Skip to main content
Log in

Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical converting NO 2 into NH3 (NO2RR) holds an enormous prospect to attain efficient NH3 electrosynthesis and polluted NO 2 mitigation. Herein, we report single-atom Co alloyed Ru (Co1Ru) as an efficient and durable NO2RR catalyst. Extensive experimental and theoretical investigations reveal that single-atom Co alloying of Ru enables the construction of Co1Ru heteronuclear active sites to synergistically promote NO 2 activation/hydrogenation while suppressing the competitive H2 evolution, rendering the greatly enhanced activity and selectivity of Co1Ru towards the NO2RR. Consequently, Co1Ru assembled within a flow cell exhibits an impressive NH3 yield rate of 2379.2 µmol·h−1·cm−2 with an NH3-Faradaic efficiency of 92% at a high current density of 415.9 mA·cm−2, which is among the highest NO2RR performances reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, 9120010.

    Article  Google Scholar 

  2. Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

    Article  Google Scholar 

  3. Chen, Y.; Chen, C.; Cao, X. S.; Wang, Z. Y.; Zhang, N.; Liu, T. X. Recent advances in defect and interface engineering for electroreduction of CO2 and N2. Acta Phys. Chim. Sin. 2023, 39, 2212053.

    Google Scholar 

  4. Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

    Article  CAS  Google Scholar 

  5. Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381.

    Article  CAS  Google Scholar 

  6. Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

    Article  CAS  PubMed  Google Scholar 

  7. Li, X. C.; Luo, Y. J.; Li, Q. Q.; Guo, Y. L.; Chu, K. Constructing an electron-rich interface over an Sb/Nb2CTx-MXene heterojunction for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2021, 9, 15955–15962.

    Article  CAS  Google Scholar 

  8. Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 2021, 17, 2102363.

    Article  CAS  Google Scholar 

  9. Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

    Article  CAS  Google Scholar 

  10. Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

    Article  CAS  Google Scholar 

  11. Li, Q. Q.; Guo, Y. L.; Tian, Y.; Liu, W. M.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195–16202.

    Article  CAS  Google Scholar 

  12. Zhu, X. F.; Fan, X.; Lin, H. P.; Li, S. N.; Zhai, Q. G.; Jiang, Y. C.; Chen, Y. Highly efficient electroenzymatic cascade reduction reaction for the conversion of nitrite to ammonia. Adv. Energy Mater. 2023, 13, 2300669.

    Article  CAS  Google Scholar 

  13. Zhang, Y. Y.; Wang, Y.; Han, L.; Wang, S. N.; Cui, T. D.; Yan, Y. F.; Xu, M.; Duan, H. H.; Kuang, Y.; Sun, X. M. Nitrite electroreduction to ammonia promoted by molecular carbon dioxide with near-unity faradaic efficiency. Angew. Chem., Int. Edit. 2023, 62, e202213711.

    Article  CAS  Google Scholar 

  14. Yuan, J. F.; Yin, H. Q.; Jin, X. X.; Zhao, D.; Liu, Y.; Du, A. J.; Liu, X. Q.; O’Mullane, A. P. A practical FeP nanoarrays electrocatalyst for efficient catalytic reduction of nitrite ions in wastewater to ammonia. Appl. Catal. B: Environ. 2023, 325, 122353.

    Article  CAS  Google Scholar 

  15. Liang, J.; Li, Z. X.; Zhang, L. C.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Yan, H.; Ying, B. W. et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 2023, 9, 1768–1827.

    Article  CAS  Google Scholar 

  16. Cai, Z. W.; Zhao, D. L.; Fan, X. Y.; Zhang, L. C.; Liang, J.; Li, Z. X.; Li, J.; Luo, Y. S.; Zheng, D. D.; Wang, Y. et al. Rational construction of heterostructured Cu3P@TiO2 nanoarray for high-efficiency electrochemical nitrite reduction to ammonia. Small 2023, 19, 2300620.

    Article  CAS  Google Scholar 

  17. He, X.; Li, Z. X.; Yao, J.; Dong, K.; Li, X. H.; Hu, L.; Sun, S. J.; Cai, Z. W.; Zheng, D. D.; Luo, Y. S. et al. High-efficiency electrocatalytic nitrite reduction toward ammonia synthesis on CoP@TiO2 nanoribbon array. iScience 2023, 26, 107100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yue, L. C.; Song, W.; Zhang, L. X.; Luo, Y. L.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Zheng, D. D.; Liu, Q. et al. Recent advance in heterogenous electrocatalysts for highly selective nitrite reduction to ammonia under ambient condition. Small Struct., in press, https://doi.org/10.1002/sstr.202300168.

  19. Wang, H. P.; Zhang, F.; Jin, M. M.; Zhao, D. L.; Fan, X. Y.; Li, Z. R.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Wang, Y. et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 2023, 30, 100944.

    Article  CAS  Google Scholar 

  20. Ouyang, L.; He, X.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Chen, J.; Li, Y. W.; Lin, Y. X.; Liu, Q.; Asiri, A. M. et al. Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO2 nanobelt array. J. Mater. Chem. A 2022, 10, 23494–23498.

    Article  CAS  Google Scholar 

  21. Wang, J. Q.; Liang, J.; Liu, P. Y.; Yan, Z.; Cui, L. X.; Yue, L. C.; Zhang, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. L. et al. Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. J. Mater. Chem. A 2022, 10, 2842–2848.

    Article  CAS  Google Scholar 

  22. Zhang, G. K.; Wang, F. Z.; Chen, K.; Kang, J. L.; Chu, K. Atomically dispersed Sn confined in FeS2 for nitrate-to-ammonia electroreduction. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202305372.

  23. Xiang, J. Q.; Zhao, H. Y.; Chen, K.; Li, X. C.; Li, X. G.; Chu, K. Atomically dispersed Pd on defective BN nanosheets for nitrite electroreduction to ammonia. J. Colloid Interf. Sci. 2024, 653, 390–395.

    Article  CAS  Google Scholar 

  24. Liang, J.; Deng, B.; Liu, Q.; Wen, G. L.; Liu, Q.; Li, T. S.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Ma, D. W. et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. Green Chem. 2021, 23, 5487–5493.

    Article  CAS  Google Scholar 

  25. Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, T. J.; Walsh, A. G.; Yu, J. H.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588.

    Article  CAS  PubMed  Google Scholar 

  28. Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

    Article  CAS  PubMed  Google Scholar 

  29. Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    Article  CAS  PubMed  Google Scholar 

  31. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y. Z.; Chen, X.; Wang, W. L.; Yin, L. F.; Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl. Catal. B: Environ. 2022, 310, 121346.

    Article  CAS  Google Scholar 

  33. Xie, H.; Wan, Y. Y.; Wang, X. M.; Liang, J. S.; Lu, G.; Wang, T. Y.; Chai, G. L.; Adli, N. M.; Priest, C.; Huang, Y. H. et al. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl. Catal. B: Environ. 2021, 289, 119783.

    Article  CAS  Google Scholar 

  34. Wang, H. J.; Jiao, L.; Zheng, L. R.; Fang, Q.; Qin, Y.; Luo, X.; Wei, X. Q.; Hu, L. Y.; Gu, W. L.; Wen, J. et al. PdBi single-atom alloy aerogels for efficient ethanol oxidation. Adv. Funct. Mater. 2021, 31, 2103465.

    Article  CAS  Google Scholar 

  35. Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

    Article  CAS  PubMed  Google Scholar 

  36. Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.

    Article  CAS  PubMed  Google Scholar 

  37. Shen, P.; Li, X. T.; Luo, Y. J.; Zhang, N. N.; Zhao, X. L.; Chu, K. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B: Environ. 2022, 316, 121651.

    Article  CAS  Google Scholar 

  38. Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2209890.

    Article  CAS  Google Scholar 

  39. Wang, J. J.; Cao, G. Q.; Duan, R. X.; Li, X. Y.; Li, X. F. Advances in single metal atom catalysts enhancing kinetics of sulfur cathode. Acta. Phys. Chim. Sin. 2023, 39, 2212005.

    Article  Google Scholar 

  40. Chen, K.; Wang, F. Z.; Lu, X. B.; Li, Y. H.; Chu, K. Atomically dispersed W1-O3 bonded on Pd metallene for cascade NO electroreduction to NH3. ACS Catal. 2023, 13, 9550–9557.

    Article  CAS  Google Scholar 

  41. Chen, K.; Wang, G. H.; Guo, Y. L.; Ma, D. W.; Chu, K. Iridium single-atom catalyst for highly efficient NO electroreduction to NH3. Nano Res. 2023, 16, 8737–8742.

    Article  CAS  Google Scholar 

  42. Wang, Y. J.; He, H. C.; Wang, Y. J.; Xie, M. L.; Jing, F.; Yin, X. H.; Hu, F. L.; Mi, Y. Surface defect and lattice engineering of Bi5O7Br ultrathin nanosheets for efficient photocatalysis. Nano Res. 2023, 16, 248–255.

    Article  CAS  Google Scholar 

  43. Zhang, S. C.; Tan, C. H.; Yan, R. P.; Zou, X. F.; Hu, F. L.; Mi, Y.; Yan, C.; Zhao, S. L. Constructing built-in electric field in heterogeneous nanowire arrays for efficient overall water electrolysis. Angew. Chem. 2023, 135, e202302795.

    Article  Google Scholar 

  44. Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3−x MXene for N2 electroreduction to NH3. Adv. Energy. Mater. 2022, 12, 2103022.

    Article  CAS  Google Scholar 

  45. Li, X. T.; Shen, P.; Li, X. C.; Ma, D. W.; Chu, K. Sub-nm RuOx clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 1081–1090.

    Article  CAS  Google Scholar 

  46. Zhang, N. N.; Zhang, G. K.; Tian, Y.; Guo, Y. L.; Chu, K. Boron phosphide as an efficient metal-free catalyst for nitrate electroreduction to ammonia. Dalton Trans. 2023, 52, 4290–4295.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, G. H.; Zhang, Y.; Chen, K.; Guo, Y. L.; Chu, K. PdP2 nanoparticles on reduced graphene oxide: A catalyst for the electrocatalytic reduction of nitrate to ammonia. Inorg. Chem. 2023, 62, 6570–6575.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Q. Y.; An, X. G.; Liu, Q.; Wu, X. Q.; Xie, L. S.; Zhang, J.; Yao, W. T.; Hamdy, M. S.; Kong, Q. Q.; Sun, X. P. Boosting electrochemical nitrite-ammonia conversion properties by a Cu foam@Cu2O catalyst. Chem. Commun. 2022, 58, 517–520.

    Article  CAS  Google Scholar 

  49. Du, H. T.; Guo, H. R.; Wang, K. K.; Du, X. N.; Beshiwork, B. A.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Li, T. S.; Sun, X. P. Durable electrocatalytic reduction of nitrate to ammonia over defective pseudobrookite Fe2TiO5 nanofibers with abundant oxygen vacancies. Angew. Chem. 2023, 135, e202215782.

    Article  Google Scholar 

  50. Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TIO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388

    Article  Google Scholar 

  51. Zhang, G. K.; Li, X. T.; Chen, K.; Guo, Y. L.; Ma, D. W.; Chu, K. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem., Int. Ed. 2023, 62, e202300054.

    Article  CAS  Google Scholar 

  52. Liu, S. L.; Cui, L.; Yin, S. L.; Ren, H.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Heterointerface-triggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia. Appl. Catal. B: Environ. 2022, 319, 121876.

    Article  CAS  Google Scholar 

  53. Liu, Q.; Wen, G. L.; Zhao, D. L.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Ali Alshehri, A.; Hamdy, M. S.; Kong, Q. Q. et al. Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. J. Colloid Interf. Sci. 2022, 623, 513–519.

    Article  CAS  Google Scholar 

  54. Li, X. T.; Chen, K.; Lu, X. B.; Ma, D. W.; Chu, K. Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chem. Eng. J. 2023, 454, 140333.

    Article  CAS  Google Scholar 

  55. Zhang, X.; Wang, Y. T.; Wang, Y. B.; Guo, Y. M.; Xie, X. Y.; Yu, Y. F.; Zhang, B. Recent advances in electrocatalytic nitrite reduction. Chem. Commun. 2022, 58, 2777–2787.

    Article  CAS  Google Scholar 

  56. Chen, K.; Zhang, Y.; Xiang, J. Q.; Zhao, X. L.; Li, X. G.; Chu, K. p-block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 2023, 8, 1281–1288

    Article  CAS  Google Scholar 

  57. Zhang, N. N.; Wang, G. H.; Zhang, G. K.; Chen, K.; Chu, K. Electrochemical nitrate-to-ammonia reduction over atomic Fe-dopants incorporated in CoS2. Chem. Eng. J. 2023, 474, 145861.

    Article  CAS  Google Scholar 

  58. Zhang, G. K.; Wan, Y. Y.; Zhao, H. Y.; Guo, Y. L.; Chu, K. A metalfree catalyst for electrocatalytic NO reduction to NH3. Dalton Trans. 2023, 52, 6248–6253.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 52161025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xiang, J., Zhang, G. et al. Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia. Nano Res. 17, 3660–3666 (2024). https://doi.org/10.1007/s12274-023-6261-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6261-2

Keywords

Navigation