Skip to main content
Log in

In-situ transformed Mott-Schottky heterointerface in silver/manganese oxide nanorods boosting oxygen reduction, oxygen evolution, and hydrogen evolution reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of non-platinum group metal (non-PGM) and efficient multifunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) with high activity and stability remains a great challenge. Herein, by in-situ transforming silver manganese composite oxide heterointerface into boosted Mott-Schottky heterointerface through a facile carbon reduction strategy, a nanorod-like silver/manganese oxide with superior multifunctional catalytic activities for ORR, OER and HER and stability was obtained. The nanorod-like silver/manganese oxide with Mott-Schottky heterointerface (designated as Ag/Mn3O4) exhibits an ORR half-wave potential of 0.831 V (vs. RHE) in 0.1 M KOH, an OER overpotential of 338 mV and a HER overpotential of 177 mV at the current density of 10 mA·cm−2 in 1 M KOH, contributing to its noble-metal benchmarks comparable performance in aqueous aluminum-air (Al-air) battery and laboratorial overall water splitting electrolytic cell. Moreover, in-situ electrochemical Raman and synchrotron radiation spectroscopic measurements were conducted to further illustrate the catalytic mechanism of Ag/Mn3O4 Mott-Schottky heterointerface towards various electrocatalytic reactions. At the heterointerface, the Ag phase serves as the electron donor and the active phase for ORR and HER, while the Mn3O4 phase serves as the electron acceptor and the active phase for OER, respectively. This work deepens the understanding of the Mott-Schottky effect on electrocatalysis and fills in the gap in fundamental physical principles that are behind measured electrocatalytic activity, which offers substantial implications for the rational design of cost-effective multifunctional electrocatalysts with Mott-Schottky effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, H.; Sun, Y. J.; You, B. Dynamic electrodeposition on bubbles: An effective strategy toward porous electrocatalysts for green hydrogen cycling. Acc. Chem. Res. 2023, 56, 1421–1432.

    Article  CAS  PubMed  Google Scholar 

  2. Chong, L. N.; Gao, G. P.; Wen, J. G.; Li, H. X.; Xu, H. P.; Green, Z.; Sugar, J. D.; Kropf, A. J.; Xu, W. Q.; Lin, X. M. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 2023, 380, 609–616.

    Article  CAS  PubMed  Google Scholar 

  3. Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.

    Article  CAS  Google Scholar 

  4. Li, K. Q.; Cheng, R. Q.; Xue, Q. Y.; Meng, P. Y.; Zhao, T. S.; Jiang, M.; Guo, M. L.; Li, H. X.; Fu, C. P. In-situ construction of Co/CoSe Schottky heterojunction with interfacial electron redistribution to facilitate oxygen electrocatalysis bifunctionality for zinc-air batteries. Chem. Eng. J. 2022, 450, 137991.

    Article  CAS  Google Scholar 

  5. Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

    Article  Google Scholar 

  6. Quílez-Bermejo, J.; García-Dalí, S.; Daouli, A.; Zitolo, A.; Canevesi, R. L. S.; Emo, M.; Izquierdo, M. T.; Badawi, M.; Celzard, A.; Fierro, V. Advanced design of metal nanoclusters and single atoms embedded in C1N1-derived carbon materials for ORR, HER, and OER. Adv. Funct. Mater. 2023, 33, 2300405.

    Article  Google Scholar 

  7. Cheng, R. Q.; Li, K. Q.; Li, Z.; Jiang, M.; Wang, F.; Yang, Z. H.; Zhao, T. S.; Meng, P. Y.; Fu, C. P. Rational design of boron-nitrogen coordinated active sites towards oxygen reduction reaction in aluminum-air batteries with robust integrated air cathode. J. Power Sources 2023, 556, 232476.

    Article  CAS  Google Scholar 

  8. Li, Z.; Zhang, Y.; Feng, Y.; Cheng, C. Q.; Qiu, K. W.; Dong, C. K.; Liu, H.; Du, X. W. Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions. Adv. Funct. Mater. 2019, 29, 1903444.

    Article  Google Scholar 

  9. Li, Y.; Talib, S. H.; Liu, D. Q.; Zong, K.; Saad, A.; Song, Z. Q.; Zhao, J.; Liu, W.; Liu, F. D.; Ji, Q. Q. et al. Improved oxygen evolution reaction performance in Co0.4Mn0.6O2 nanosheets through triple-doping (Cu, P, N) strategy and its application to Zn-air battery. Appl. Catal. B Environ. 2023, 320, 122023.

    Article  CAS  Google Scholar 

  10. Zhu, J. B.; Xiao, M. L.; Li, G. R.; Li, S.; Zhang, J.; Liu, G. H.; Ma, L.; Wu, T. P.; Lu, J.; Yu, A. P. et al. A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 2020, 10, 1903003.

    Article  CAS  Google Scholar 

  11. Li, K. Q.; Wang, C. Q.; Li, H. X.; Wen, Y. L.; Wang, F.; Xue, Q. Y.; Huang, Z. Y.; Fu, C. P. Heterostructural interface in Fe3C-TiN quantum dots boosts oxygen reduction reaction for Al-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 47440–47448.

    Article  CAS  PubMed  Google Scholar 

  12. Albu, Z.; Alzaid, F.; AlQahtani, S.; Al Abass, N.; Alenazey, F.; Allehyani, I.; AlOtaibi, B. Improving water oxidation performance by implementing heterointerfaces between ceria and metal-oxide nanoparticles. J. Colloid Interface Sci. 2021, 587, 39–46.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, L.; Zhang, Y. J.; Luo, X. H.; Yu, L.; Li, H. X.; Li, Y. J. Se and O co-insertion induce the transition of MoS2 from 2H to 1T phase for designing high-active electrocatalyst of hydrogen evolution reaction. Chem. Eng. J. 2021, 425, 130611.

    Article  CAS  Google Scholar 

  14. Zhang, L. L.; Lei, Y. T.; Xu, W. J.; Wang, D.; Zhao, Y. F.; Chen, W. X.; Xiang, X.; Pang, X. C.; Zhang, B.; Shang, H. S. Highly active and durable nitrogen-doped CoP/CeO2 nanowire heterostructures for overall water splitting. Chem. Eng. J. 2023, 460, 141119.

    Article  CAS  Google Scholar 

  15. Yang, X. X.; Zheng, X. C.; Li, H. X.; Luo, B. C.; He, Y. K.; Yao, Y.; Zhou, H. H.; Yan, Z. H.; Kuang, Y. F.; Huang, Z. Y. Non-noble-metal catalyst and Zn/graphene film for low-cost and ultra-long-durability solid-state Zn-air batteries in harsh electrolytes. Adv. Funct. Mater. 2022, 32, 2200397.

    Article  CAS  Google Scholar 

  16. Kaltak, M.; Fernández-Serra, M.; Hybertsen, M. S. Charge localization and ordering in A2Mn8O16 hollandite group oxides: Impact of density functional theory approaches. Phys. Rev. Mater. 2017, 1, 075401.

    Article  Google Scholar 

  17. Zhou, Y. M.; Chu, B. X.; Sun, Z. J.; Dong, L. H.; Wang, F.; Li, B.; Fan, M. G.; Chen, Z. J. Surface reconstruction and charge distribution enabling Ni/W5N4 Mott–Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis at a large current density. Appl. Catal. B: Environ. 2023, 323, 122168.

    Article  CAS  Google Scholar 

  18. Wang, X.; Li, M.; Wang, P.; Sun, D. M.; Ding, L. F.; Li, H.; Tang, Y. W.; Fu, G. T. Spin-selective coupling in Mott–Schottky Er2O3-Co boosts electrocatalytic oxygen reduction. Small Methods 2023, 7, 2300100.

    Article  CAS  Google Scholar 

  19. Chen, T.; Guo, S. Q.; Yang, J.; Xu, Y. D.; Sun, J.; Wei, D. L.; Chen, Z. X.; Zhao, B.; Ding, W. P. Nitrogen-doped carbon activated in situ by embedded nickel through the Mott–Schottky effect for the oxygen reduction reaction. ChemPhysChem 2017, 18, 3454–3461.

    Article  CAS  PubMed  Google Scholar 

  20. Yao, Y.; Wu, J. X.; Feng, Q. X.; Zeng, K.; Wan, J.; Zhang, J. C.; Mao, B. Y.; Hu, K.; Chen, L. M.; Zhang, H. et al. Spontaneous internal electric field in heterojunction boosts bifunctional oxygen electrocatalysts for zinc-air batteries: Theory, experiment, and application. Small 2023, 19, 2302015.

    Article  CAS  Google Scholar 

  21. Su, H.; Zhang, K. X.; Zhang, B.; Wang, H. H.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Activating cobalt nanoparticles via the Mott–Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J. Am. Chem. Soc. 2017, 139, 811–818.

    Article  CAS  PubMed  Google Scholar 

  22. Yang, H. Q.; Wang, B. D.; Kou, S. Q.; Lu, G. L.; Liu, Z. N. Mott–Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery. Chem. Eng. J. 2021, 425, 131589.

    Article  CAS  Google Scholar 

  23. Sun, Z. H.; Wang, Y. K.; Zhang, L. B.; Wu, H.; Jin, Y. C.; Li, Y. H.; Shi, Y. C.; Zhu, T. X.; Mao, H.; Liu, J. M. et al. Simultaneously realizing rapid electron transfer and mass transport in jellyfish-like Mott–Schottky nanoreactors for oxygen reduction reaction. Adv. Funct. Mater. 2020, 30, 1910482.

    Article  CAS  Google Scholar 

  24. Li, G. X.; Jiang, M.; Liao, Q.; Ding, R. D.; Gao, Y. H.; Jiang, L. W.; Zhang, D. N.; Chen, S. G.; He, H. Directly anchoring Ag single atoms on α-MnO2 nanorods as efficient oxygen reduction catalysts for Mg-air fuel cell. J. Alloys Compd. 2021, 858, 157672.

    Article  CAS  Google Scholar 

  25. Wang, J. W.; Xie, H.; Shu, D. B.; Chen, T. H.; Liu, H. B.; Zou, X. H.; Chen, D. The promotion of NH3-SCR performance and its mechanism on Sm modified birnessite. Fuel 2024, 356, 129604.

    Article  CAS  Google Scholar 

  26. Wu, S. P.; Liu, H. M.; Huang, Z.; Xu, H. L.; Shen, W. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B Environ. 2022, 312, 121387.

    Article  CAS  Google Scholar 

  27. Li, T. F.; Hu, Y. J.; Liu, K. H.; Yin, J. W.; Li, Y.; Fu, G. T.; Zhang, Y. W.; Tang, Y. W. Hollow yolk-shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-Air battery. Chem. Eng. J. 2022, 427, 131992.

    Article  CAS  Google Scholar 

  28. Liu, K.; Huang, X. B.; Wang, H. Y.; Li, F. Z.; Tang, Y. G.; Li, J. S.; Shao, M. H. Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 34422–34430.

    Article  CAS  PubMed  Google Scholar 

  29. Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C 2008, 112, 5307–5315.

    Article  CAS  Google Scholar 

  30. Jia, J. B.; Zhang, P. Y.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B Environ. 2016, 189, 210–218.

    Article  CAS  Google Scholar 

  31. Sharma, R.; Dar, S. A.; Mishra, A. K. Structure, electronic, magnetic and optical properties of cubic Hf1−x(TM)xO2 (X = 0, 0.25, TM = Mn, Fe, Co, Ni): A first principle investigation. J. Alloys Compd. 2019, 791, 983–993.

    Article  CAS  Google Scholar 

  32. Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    Article  CAS  Google Scholar 

  33. Xue, Z. H.; Han, J. T.; Feng, W. J.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Tuning the adsorption energy of methanol molecules along Ni-N-doped carbon phase boundaries by the Mott–Schottky effect for gas-phase methanol dehydrogenation. Angew. Chem., Int. Ed. 2018, 57, 2697–2701.

    Article  CAS  Google Scholar 

  34. Li, X. X.; Pan, Y.; Yi, H.; Hu, J. C.; Yang, D. L.; Lv, F. Z.; Li, W. D.; Zhou, J. P.; Wu, X. J.; Lei, A. W. et al. Mott–Schottky effect leads to alkyne semihydrogenation over Pd-nanocube@N-doped carbon. ACS Catal. 2019, 9, 4632–4641.

    Article  CAS  Google Scholar 

  35. Zou, X. J.; Dong, Y. Y.; Ke, J.; Ge, H.; Chen, D.; Sun, H. J.; Cui, Y. B. Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation. Chem. Eng. J. 2020, 400, 125919.

    Article  CAS  Google Scholar 

  36. Gu, W. W.; Song, Y.; Liu, J. J.; Wang, F. Lanthanum-based compounds: Electronic band-gap-dependent electrocatalytic materials for oxygen reduction reaction. Chem.—Eur. J. 2017, 23, 10126–10132.

    Article  CAS  PubMed  Google Scholar 

  37. Li, K. Q.; Cheng, R. Q.; Xue, Q. Y.; Zhao, T. S.; Wang, F.; Fu, C. P. Construction of a Co/MnO Mott–Schottky heterostructure to achieve interfacial synergy in the oxygen reduction reaction for aluminum-air batteries. ACS Appl. Mater. Interfaces 2023, 15, 9150–9159.

    Article  CAS  Google Scholar 

  38. Bolar, S.; Shit, S.; Murmu, N. C.; Samanta, P.; Kuila, T. Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design. ACS Appl. Mater. Interfaces 2021, 13, 765–780.

    Article  CAS  PubMed  Google Scholar 

  39. Ji, B. F.; Gou, J. L.; Zheng, Y. P.; Pu, X. H.; Wang, Y. H.; Kidkhunthod, P.; Tang, Y. B. Coordination chemistry of large-sized yttrium single-atom catalysts for oxygen reduction reaction. Adv. Mater. 2023, 35, 2300381.

    Article  CAS  Google Scholar 

  40. Wu, L.; Li, S. X.; Li, L. X.; Zhang, H.; Tao, L.; Geng, X.; Yang, H. M.; Zhou, W. M.; Sun, C. G.; Ju, D. Y. et al. Modest modulation on the electronic structure of Co9S8 by vanadium doping for highperformance rechargeable Zn-air batteries. Appl. Catal. B Environ. 2023, 324, 122250.

    Article  CAS  Google Scholar 

  41. Kim, H. W.; Bukas, V. J.; Park, H.; Park, S.; Diederichsen, K. M.; Lim, J.; Cho, Y. H.; Kim, J.; Kim, W.; Han, T. H. et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide. ACS Catal. 2020, 10, 852–863.

    Article  CAS  Google Scholar 

  42. Yu, F. S.; Zhan, J. Y.; Chen, D. T.; Guo, J. Y.; Zhang, S. B.; Zhang, L. H. Electronic states regulation induced by the synergistic effect of Cu clusters and Cu-S1N3 sites boosting electrocatalytic performance. Adv. Funct. Mater. 2023, 33, 2214425.

    Article  CAS  Google Scholar 

  43. Li, X. Y.; Wu, X. S.; Zhao, Y.; Lin, Y. X.; Zhao, J. H.; Wu, C. Q.; Liu, H. J.; Shan, L.; Yang, L.; Song, L. et al. Promoting oxygen reduction reaction by inducing out-of-plane polarization in a metal phthalocyanine catalyst. Adv. Mater. 2023, 35, 2302467.

    Article  CAS  Google Scholar 

  44. Yasin, G.; Ali, S.; Ibraheem, S.; Kumar, A.; Tabish, M.; Mushtaq, M. A.; Ajmal, S.; Arif, M.; Khan, M. A.; Saad, A. et al. Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic iron/cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. ACS Catal. 2023, 13, 2313–2325.

    Article  CAS  Google Scholar 

  45. Wang, H. Q.; Sun, C. H.; Zhu, E. Z.; Shi, C. Y.; Yu, J.; Xu, M. L. Core–shell MOF-derived Fe3C-Co-NC as high-performance ORR/OER bifunctional catalyst. J. Alloys Compd. 2023, 948, 169728.

    Article  CAS  Google Scholar 

  46. Cho, S.; Yim, G.; Koh, J.; Jang, H.; Park, J. T. One-pot synthesis of Pt@TiO2 core–shell nanoparticles for stable hydrogen evolution reaction in acidic and alkaline media. Mater. Today Chem. 2023, 32, 101644.

    Article  CAS  Google Scholar 

  47. Zhang, Y. Y.; Chen, S. T.; Zhang, Y. X.; Li, R. J.; Zhao, B.; Peng, T. Y. Hydrogen-bond regulation of the microenvironment of Ni(II)-porphyrin bifunctional electrocatalysts for efficient overall water splitting. Adv. Mater. 2023, 35, 2210727.

    Article  CAS  Google Scholar 

  48. Cai, W. Z.; Zhou, C.; Hu, X. M.; Jiao, T. W.; Liu, Y. J.; Li, L.; Li, J.; Kitano, M.; Hosono, H.; Wu, J. Z. Quasi-two-dimensional intermetallic electride cerusi for efficient alkaline hydrogen evolution. ACS Catal. 2023, 13, 4752–4759.

    Article  CAS  Google Scholar 

  49. Wang, S. Q.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B Environ. 2022, 313, 121472.

    Article  CAS  Google Scholar 

  50. Yang, L. W.; Wu, X. L.; Huang, G. S.; Qiu, T.; Yang, Y. M. In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. J. Appl. Phys. 2005, 97, 014308.

    Article  Google Scholar 

  51. Savinova, E. R.; Kraft, P.; Pettinger, B.; Doblhofer, K. In situ Raman spectroscopy studies of the interface between silver(111) electrodes and alkaline NaF electrolytes. J. Electroanal. Chem. 1997, 430, 47–56.

    Article  CAS  Google Scholar 

  52. Waterhouse, G. I. N.; Bowmaker, G. A.; Metson, J. B. Oxygen chemisorption on an electrolytic silver catalyst: A combined TPD and Raman spectroscopic study. Appl. Surf. Sci. 2003, 214, 36–51.

    Article  CAS  Google Scholar 

  53. Ren, L. P.; Dai, W. L.; Yang, X. L.; Cao, Y.; Xie, Z. K.; Fan, K. N. Transformation of various oxygen species on the surface of electrolytic silver characterized by in situ Raman spectroscopy. Chin. J. Catal. 2006, 27, 115–118.

    Article  CAS  Google Scholar 

  54. Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.

    Article  CAS  Google Scholar 

  55. Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 2020, 142, 715–719.

    Article  CAS  PubMed  Google Scholar 

  56. Benedetti, A. V.; Nakazato, R. Z.; Sumodjo, P. T. A.; Cabot, P. L.; Centellas, F. A.; Garrido, J. A. Potentiodynamic behaviour of Cu Al Ag alloys in NaOH: A comparative study related to the pure metals electrochemistry. Electrochim. Acta 1991, 36, 1409–1421.

    Article  CAS  Google Scholar 

  57. Yang, Y. A.; Wang, Y. Y.; Zhang, X. Y.; Qi, G. H.; Xu, S. P.; Xu, W. Q. A facile method of removing several common surface-enhanced Raman scattering probe molecules adsorbed on Ag with sodium borohydride solution. J. Opt. 2015, 17, 075003.

    Article  Google Scholar 

  58. Koleva, V.; Stefov, V.; Cahil, A.; Najdoski, M.; Šoptrajanov, B.; Engelen, B.; Lutz, H. D. Infrared and Raman studies of manganese dihydrogen phosphate dihydrate, Mn(H2PO4)22H2O. I: Region of the vibrations of the phosphate ions and external modes of the water molecules. J. Mol. Struct. 2009, 917, 117–124.

    Article  CAS  Google Scholar 

  59. Su, H.; Zhou, W. L.; Zhou, W.; Li, Y. L.; Zheng, L. R.; Zhang, H.; Liu, M. H.; Zhang, X. X.; Sun, X.; Xu, Y. Z. et al. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co Nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

    Article  Google Scholar 

  61. Luo, L.; Fu, L.; Liu, H. F.; Xu, Y. X.; Xing, J. L.; Chang, C. R.; Yang, D. Y.; Tang, J. W. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Talukder, N.; Wang, Y. D.; Nunna, B. B.; Lee, E. S. Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability. Carbon 2021, 185, 198–214.

    Article  CAS  Google Scholar 

  63. Ni, S.; Qu, H. N.; Xing, H. F.; Xu, Z. H.; Zhu, X. Y.; Yuan, M. L.; Wang, L.; Yu, J. M.; Li, Y. Q.; Yang, L. R. et al. Donor–acceptor couples of metal and metal oxides with enriched Ni3+ active sites for oxygen evolution. ACS Appl. Mater. Interfaces 2021, 13, 17501–17510.

    Article  CAS  PubMed  Google Scholar 

  64. Yang, M. J.; Zhang, Y.; Jian, J. H.; Fang, L.; Li, J.; Fang, Z. S.; Yuan, Z. K.; Dai, L. M.; Chen, X. D.; Yu, D. S. Donor–acceptor nanocarbon ensembles to boost metal-free all-pH hydrogen evolution catalysis by combined surface and dual electronic modulation. Angew. Chem., Int. Ed. 2019, 58, 16217–16222.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 52274302) and Natural Science Foundation of Shanghai (Nos. 21ZR1429400 and 22ZR1429700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiao Zhang or Chaopeng Fu.

Electronic Supplementary Material

12274_2023_6240_MOESM1_ESM.pdf

In-situ transformed Mott-Schottky heterointerface in silver/manganese oxide nanorods boosting oxygen reduction, oxygen evolution, and hydrogen evolution reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Li, K., Li, H. et al. In-situ transformed Mott-Schottky heterointerface in silver/manganese oxide nanorods boosting oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Res. 17, 3622–3632 (2024). https://doi.org/10.1007/s12274-023-6240-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6240-7

Keywords

Navigation