model. In addition, it showed that DCFM precisely polarized TAMs into M1-type macrophages and actively increased the infiltration of cytotoxic T lymphocytes (CTLs), inducing profound tumor growth inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennedy, L. B.; Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 2020, 70, 86–104.

    Article  Google Scholar 

  2. Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251.

    Article  CAS  Google Scholar 

  3. Li, Y. H.; Liu, X. H.; Zhang, X.; Pan, W.; Li, N.; Tang, B. Immune cycle-based strategies for cancer immunotherapy. Adv. Funct. Mater. 2021, 31, 2107540.

    Article  CAS  Google Scholar 

  4. DiPietro, L. A.; Wilgus, T. A.; Koh, T. J. Macrophages in healing wounds: Paradoxes and paradigms. Int. J. Mol. Sci. 2021, 22, 950.

    Article  CAS  Google Scholar 

  5. Murray, P. J.; Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737.

    Article  CAS  Google Scholar 

  6. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416.

    Article  CAS  Google Scholar 

  7. Ruffell, B.; Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015, 27, 462–472.

    Article  CAS  Google Scholar 

  8. Kitano, Y.; Okabe, H.; Yamashita, Y. I.; Nakagawa, S.; Saito, Y.; Umezaki, N.; Tsukamoto, M.; Yamao, T.; Yamamura, K.; Arima, K. et al. Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br. J. Cancer 2018, 118, 171–180.

    Article  CAS  Google Scholar 

  9. Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today 2020, 32, 100854.

    Article  CAS  Google Scholar 

  10. Li, F.; Li, J.; Dong, B. J.; Wang, F.; Fan, C. H.; Zuo, X. L. DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chem. Soc. Rev. 2021, 50, 5650–5667.

    Article  CAS  Google Scholar 

  11. Hu, X. L.; Zang, Y.; Li, J.; Chen, G. R.; James, T. D.; He, X. P.; Tian, H. Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle composites. Chem. Sci. 2016, 7, 4004–4008.

    Article  CAS  Google Scholar 

  12. Lee, P. C.; Peng, C. L.; Shieh, M. J. Combining the single-walled carbon nanotubes with low voltage electrical stimulation to improve accumulation of nanomedicines in tumor for effective cancer therapy. J. Control. Release 2016, 225, 140–151.

    Article  CAS  Google Scholar 

  13. Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J. S.; Nejadnik, H.; Goodman, S.; Moseley, M. et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016, 11, 986–994.

    Article  CAS  Google Scholar 

  14. Zhang, Y.; Chen, Y. L.; Li, J. H.; Zhu, X. Q.; Liu, Y. J.; Wang, X. X.; Wang, H. F.; Yao, Y. J.; Gao, Y. F.; Chen, Z. Z. Development of toll-like receptor agonist-loaded nanoparticles as precision immunotherapy for reprogramming tumor-associated macrophages. ACS Appl. Mater. Interfaces 2021, 13, 24442–24452.

    Article  CAS  Google Scholar 

  15. Li, L.; Zhen, M. M.; Wang, H. Y.; Sun, Z. H.; Jia, W.; Zhao, Z. P.; Zhou, C.; Liu, S.; Wang, C. R.; Bai, C. L. Functional gadofullerene nanoparticles trigger robust cancer immunotherapy based on rebuilding an immunosuppressive tumor microenvironment. Nano Lett. 2020, 20, 4487–4496.

    Article  CAS  Google Scholar 

  16. Mi, Y. L.; Coonce, M.; Fiete, D.; Steirer, L.; Dveksler, G.; Townsend, R. R.; Baenziger, J. U. Functional consequences of mannose and asialoglycoprotein receptor ablation. J. Biol. Chem. 2016, 291, 18700–18717.

    Article  CAS  Google Scholar 

  17. van der Zande, H. J. P.; Nitsche, D.; Schlautmann, L.; Guigas, B.; Burgdorf, S. The mannose receptor: From endocytic receptor and biomarker to regulator of (meta)inflammation. Front. Immunol. 2021, 12, 765034.

    Article  CAS  Google Scholar 

  18. Su, Y. P.; Bakker, T.; Harris, J.; Tsang, C.; Brown, G. D.; Wormald, M. R.; Gordon, S.; Dwek, R. A.; Rudd, P. M.; Martinez-Pomares, L. Glycosylation influences the lectin activities of the macrophage mannose receptor. J. Biol. Chem. 2005, 280, 32811–32820.

    Article  CAS  Google Scholar 

  19. Subramanian, K.; Neill, D. R.; Malak, H. A.; Spelmink, L.; Khandaker, S.; Dalla Libera Marchiori, G.; Dearing, E.; Kirby, A.; Yang, M.; Achour, A. et al. Pneumolysin binds to the mannose receptor C type 1 (MRC-1) leading to anti-inflammatory responses and enhanced pneumococcal survival. Nat. Microbiol. 2019, 4, 62–70.

    Article  CAS  Google Scholar 

  20. Rahabi, M.; Jacquemin, G.; Prat, M.; Meunier, E.; AlaEddine, M.; Bertrand, B.; Lefèvre, L.; Benmoussa, K.; Batigne, P.; Aubouy, A. et al. Divergent roles for macrophage c-type lectin receptors, dectin-1 and mannose receptors, in the intestinal inflammatory response. Cell Rep. 2020, 30, 4386–4398.e5.

    Article  CAS  Google Scholar 

  21. Movahedi, K.; Laoui, D.; Gysemans, C.; Baeten, M.; Stangé, G.; Van den Bossche, J.; Mack, M.; Pipeleers, D.; In’t Veld, P.; De Baetselier, P. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010, 70, 5728–5739.

    Article  CAS  Google Scholar 

  22. Movahedi, K.; Schoonooghe, S.; Laoui, D.; Houbracken, I.; Waelput, W.; Breckpot, K.; Bouwens, L.; Lahoutte, T.; De Baetselier, P.; Raes, G. et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012, 72, 4165–4177.

    Article  CAS  Google Scholar 

  23. Aroua, S.; Schweizer, W. B.; Yamakoshi, Y. C60 pyrrolidine bis-carboxylic acid derivative as a versatile precursor for biocompatible fullerenes. Org. Lett. 2014, 16, 1688–1691

    Article  CAS  Google Scholar 

  24. Mohr, N.; Kappel, C.; Kramer, S.; Bros, M.; Grabbe, S.; Zentel, R. Targeting cells of the immune system: Mannosylated HPMA–LMA block-copolymer micelles for targeting of dendritic cells. Nanomedicine 2016, 11, 2679–2697

    Article  CAS  Google Scholar 

  25. Biswas, S. K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 92061123). M. M. Z. particularly thanks the Youth Innovation Promotion Association of CAS (No. 2022036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingming Zhen or Chunru Wang.

Electronic Supplementary Material

12274_2023_6266_MOESM1_ESM.pdf

Application of mannose-modified fullerene immunomodulator selectively polarizes tumor-associated macrophages potentiating antitumor immunity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, L., Cao, X. et al. Application of mannose-modified fullerene immunomodulator selectively polarizes tumor-associated macrophages potentiating antitumor immunity. Nano Res. 16, 12855–12863 (2023). https://doi.org/10.1007/s12274-023-6266-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6266-x

Keywords

Navigation