Skip to main content
Log in

Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To adapt the practical demand, designing and constructing the multifunctional microwave absorbers (MAs) is the key future direction of research and development. However, effective integrating the multiple functions into a single material remains a huge challenge. Herein, cellular carbon foams (CCFs) with different porous structures were elaborately designed and fabricated in high efficiency through a facile continuous freeze-drying and carbonization processes using a sustainable biomass chitosan as the precursor. The obtained results revealed that the thermal treated temperature and g-C3N4 amount played a great impact on the carbonization degrees, pore sizes, and morphologies of CCFs, which led to their tunable electromagnetic (EM) parameters, improved conduction loss, and polarization loss abilities. Owing to the special cellular structure, the designed CCFs samples simultaneously displayed the strong absorption capabilities, broad absorption bandwidths, and thin matching thicknesses. Meanwhile, the as-prepared CCFs exhibited the strong hydrophobicity and good thermal insulation, endowing its attractive functions of self-cleaning and thermal insulation. Therefore, our findings not only presented a facile approach to produce different porous structures of CCFs, but also provided an effective strategy to develop multifunctional high-performance MAs on basis of three-dimensional CCFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

    Article  CAS  Google Scholar 

  2. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    Article  CAS  Google Scholar 

  3. Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

    Article  ADS  CAS  Google Scholar 

  4. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

    Article  CAS  Google Scholar 

  5. Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

    Article  CAS  Google Scholar 

  6. Xu, H. X.; Zhang, G. Z.; Wang, Y.; Wang, Y. R.; Wang, H. L.; Huang, Y.; Liu, P. B. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 2022, 15, 8705–8713.

    Article  ADS  CAS  Google Scholar 

  7. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

    Article  ADS  CAS  Google Scholar 

  8. Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023, 16, 10666–10677.

    Article  ADS  CAS  Google Scholar 

  9. Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

    Article  Google Scholar 

  10. Lv, H. L.; Zhou, X. D.; Wu, G. L.; Kara, U. I.; Wang, X. G. Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 2021, 9, 19710–19718.

    Article  CAS  Google Scholar 

  11. Chang, Q.; Liang, H. S.; Shi, B.; Li, X. L.; Zhang, Y. T.; Zhang, L. M.; Wu, H. J. Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J. Colloid Interface Sci. 2021, 588, 336–345.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhou, X. J.; Wen, J. W.; Wang, Z. N.; Ma, X. H.; Wu, H. J. Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber. J. Colloid Interface Sci. 2021, 602, 834–845.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

    Article  Google Scholar 

  15. Liu, Q.; Tang, L.; Li, J. Z.; Chen, Y.; Xu, Z. K.; Li, J. T.; Chen, X. Y.; Meng, F. B. Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption, and heat insulation performance. J. Mater. Sci. Technol. 2022, 130, 166–175.

    Article  CAS  Google Scholar 

  16. Wu, Y. L.; Lan, D.; Ren, J. W.; Zhang, S. J. A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation. Mater. Today Phys. 2023, 36, 101178.

    Article  CAS  Google Scholar 

  17. Zhang, Y. L.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Recent advances of MXenes-based optical functional materials. Adv. Photon. Res., in press, https://doi.org/10.1002/adpr.202300224.

  18. Jia, T. M.; Qi, X. S.; Wang, L.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon 2023, 206, 364–374.

    Article  CAS  Google Scholar 

  19. Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760.

    Article  ADS  CAS  Google Scholar 

  20. Li, S. S.; Tang, X. W.; Zhao, X.; Lu, S. J.; Luo, J. T.; Chai, Z. Y.; Ma, T. T.; Lan, Q. Q.; Ma, P. M.; Dong, W. F. et al. Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 2023, 133, 238–248.

    Article  CAS  Google Scholar 

  21. Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

    Article  CAS  Google Scholar 

  22. Huang, X. G.; Yu, G. Y.; Zhang, Y. K.; Zhang, M. J.; Shao, G. F. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131894.

    Article  CAS  Google Scholar 

  23. Yang, W. T.; Sun, J. W.; Liu, D. Y.; Fu, W. W.; Dong, Y. B.; Fu, Y. Q.; Zhu, Y. F. Rational design of hierarchical structure of carbon@polyaniline composite with enhanced microwave absorption properties. Carbon 2022, 194, 114–126.

    Article  CAS  Google Scholar 

  24. Cai, Y. F.; Cheng, Y.; Wang, Z. H.; Fei, G. X.; Lavorgna, M.; Xia, H. S. Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption. Chem. Eng. J. 2023, 457, 141102.

    Article  CAS  Google Scholar 

  25. Xu, J.; Shu, R. W.; Wan, Z. L.; Shi, J. J. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 132, 193–200.

    Article  CAS  Google Scholar 

  26. Li, T.; Zhi, D. D.; Chen, Y.; Li, B.; Zhou, Z. W.; Meng, F. B. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484.

    Article  CAS  Google Scholar 

  27. Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

    Article  CAS  PubMed  Google Scholar 

  28. Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, Z. H.; Zhu, Q. Q.; Liu, Y.; Zhang, Y.; Jia, Z. R.; Wu, G. L. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic, and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137.

    Article  ADS  CAS  Google Scholar 

  30. Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

    Article  CAS  Google Scholar 

  31. Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

    Article  CAS  Google Scholar 

  32. Wang, J. L.; Zhuang, S. T. Chitosan-based materials: Preparation, modification, and application. J. Cleaner Prod. 2022, 355, 131825.

    Article  CAS  Google Scholar 

  33. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  34. Yan, W.; Yan, L.; Jing, C. Y. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity, and degradation mechanisms. Appl. Catal. B: Environ. 2019, 244, 475–485.

    Article  CAS  Google Scholar 

  35. Li, J. W.; Ding, Y. Q.; Yu, N.; Gao, Q.; Fan, X.; Wei, X.; Zhang, G. C.; Ma, Z. L.; He, X. H. Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 2020, 158, 45–54.

    Article  CAS  Google Scholar 

  36. Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

    Article  Google Scholar 

  37. Luo, J. W.; Wang, Y.; Qu, Z. J.; Wang, W.; Yu, D. Anisotropic, multifunctional, and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem. Eng. J. 2022, 442, 136388.

    Article  CAS  Google Scholar 

  38. Guo, C. Z.; Liao, W. L.; Li, Z. B.; Chen, C. G. Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability, and methanol-tolerant performance in alkaline medium. Carbon 2015, 85, 279–288.

    Article  CAS  Google Scholar 

  39. Wang, X. C.; Chen, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Metal-containing carbon nitride compounds: A new functional organic-metal hybrid material. Adv. Mater. 2009, 21, 1609–1612.

    Article  CAS  Google Scholar 

  40. Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465.

    Article  CAS  PubMed  Google Scholar 

  41. He, J.; Gao, S. T.; Zhang, Y. C.; Zhang, X. Z.; Li, H. X. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 104, 98–108.

    Article  CAS  Google Scholar 

  42. Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

    Article  CAS  Google Scholar 

  43. He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem., Int. Ed. 2016, 55, 12582–12594.

    Article  CAS  Google Scholar 

  44. Liu, P. B.; Zhang, Y. Q.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. X. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298.

    Article  CAS  Google Scholar 

  45. Chen, X. T.; Zhou, M.; Zhao, Y.; Gu, W. H.; Wu, Y.; Tang, S. L.; Ji, G. B. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 2022, 24, 5280–5290.

    Article  CAS  Google Scholar 

  46. Inagaki, M.; Ohta, N.; Hishiyama, Y. A. Polyimides as carbon precursors. Carbon 2013, 61, 1–21.

    Article  CAS  Google Scholar 

  47. Guo, L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Cui, L. Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment. ACS Sustainable Chem. Eng. 2019, 7, 9237–9248.

    Article  CAS  Google Scholar 

  48. Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

    Article  CAS  Google Scholar 

  49. Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@Air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

    Article  CAS  Google Scholar 

  50. Xiao, J. X.; Qi, X. S.; Wang, L.; Jing, T.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Anion regulating endows core@shell structured hollow carbon spheres@MoSxSe2−x with tunable and boosted microwave absorption performance. Nano Res. 2023, 16, 5756–5766.

    Article  ADS  CAS  Google Scholar 

  51. Tian, Y.; Estevez, D.; Wei, H. J.; Peng, M. Y.; Zhou, L. P.; Xu, P.; Wu, C.; Yan, M.; Wang, H.; Peng, H. X. et al. Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 2021, 421, 129781.

    Article  CAS  Google Scholar 

  52. Huang, X. M.; Liu, X. H.; Zhang, Y.; Zhou, J. X.; Wu, G. L.; Jia, Z. R. Construction of NiCeOx nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 147, 16–25.

    Article  CAS  Google Scholar 

  53. Xiang, L. L.; Qi, X. S.; Rao, Y. C.; Wang, L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable, and broadband microwave absorption. Mater. Today Phys. 2023, 34, 101030.

    Article  CAS  Google Scholar 

  54. Zhang, W.; Liu, Y. L.; Jin, C.; Shi, Z. Y.; Zhu, L.; Zhang, H.; Jiang, L. J.; Chen, L. Efficient capacitive deionization with 2D/3D heterostructured carbon electrode derived from chitosan and g-C3N4 nanosheets. Desalination 2022, 538, 115933.

    Article  CAS  Google Scholar 

  55. Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem., Int. Ed. 2017, 56, 8974–8980.

    Article  CAS  Google Scholar 

  56. Zhao, B.; Wang, R. M.; Li, Y.; Ren, Y. M.; Li, X.; Guo, X. Q.; Zhang, R.; Park, C. B. Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 2020, 8, 7401–7410.

    Article  CAS  Google Scholar 

  57. Gu, W. H.; Sheng, J. Q.; Huang, Q. Q.; Wang, G. H.; Chen, J. B.; Ji, G. B. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 102.

    Article  ADS  CAS  Google Scholar 

  58. Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

    Article  ADS  CAS  Google Scholar 

  59. Zhang, M.; Zhao, L. B.; Zhao, W. X.; Wang, T.; Yuan, L. Y.; Guo, Y. Y.; Xie, Y. X.; Cheng, T. T.; Meng, A. L.; Li, Z. J. Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano Res. 2023, 16, 3558–3569.

    ADS  CAS  Google Scholar 

  60. He, J.; Han, M. J.; Wen, K.; Liu, C. L.; Zhang, W.; Liu, Y. Q.; Su, X. G.; Zhang, C. R.; Liang, C. B. Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos. Sci. Technol. 2023, 231, 109799.

    Article  CAS  Google Scholar 

  61. Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

    Article  ADS  CAS  Google Scholar 

  62. Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.

  63. Huang, X. G.; Wei, J. W.; Zhang, Y. K.; Qian, B. B.; Jia, Q.; Liu, J.; Zhao, X. J.; Shao, G. F. Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano- Micro Lett. 2022, 14, 107.

    Article  ADS  CAS  Google Scholar 

  64. Guo, Z. Z.; Ren, P. G.; Wang, J.; Hou, X.; Tang, J. H.; Liu, Z. B.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Methylene blue adsorption derived thermal insulating N, S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem. Eng. J. 2023, 451, 138667.

    Article  CAS  Google Scholar 

  65. Quan, B.; Liang, X. H.; Ji, G. B.; Zhang, Y. N.; Xu, G. Y.; Du, Y. W. Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors. ACS Appl. Mater. Interfaces 2017, 9, 38814–38823.

    Article  CAS  PubMed  Google Scholar 

  66. Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

    Article  Google Scholar 

  67. Zhang, H. X.; Sun, K. G.; Sun, K. K.; Chen, L.; Wu, G. L. Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 242–252.

    Article  CAS  Google Scholar 

  68. Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.

    Article  ADS  CAS  Google Scholar 

  69. Kim, S. H.; Lee, S. Y.; Zhang, Y. L.; Park, S. J.; Gu, J. W. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci., in press, https://doi.org/10.1002/advs.202303104.

  70. Yu, L. Y.; Zhu, Q. Q.; Guo, Z. Q.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L. Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures. J. Mater. Sci. Technol. 2024, 170, 129–139.

    Article  Google Scholar 

  71. Liang, C. B.; Zhang, W.; Liu, C. L.; He, J.; Xiang, Y.; Han, M. J.; Tong, Z. W.; Liu, Y. Q. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 2023, 471, 144500.

    Article  CAS  Google Scholar 

  72. Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.

    Article  Google Scholar 

  73. Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; Xia, Y. Y. et al. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Platform of Science and Technology and Talent Team Plan of Guizhou province (No. GCC[2023]007), the Doctorial Start-up Fund of Guizhou University (No. 2011-05), the Fok Ying Tung Education Foundation (No. 171095), the Talent Project of Guizhou Provincial Education Department (No. 2022-094), the Guizhou Provincial Science and Technology Projects (No. ZK 2022-General 044), and the National Natural Science Foundation of China (No. 11964006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosi Qi.

Electronic Supplementary Material

12274_2023_6236_MOESM1_ESM.pdf

Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, B., Hao, Y., Qi, X. et al. Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res. 17, 927–938 (2024). https://doi.org/10.1007/s12274-023-6236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6236-7

Keywords

Navigation