Skip to main content
Log in

Recent advances on aerobic photocatalytic methane conversion under mild conditions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic methane conversion to high value-added chemicals under mild conditions acts as a promising approach to utilize natural gas and renewable energy. Specifically, aerobic photocatalytic methane conversion that uses molecular oxygen as oxidant has attracted much attention because it is thermodynamic favorable and could generate various reactive oxygen species, resulting in many value-added products like methanol, formaldehyde, ethane, and ethylene. In this review, we classify the aerobic photocatalytic methane conversion into aerobic photocatalytic partial oxidation of methane (APPOM) and aerobic photocatalytic coupling of methane (APCM). We particularly focus on the fundamentals of oxygen activation and methane reaction modes in these conversions. Finally, we provide a brief summary for current challenges and future prospects towards aerobic photocatalytic methane conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saha, D.; Grappe, H. A.; Chakraborty, A.; Orkoulas, G. Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: A review. Chem. Rev. 2016, 116, 11436–11499.

    CAS  Google Scholar 

  2. Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.

    CAS  Google Scholar 

  3. Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar-versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

    CAS  Google Scholar 

  4. Zhang, C. C.; Wang, J.; Ouyang, S. S.; Song, H.; Ye, J. H.; Shi, L. Cocatalysts in photocatalytic methane conversion: Recent achievements and prospects. Sci. China Chem. 2023, 66, 2532–2557.

    CAS  Google Scholar 

  5. Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592–1602.

    CAS  Google Scholar 

  6. Meng, X. G.; Cui, X. J.; Rajan, N. P.; Yu, L.; Deng, D. H.; Bao, X. H. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296–2325.

    CAS  Google Scholar 

  7. Song, H.; Ye, J. H. Direct photocatalytic conversion of methane to value-added chemicals. Trends Chem. 2022, 4, 1094–1105.

    CAS  Google Scholar 

  8. Qi, G. D.; Davies, T. E.; Nasrallah, A.; Sainna, M. A.; Howe, A. G. R.; Lewis, R. J.; Quesne, M.; Catlow, C. R. A.; Willock, D. J.; He, Q. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 2022, 5, 45–54.

    CAS  Google Scholar 

  9. Liu, J.; Yue, J. R.; Lv, M.; Wang, F.; Cui, Y. B.; Zhang, Z. G.; Xu, G. W. From fundamentals to chemical engineering on oxidative coupling of methane for ethylene production: A review. Carbon Resources Convers. 2022, 5, 1–14.

    Google Scholar 

  10. Jiang, Y. H.; Fan, Y. Y.; Li, S. Y.; Tang, Z. Y. Photocatalytic methane conversion: Insight into the mechanism of C(sp3)-H bond activation. CCS Chem. 2023, 5, 30–54.

    CAS  Google Scholar 

  11. Liu, M. X.; Wu, Z. W.; Kong, X. H.; Zhang, X.; Tan, L. D.; Guo, H.; Li, C. J. One-pot synthesis of toluene from methane and methanol catalyzed by GaN nanowire. Nano Res. 2023, 16, 6512–6516.

    CAS  Google Scholar 

  12. Wu, X. Y.; Zeng, Y.; Liu, H. C.; Zhao, J. Q.; Zhang, T. R.; Wang, S. L. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 2021, 14, 4584–4590.

    CAS  Google Scholar 

  13. Fan, Y. Y.; Zhou, W. C.; Qiu, X. Y.; Li, H. D.; Jiang, Y. H.; Sun, Z. H.; Han, D. X.; Niu, L.; Tang, Z. Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 2021, 4, 509–515.

    Google Scholar 

  14. Song, S.; Song, H.; Li, L. M.; Wang, S. Y.; Chu, W.; Peng, K.; Meng, X. G.; Wang, Q.; Deng, B. W.; Liu, Q. X. et al. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat. Catal. 2021, 1032–1042

    Google Scholar 

  15. Wang, Z. T.; Zhang, Z. W.; Wang, Z. L.; Lu, H. J.; Wang, L. Z. Can we achieve efficient photocatalytic partial oxidation of methane to methanol: A perspective on oxygen reaction pathways. Appl. Catal. A General 2023, 654, 119082.

    CAS  Google Scholar 

  16. Zhang, C. B.; Li, Y. B.; Wang, Y. F.; He, H. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. Environ. Sci. Technol. 2014, 48, 5816–5822.

    CAS  Google Scholar 

  17. Jiang, Y. H.; Li, S. Y.; Wang, S. K.; Zhang, Y.; Long, C.; Xie, J.; Fan, X. Y.; Zhao, W. S.; Xu, P.; Fan, Y. Y. et al. Enabling specific photocatalytic methane oxidation by controlling free radical type. J. Am. Chem. Soc. 2023, 145, 2698–2707.

    CAS  Google Scholar 

  18. Luo, L.; Fu, L.; Liu, H. F.; Xu, Y. X.; Xing, J. L.; Chang, C. R.; Yang, D. Y.; Tang, J. W. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.

    CAS  Google Scholar 

  19. Jiang, Y. H.; Zhao, W. S.; Li, S. Y.; Wang, S. K.; Fan, Y. Y.; Wang, F.; Qiu, X. Y.; Zhu, Y. F.; Zhang, Y.; Long, C. et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering. J. Am. Chem. Soc. 2022, 144, 15977–15987.

    CAS  Google Scholar 

  20. Zhang, W. Q.; Xi, D. W.; Chen, Y. H.; Chen, A. B.; Jiang, Y. W.; Liu, H. J.; Zhou, Z. Y.; Zhang, H.; Liu, Z.; Long, R. et al. Light-driven flow synthesis of acetic acid from methane with chemical looping. Nat. Commun. 2023, 14, 3047.

    CAS  Google Scholar 

  21. Liu, R. S.; Iwamoto, M.; Lunsford, J. H. Partial oxidation of methane by nitrous oxide over molybdenum oxide supported on silica. J. Chem. Soc. Chem. Commun. 1982, 78–79

    Google Scholar 

  22. Liu, H. F.; Liu, R. S.; Liew, K. Y.; Johnson, R. E.; Lunsford, J. H. Partial oxidation of methane by nitrous oxide over molybdenum on silica. J. Am. Chem. Soc. 1984, 106, 4117–4121.

    CAS  Google Scholar 

  23. Mehandru, S. P.; Anderson, A. B.; Brazdil, J. F.; Grasselli, R. K. Role of oxide surface radicals for methane carbon-hydrogen bond activation and subsequent reactions on molybdena: Molecular orbital theory. J. Phys. Chem. 1987, 91, 2930–2934.

    CAS  Google Scholar 

  24. Thampi, K. R.; Kiwi, J.; Grätzel, M. Room temperature photo-activation of methane on TiO2 supported molybdena. Catal. Lett. 1988, 1, 109–116.

    CAS  Google Scholar 

  25. Ward, M. D.; Brazdil, J. F.; Mehandru, S. P.; Anderson, A. B. Methane photoactivation on copper molybdate: An experimental and theoretical study. J. Phys. Chem. 1987, 91, 6515–6521.

    CAS  Google Scholar 

  26. Anpo, M.; Shioya, Y.; Che, M. Photoinduced methanol formation from methane and no at 275 K on highly dispersed vanadium oxide supported on vycor glass and its reaction intermediate species. Res. Chem. Intermed. 1992, 17, 15–26.

    CAS  Google Scholar 

  27. Hu, Y.; Nagai, Y.; Rahmawaty, D.; Wei, C. H.; Anpo, M. Characteristics of the photocatalytic oxidation of methane into methanol on V-containing MCM-41 catalysts. Catal. Lett. 2008, 124, 80–84.

    CAS  Google Scholar 

  28. Hu, Y.; Anpo, M.; Wei, C. H. Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol. J. Photochem. Photobiol. A Chem. 2013, 264, 48–55.

    CAS  Google Scholar 

  29. Yu, X.; De Waele, V.; Löfberg, A.; Ordomsky, V.; Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 2019, 10, 700.

    CAS  Google Scholar 

  30. Zhai, J. X.; Zhou, B. W.; Wu, H. H.; Jia, S. Q.; Chu, M. G.; Han, S. T.; Xia, W.; He, M. Y.; Han, B. X. Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/AgCl@SiO2. Chem. Sci. 2022, 13, 4616–4622.

    CAS  Google Scholar 

  31. Chen, Y. M.; Tang, S. S.; Li, L.; Liu, X. M.; Liang, J. Selective photocatalytic conversion of methane induced by lewis acid-base pair on the surface of In2O3/TiO2 heterojunction photocatalyst. ACS Sustainable Chem. Eng. 2023, 11, 3568–3575.

    CAS  Google Scholar 

  32. Dong, C. Y.; Hu, D.; Ben Tayeb, K.; Simon, P.; Addad, A.; Trentesaux, M.; De Souza, D. O.; Chernyak, S.; Peron, D. V.; Rebai, A. et al. Photocatalytic partial oxidation of methane to carbon monoxide and hydrogen over CIGS solar cell. Appl. Catal. B Environ. 2023, 325, 122340.

    CAS  Google Scholar 

  33. Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Wang, X. S.; Kako, T.; Ye, J. H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507–20515.

    CAS  Google Scholar 

  34. Zhou, W. C.; Qiu, X. Y.; Jiang, Y. H.; Fan, Y. Y.; Wei, S. L.; Han, D. X.; Niu, L.; Tang, Z. Y. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis. J. Mater. Chem. A 2020, 8, 13277–13284.

    CAS  Google Scholar 

  35. Latimer, A. A.; Kakekhani, A.; Kulkarni, A. R.; Nerskov, J. K. Direct methane to methanol: The selectivity-conversion limit and design strategies. ACS Catal. 2018, 8, 6894–6907.

    CAS  Google Scholar 

  36. Zhu, Y.; Chen, S. Q.; Fang, S. Y.; Li, Z. Y.; Wang, C. L.; Hu, Y. H. Distinct pathways in visible-light driven thermo-photo catalytic methane conversion. J. Phys. Chem. Lett. 2021, 12, 7459–7465.

    CAS  Google Scholar 

  37. Li, Z.; Li, R. G.; Jing, H. J.; Xiao, J. P.; Xie, H. C.; Hong, F.; Ta, N.; Zhang, X. W.; Zhu, J.; Li, C. Blocking the reverse reactions of overall water splitting on a Rh/GaN-ZnO photocatalyst modified with Al2O3. Nat. Catal. 2023, 6, 80–88.

    CAS  Google Scholar 

  38. Xie, C. L.; Sun, E.; Wan, G.; Zheng, J.; Gupta, R.; Majumdar, A. Transport mediating core-shell photocatalyst architecture for selective alkane oxidation. Nano Lett. 2023, 23, 2039–2045.

    CAS  Google Scholar 

  39. Huang, M.; Zhang, S. Y.; Wu, B.; Yu, X.; Gan, Y. P.; Lin, T. J.; Yu, F.; Sun, Y. H.; Zhong, L. S. Highly selective photocatalytic aerobic oxidation of methane to oxygenates with water over W-doped TiO2. ChemSusChem 2022, 15, e202200548.

    CAS  Google Scholar 

  40. Huang, M.; Zhang, S. Y.; Wu, B.; Wei, Y.; Yu, X.; Gan, Y. P.; Lin, T. J.; Yu, F.; Sun, F. F.; Jiang, Z. et al. Selective photocatalytic oxidation of methane to oxygenates over Cu-W-TiO2 with significant carrier traps. ACS Catal. 2022, 12, 9515–9525.

    CAS  Google Scholar 

  41. Hu, D.; Addad, A.; Ben Tayeb, K.; Ordomsky, V. V.; Khodakov, A. Y. Thermocatalysis enables photocatalytic oxidation of methane to formic acid at room temperature beyond the selectivity limits. Cell Rep. Phys. Sci. 2023, 4, 101277.

    CAS  Google Scholar 

  42. Huang, M.; Zhang, S. Y.; Gan, Y. P.; Liu, J.; He, Z. J.; Lin, T. J.; Yu, F.; Dai, Y. Y.; Niu, Q.; Zhong, L. S. Effective SrWO4/TiO2 heterojunction with enhanced carriers separation and transfer for photocatalytic methane oxidation. Ceem.—Eur. J. 2023, 29, e202204031.

    CAS  Google Scholar 

  43. Zhang, X. B.; Wang, Y. Q.; Chang, K.; Yang, S. L.; Liu, H. J.; Chen, Q.; Xie, Z. X.; Kuang, Q. Constructing hollow porous Pd/H-TiO2 photocatalyst for highly selective photocatalytic oxidation of methane to methanol with O2. Appl. Catal. B Environ. 2023, 320, 121961.

    CAS  Google Scholar 

  44. Cai, X. J.; Fang, S. Y.; Hu, Y. H. Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au-Pd/TiO2-what is the role of each component in the system. J. Mater. Chem. A 2021, 9, 10796–10802.

    CAS  Google Scholar 

  45. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

    CAS  Google Scholar 

  46. Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Song, S.; Kako, T.; Ye, J. H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS Catal. 2020, 10, 14318–14326.

    CAS  Google Scholar 

  47. Song, H.; Huang, H. M.; Meng, X. G.; Wang, Q.; Hu, H. L.; Wang, S. Y.; Zhang, H. W.; Jewasuwan, W.; Fukata, N.; Feng, N. D. et al. Atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite for efficient and selective photocatalytic CH4 oxidation to oxygenates. Angew. Chem., Int. Ed. 2023, 62, e202215057.

    CAS  Google Scholar 

  48. Han, J. T.; Su, H.; Tan, L. D.; Li, C. J. In aqua dual selective photocatalytic conversion of methane to formic acid and methanol with oxygen and water as oxidants without overoxidation. iScience 2023, 26, 105942.

    CAS  Google Scholar 

  49. Luo, L.; Gong, Z. Y.; Xu, Y. X.; Ma, J. N.; Liu, H. F.; Xing, J. L.; Tang, J. W. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740–750.

    CAS  Google Scholar 

  50. Gong, Z. Y.; Luo, L.; Wang, C.; Tang, J. W. Photocatalytic methane conversion to C1 oxygenates over palladium and oxygen vacancies Co-decorated TiO2. Solar RRL 2022, 6, 2200335.

    CAS  Google Scholar 

  51. Wang, K. R.; Luo, L.; Wang, C.; Tang, J. W. Photocatalytic methane activation by dual reaction sites co-modified WO3. Chin. J. Catal. 2023, 46, 103–112.

    CAS  Google Scholar 

  52. Luo, L.; Han, X. Y.; Wang, K. R.; Xu, Y. X.; Xiong, L. Q.; Ma, J. N.; Guo, Z. X.; Tang, J. W. Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via single-atom Cu and Wδ+. Nat. Commun. 2023, 14, 2690.

    CAS  Google Scholar 

  53. Hu, W. G.; Sun, Y. N.; Li, S. H.; Cheng, X. L.; Cai, X.; Chen, M. Y.; Zhu, Y. Visible-liht-t-driven methane conversion with oxygen enabled by atomically precise nickel catalyst. CCS Chem. 2021, 3, 2509–2519.

    CAS  Google Scholar 

  54. Zhou, Y. Y.; Zhang, L.; Wang, W. Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.

    CAS  Google Scholar 

  55. De Oliveira, J. A.; Da Cruz, J. C.; Nascimento, O. R.; Ribeiro, C. Selective CH4 reform to methanol through partial oxidation over Bi2O3 at room temperature and pressure. Appl. Catal. B Environ. 2022, 318, 121827.

    CAS  Google Scholar 

  56. Du, H. R.; Li, X. P.; Cao, Z. Y.; Zhang, S.; Yu, W. Z.; Sun, F. Y.; Wang, S. Y.; Zhao, J. J.; Wang, J. Q.; Bai, Y. et al. Photocatalytic O2 oxidation of CH4 to CH3OH on AuFe-ZnO bifunctional catalyst. Appl. Catal. B Environ. 2023, 324, 122291.

    CAS  Google Scholar 

  57. An, B.; Li, Z.; Wang, Z.; Zeng, X. D.; Han, X.; Cheng, Y. Q.; Sheveleva, A. M.; Zhang, Z. Y.; Tuna, F.; McInnes, E. J. L. et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater. 2022, 21, 932–938.

    CAS  Google Scholar 

  58. Du, X. Y.; Yang, Z. S.; Yang, X. M.; Zhang, Q. Q.; Liu, L. Q.; Ye, J. H. Efficient photocatalytic conversion of methane into ethanol over P-doped g-C3N4 under ambient conditions. Energy Fuels 2022, 36, 3929–3937.

    CAS  Google Scholar 

  59. Yang, Z. S.; Zhang, Q. Q.; Ren, L. T.; Chen, X.; Wang, D. F.; Liu, L. Q.; Ye, J. H. Efficient photocatalytic conversion of CH4 into ethanol with O2 over nitrogen vacancy-rich carbon nitride at room temperature. Chem. Commun. (Camb.) 2021, 57, 871–874.

    CAS  Google Scholar 

  60. An, B.; Zhang, Q. H.; Zheng, B. S.; Li, M.; Xi, Y. Y.; Jin, X.; Xue, S.; Li, Z. T.; Wu, M. B.; Wu, W. T. Sulfone-decorated conjugated organic polymers activate oxygen for photocatalytic methane conversion. Angew. Chem., Int. Ed. 2022, 61, e202204661.

    CAS  Google Scholar 

  61. Luo, P. P.; Zhou, X. K.; Li, Y.; Lu, T. B. Simultnnouusly accelerating carrier transfer and enhancing O2/CH4 activation via tailoring the oxygen-vacancy-rich surface layer for cocatalyst-free selective photocatalytic CH4 conversion. ACS Appl. Mater. Interfaces 2022, 14, 21069–21078.

    CAS  Google Scholar 

  62. Fan, Y. Y.; Zhang, P. Y.; Lu, R. X.; Jiang, Y. H.; Pan, G. L.; Wang, W.; Zhu, X. L.; Wei, S. L.; Han, D. X.; Niu, L. Highly selective oxidation of methane to formaldehyde on tungsten trioxide by lattice oxygen. Catal. Commun. 2021, 161, 106365.

    CAS  Google Scholar 

  63. Wei, S. L.; Zhu, X. L.; Zhang, P. Y.; Fan, Y. Y.; Sun, Z. H.; Zhao, X.; Han, D. X.; Niu, L. Aerobic oxidation of methane to formaldehyde mediated by crystal-O over gold modified tungsten trioxide via photocatalysis. Appl. Catal. B Environ. 2021, 283, 119661.

    CAS  Google Scholar 

  64. Feng, N. D.; Lin, H. W.; Song, H.; Yang, L. X.; Tang, D. M.; Deng, F.; Ye, J. H. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nat. Commun. 2021, 12, 4652.

    CAS  Google Scholar 

  65. Li, D. Y.; Xu, R. D.; Gu, Z. H.; Zhu, X.; Qing, S.; Li, K. Z. Chemical-looping conversion of methane: A review. Energy Technol. 2020, 8, 1900925.

    CAS  Google Scholar 

  66. Li, Z. H.; Pan, X. Y.; Yi, Z. G. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts. J. Mater. Chem. A 2019, 7, 469–475.

    Google Scholar 

  67. Meng, L. S.; Chen, Z. Y.; Ma, Z. Y.; He, S.; Hou, Y. D.; Li, H. H.; Yuan, R. S.; Huang, X. H.; Wang, X. X.; Wang, X. C. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294–298.

    CAS  Google Scholar 

  68. Wang, P.; Shi, R.; Zhao, Y. X.; Li, Z. H.; Zhao, J. Q.; Zhao, J. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Zhang, T. R. Selective photocatalytic oxidative coupling of methane via regulating methyl intermediates over metal/ZnO nanoparticles. Angew. Chem., Int. Ed. 2023, 62, e202304301.

    CAS  Google Scholar 

  69. Li, X. Y.; Xie, J. J.; Rao, H.; Wang, C.; Tang, J. W. Platinum- and CuOx-decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor. Angew. Chem., Int. Ed. 2020, 59, 19702–19707.

    CAS  Google Scholar 

  70. Wang, C.; Li, X. Y.; Ren, Y. F.; Jiao, H. M.; Wang, F. R.; Tang, J. W. Synergy of Ag and AgBr in a pressurized flow reactor for selective photocatalytic oxidative coupling of methane. ACS Catal. 2023, 13, 3768–3774.

    CAS  Google Scholar 

  71. Swearer, D. F.; Knowles, N. R.; Everitt, H. O.; Halas, N. J. Light-driven chemical looping for ammonia synthesis. ACS Energy Lett. 2019, 4, 1505–1512.

    CAS  Google Scholar 

  72. Yu, X.; Zholobenko, V. L.; Moldovan, S.; Hu, D.; Wu, D.; Ordomsky, V. V.; Khodakov, A. Y. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 2020, 5, 511–519.

    CAS  Google Scholar 

  73. Zhang, W. Q.; Fu, C. F.; Low, J.; Duan, D. L.; Ma, J.; Jiang, W. B.; Chen, Y. H.; Liu, H. J.; Qi, Z. M.; Long, R. et al. High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2. Nat. Commun. 2022, 13, 2806.

    CAS  Google Scholar 

  74. Liu, Y. D.; Chen, Y. H.; Jiang, W. B.; Kong, T. T.; Camargo, P. H. C.; Gao, C.; Xiong, Y. J. Highly efficient and selective photocatalytic nonoxidative coupling of methane to ethylene over Pd-Zn synergistic catalytic sites. Research 2022, 2022, 9831340.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), the National Key Basic Research Program of China (No. 2021YFA1200302), and the National Natural Science Foundation of China (Nos. 92056204, 21890381, 21721002, and 22305051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Fan or Zhiyong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, S., Fan, X. et al. Recent advances on aerobic photocatalytic methane conversion under mild conditions. Nano Res. 16, 12558–12571 (2023). https://doi.org/10.1007/s12274-023-6244-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6244-3

Keywords

Navigation