Skip to main content
Log in

Regulating metalloimmunology with nanomedicine for cancer therapy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metals are essential components of both micronutrients and macronutrients in living organisms and are involved in a variety of immune processes in the forms of free ions or protein-coupled complexes (metalloproteins). Multiple aspects of the immune system, from the structural and functional control of immune-related proteins to the cellular responses to immunotherapy, could be affected by metals. Therefore, the employment of metal for the regulation of immunity, termed as metalloimmunology, is gaining interest as a prevalent and efficacious approach to combating cancer. However, the manipulation of metalloimmunology using traditional drugs presents several challenges, including limited bioavailability, adverse effects, and a lack of targeting specificity. This review provides an overview of the latest findings in metal and metal-regulatory therapeutic agents for the treatment of cancer. Essential trace metal elements, such as iron, zinc, copper, manganese, magnesium, and calcium, as well as heavy metal drugs and their mechanisms of action, will be discussed with a particular focus on their roles in regulating the tumor-immune interplay. The latest nanotechnology employed in the administration of metal-regulatory drugs and the design concepts for tailored therapeutic interventions will be discussed. These concepts and information offer promising clinical possibilities of modulating cancer immunology by targeting metal metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maret, W. The metals in the biological periodic system of the elements: Concepts and conjectures. Int. J. Mol. Sci. 2016, 17, 66.

    Google Scholar 

  2. Chellan, P.; Sadler, P. J. The elements of life and medicines. The elements of life and medicines. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140182.

    Google Scholar 

  3. Brini, M.; Cali, T.; Ottolini, D.; Carafoli, E. The plasma membrane calcium pump in health and disease. FEBS J 2013, 280, 5385–5397.

    CAS  Google Scholar 

  4. Ko, Y. H.; Hong, S.; Pedersen, P. L. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. J. Biol. Chem. 1999, 274, 28853–28856.

    CAS  Google Scholar 

  5. Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 2013, 4, 82–91.

    CAS  Google Scholar 

  6. Zhang, K.; Qi, C.; Cai, K. Y. Manganese-based tumor immunotherapy. Adv. Mater. 2023, 35(19): 2205409.

    CAS  Google Scholar 

  7. Lv, M. Z.; Chen, M. X.; Zhang, R.; Zhang, W.; Wang, C. G.; Zhang, Y.; Wei, X. M.; Guan, Y. K.; Liu, J. J.; Feng, K. C. et al. Manganese is critical for antitumor immune responses via cGASSTING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966–979.

    CAS  Google Scholar 

  8. Yamanaka, R.; Shindo, Y.; Oka, K. Magnesium is a key player in neuronal maturation and neuropathology. Int. J. Mol. Sci. 2019, 20, 3439.

    CAS  Google Scholar 

  9. Wolf, F. I.; Maier, J. A. M.; Nasulewicz, A.; Feillet-Coudray, C.; Simonacci, M.; Mazur, A.; Cittadini, A. Magnesium and neoplasia: From carcinogenesis to tumor growth and progression or treatment. Arch. Biochem. Biophys. 2007, 458, 24–32.

    CAS  Google Scholar 

  10. Vela, D. Iron in the tumor microenvironment. Adv. Exp. Med. Biol. 2020, 1259, 39–51.

    CAS  Google Scholar 

  11. Lymburner, S.; McLeod, S.; Purtzki, M.; Roskelley, C.; Xu, Z. M. Zinc inhibits magnesium-dependent migration of human breast cancer MDA-MB-231 cells on fibronectin. J. Nutr. Biochem. 2013, 24, 1034–1040.

    CAS  Google Scholar 

  12. Stelling, M. P.; Motta, J. M.; Mashid, M.; Johnson, W. E.; Pavão, M. S.; Farrell, N. P. Metal ions and the extracellular matrix in tumor migration. FEBS J. 2019, 286, 2950–2964.

    CAS  Google Scholar 

  13. Ruiz, L. M.; Libedinsky, A.; Elorza, A. A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci. 2021, 8, 711227.

    CAS  Google Scholar 

  14. D’Andrea, L. D.; Romanelli, A.; Di Stasi, R.; Pedone, C. Bioinorganic aspects of angiogenesis. Dalton Trans. 2010, 39, 7625–7636.

    Google Scholar 

  15. Hung, K. W.; Kumar, T. K. S.; Kathir, K. M.; Xu, P.; Ni, F.; Ji, H. H.; Chen, M. C.; Yang, C. C.; Lin, F. P.; Chiu, I. M.; Yu, C. Solution structure of the ligand binding domain of the fibroblast growth factor receptor: Role of heparin in the activation of the receptor. Biochemistry 2005, 44, 15787–15798.

    CAS  Google Scholar 

  16. Grasso, G.; Santoro, A. M.; Magri, A.; La Mendola, D.; Tomasello, M. F.; Zimbone, S.; Rizzarelli, E. The inorganic perspective of VEGF: Interactions of Cu2+ with peptides encompassing a recognition domain of the VEGF receptor. J. Inorg. Biochem. 2016, 159, 149–158.

    CAS  Google Scholar 

  17. Saghiri, M. A.; Asatourian, A.; Orangi, J.; Sorenson, C. M.; Sheibani, N. Functional role of inorganic trace elements in angiogenesis-Part I: N, Fe, Se, P, Au, and Ca. Crit. Rev. Oncol./Hematol. 2015, 96, 129–142.

    Google Scholar 

  18. Dongiovanni, P.; Valenti, L.; Ludovica Fracanzani, A.; Gatti, S.; Cairo, G.; Fargion, S. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am. J. Pathol. 2008, 172, 738–747.

    CAS  Google Scholar 

  19. Motz, G. T.; Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 2013, 39, 61–73.

    CAS  Google Scholar 

  20. Bagnato, A.; Rosanò, L. The endothelin axis in cancer. Int. J. Biochem. Cell Biol. 2008, 40, 1443–1451.

    CAS  Google Scholar 

  21. Buckanovich, R. J.; Facciabene, A.; Kim, S.; Benencia, F.; Sasaroli, D.; Balint, K.; Katsaros, D.; O’Brien-Jenkins, A.; Gimotty, P. A.; Coukos, G. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 2008, 14, 28–36.

    CAS  Google Scholar 

  22. Lanitis, E.; Dangaj, D.; Irving, M.; Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 2017, 28, XII18–XII32.

    CAS  Google Scholar 

  23. Chen, S. C.; Wu, P. C.; Wang, C. Y.; Kuo, P. L. Evaluation of cytotoxic T lymphocyte-mediated anticancer response against tumor interstitium-simulating physical barriers. Sci. Rep. 2020, 10, 13662.

    CAS  Google Scholar 

  24. Deng, J.; Fleming, J. B. Inflammation and myeloid cells in cancer progression and metastasis. Front. Cell Dev. Biol. 2022, 9, 759691.

    Google Scholar 

  25. Gregory, A. D.; Houghton, A. M. Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 2011, 71, 2411–2416.

    CAS  Google Scholar 

  26. Noy, R.; Pollard, J. W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.

    CAS  Google Scholar 

  27. Alizadeh, A. A.; Aranda, V.; Bardelli, A.; Blanpain, C.; Bock, C.; Borowski, C.; Caldas, C.; Califano, A.; Doherty, M.; Elsner, M. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 2015, 21, 846–853.

    CAS  Google Scholar 

  28. Porru, M.; Pompili, L.; Caruso, C.; Biroccio, A.; Leonetti, C. Targeting KRAS in metastatic colorectal cancer: Current strategies and emerging opportunities. J. Exp. Clin. Cancer Res. 2018, 37, 57.

    Google Scholar 

  29. Papalexi, E.; Mimitou, E. P.; Butler, A. W.; Foster, S.; Bracken, B.; Mauck III, W. M.; Wessels, H. H.; Hao, Y. H.; Yeung, B. Z.; Smibert, P. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 2021, 53, 322–331.

    CAS  Google Scholar 

  30. Bai, R. L.; Chen, N. F.; Li, L. Y.; Du, N. W.; Bai, L.; Lv, Z.; Tian, H. M.; Cui, J. W. Mechanisms of cancer resistance to immunotherapy. Front. Oncol. 2020, 10, 1290.

    Google Scholar 

  31. Tie, Y.; Tang, F.; Wei, Y. Q.; Wei, X. W. Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J. Hematol. Oncol. 2022, 15, 61.

    CAS  Google Scholar 

  32. Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 3801.

    CAS  Google Scholar 

  33. Marei, H. E.; Hasan, A.; Pozzoli, G.; Cenciarelli, C. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): Potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int. 2023, 23, 64.

    CAS  Google Scholar 

  34. Sterner, R. C.; Sterner, R. M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69.

    Google Scholar 

  35. Mikkilineni, L.; Kochenderfer, J. N. CAR T cell therapies for patients with multiple myeloma. Nat. Rev. Clin. Oncol. 2021, 18, 71–84.

    CAS  Google Scholar 

  36. Nair, R.; Westin, J. CAR T-cells. Adv. Exp. Med. Biol. 2020, 1244, 215–233.

    CAS  Google Scholar 

  37. Wang, C. G.; Zhang, R.; Wei, X. M.; Lv, M. Z.; Jiang, Z. F. Metalloimmunology: The metal ion-controlled immunity. Adv. Immunol. 2020, 145, 187–241.

    CAS  Google Scholar 

  38. Gao, H.; Dai, W.; Zhao, L.; Min, J. X.; Wang, F. D. The role of zinc and zinc homeostasis in macrophage function. J. Immunol. Res. 2018, 2018, 6872621.

    Google Scholar 

  39. Haase, H.; Rink, L. Zinc signals and immune function. Biofactors 2014, 40, 27–40.

    CAS  Google Scholar 

  40. Kitamura, H.; Morikawa, H.; Kamon, H.; Iguchi, M.; Hojyo, S.; Fukada, T.; Yamashita, S.; Kaisho, T.; Akira, S.; Murakami, M. et al. Toll- like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat. Immunol. 2006, 7, 971–977.

    CAS  Google Scholar 

  41. Yu, M. C.; Lee, W. W.; Tomar, D.; Pryshchep, S.; Czesnikiewicz-Guzik, M.; Lamar, D. L.; Li, G. J.; Singh, K.; Tian, L.; Weyand, C. M. et al. Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med. 2011, 208, 775–785.

    CAS  Google Scholar 

  42. Du, M. J.; Chen, Z. J. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018, 361, 704–709.

    CAS  Google Scholar 

  43. Fetherolf, M. M.; Boyd, S. D.; Taylor, A. B.; Kim, H. J.; Wohlschlegel, J. A.; Blackburn, N. J.; Hart, P. J.; Winge, D. R.; Winkler, D. D. Copper- zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J. Biol. Chem. 2017, 292, 12025–12040.

    CAS  Google Scholar 

  44. Lötscher, J.; Martí i Líndez, A. A.; Kirchhammer, N.; Cribioli, E.; Giordano Attianese, G. M. P.; Trefny, M. P.; Lenz, M.; Rothschild, S. I.; Strati, P.; Künzli, M. et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function. Cell 2022, 185, 585–602.e29.

    Google Scholar 

  45. Zanzen, U.; Bovenkamp-Langlois, L.; Klysubun, W.; Hormes, J.; Prange, A. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: An X-ray absorption near-edge structure (XANES) spectroscopy study. Arch. Microbiol. 2018, 200, 401–412.

    CAS  Google Scholar 

  46. Solier, S.; Müller, S.; Cañeque, T.; Versini, A.; Mansart, A.; Sindikubwabo, F.; Baron, L.; Emam, L.; Gestraud, P.; Pantoș, G. D. et al. A druggable copper-signalling pathway that drives inflammation. Nature 2023, 617, 386–394.

    CAS  Google Scholar 

  47. Chen, L. Y.; Min, J. X.; Wang, F. D. Copper homeostasis and cuproptosis in health and disease. Sig. Transduct. Target. Ther. 2022, 7, 378.

    CAS  Google Scholar 

  48. Bogdan, A. R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem. Sci. 2016, 41, 274–286.

    CAS  Google Scholar 

  49. Lill, R.; Freibert, S. A. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu. Rev. Biochem. 2020, 89, 471–499.

    CAS  Google Scholar 

  50. Ye, Y. Q.; Kuang, X. W.; Xie, Z. Z.; Liang, L.; Zhang, Z.; Zhang, Y. C.; Ma, F. Y.; Gao, Q.; Chang, R. M.; Lee, H. H. et al. Small-molecule MMP2/MMP9 inhibitor SB-3CT modulates tumor immune surveillance by regulating PD-L1. Genome Med. 2020, 12, 83.

    CAS  Google Scholar 

  51. Venkataramani, V. Iron homeostasis and metabolism: Two sides of a coin. Adv. Exp. Med. Biol. 2021, 1301, 25–40.

    CAS  Google Scholar 

  52. Blatt, J.; Stitely, S. Antineuroblastoma activity of desferoxamine in human cell lines. Cancer Res. 1987, 47, 1749–1750.

    CAS  Google Scholar 

  53. Reddel, R. R.; Hedley, D. W.; Sutherland, R. L. Cell cycle effects of iron depletion on T-47D human breast cancer cells. Exp. Cell Res. 1985, 161, 277–284.

    CAS  Google Scholar 

  54. Lui, G. Y. L.; Obeidy, P.; Ford, S. J.; Tselepis, C.; Sharp, D. M.; Jansson, P. J.; Kalinowski, D. S.; Kovacevic, Z.; Lovejoy, D. B.; Richardson, D. R. The iron chelator, deferasirox, as a novel strategy for cancer treatment: Oral activity against human lung tumor xenografts and molecular mechanism of action. Mol. Pharmacol. 2013, 83, 179–190.

    CAS  Google Scholar 

  55. Albalawi, F.; Hussein, M. Z.; Fakurazi, S.; Masarudin, M. J. Engineered nanomaterials: The challenges and opportunities for nanomedicines. Int. J. Nanomedicine 2021, 16, 161–184.

    Google Scholar 

  56. Maine, E.; Thomas, V. J.; Bliemel, M.; Murira, A.; Utterback, J. The emergence of the nanobiotechnology industry. Nat. Nanotechnol. 2014, 9, 2–5.

    CAS  Google Scholar 

  57. Hajipour, M. J.; Saei, A. A.; Walker, E. D.; Conley, B.; Omidi, Y.; Lee, K. B.; Mahmoudi, M. Nanotechnology for targeted detection and removal of bacteria: Opportunities and challenges. Adv. Sci. 2021, 8, 2100556.

    CAS  Google Scholar 

  58. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach. Nat. Rev. Drug Discov. 2009, 8, 579–591.

    CAS  Google Scholar 

  59. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

    CAS  Google Scholar 

  60. Wilczewska, A. Z.; Niemirowicz, K.; Markiewicz, K. H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64, 1020–1037.

    CAS  Google Scholar 

  61. Kumar, P.; Yadav, A.; Patel, S. N.; Islam, M.; Pan, Q.; Merajver, S. D.; Teknos, T. N. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis. Mol. Cancer 2010, 9, 206.

    Google Scholar 

  62. Yoshii, J.; Yoshiji, H.; Kuriyama, S.; Ikenaka, Y.; Noguchi, R.; Okuda, H.; Tsujinoue, H.; Nakatani, T.; Kishida, H.; Nakae, D. et al. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int. J. Cancer 2001, 94, 768–773.

    CAS  Google Scholar 

  63. Fu, S. Q.; Naing, A.; Fu, C.; Kuo, M. T.; Kurzrock, R. Overcoming platinum resistance through the use of a copper-lowering agent. Mol. Cancer Ther. 2012, 11, 1221–1225.

    CAS  Google Scholar 

  64. Cui, L. Y.; Gouw, A. M.; LaGory, E. L.; Guo, S. H.; Attarwala, N.; Tang, Y.; Qi, J.; Chen, Y. S.; Gao, Z.; Casey, K. M. et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat. Biotechnol. 2021, 39, 357–367.

    CAS  Google Scholar 

  65. Lowndes, S. A.; Adams, A.; Timms, A.; Fisher, N.; Smythe, J.; Watt, S. M.; Joel, S.; Donate, F.; Hayward, C.; Reich, S. et al. Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors. Clin. Cancer Res. 2008, 14, 7526–7534.

    CAS  Google Scholar 

  66. Sandoval-Acuna, C.; Torrealba, N.; Tomkova, V.; Jadhav, S. B.; Blazkova, K.; Merta, L.; Lettlova, S.; Adamcová, M. K.; Rosel, D.; Brábek, J. et al. Targeting mitochondrial iron metabolism suppresses tumor growth and metastasis by inducing mitochondrial dysfunction and mitophagy. Cancer Res. 2021, 81, 2289–2303.

    CAS  Google Scholar 

  67. Ford, S. J.; Obeidy, P.; Lovejoy, D. B.; Bedford, M.; Nichols, L.; Chadwick, C.; Tucker, O.; Lui, G. Y. L.; Kalinowski, D. S.; Jansson, P. J. et al. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo. Br. J. Pharmacol. 2013, 168, 1316–1328.

    CAS  Google Scholar 

  68. Dixon, K. M.; Lui, G. Y. L.; Kovacevic, Z.; Zhang, D.; Yao, M.; Chen, Z.; Dong, Q.; Assinder, S. J.; Richardson, D. R. Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer 2013, 108, 409–419.

    CAS  Google Scholar 

  69. Stuart, C. H.; Singh, R.; Smith, T. L.; D’Agostino, R. Jr.; Caudell, D.; Balaji, K. C.; Gmeiner, W. H. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn2+ chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine 2016, 11, 1207–1222.

    CAS  Google Scholar 

  70. Koppenol, W. H.; Hider, R. H. Iron and redox cycling. Do’s and don’ts. Free Radic. Biol. Med. 2019, 133, 3–10.

    CAS  Google Scholar 

  71. Muckenthaler, M. U.; Rivella, S.; Hentze, M. W.; Galy, B. A red carpet for iron metabolism. Cell 2017, 168, 344–361.

    CAS  Google Scholar 

  72. Ganz, T. Iron and infection. Int. J. Hematol. 2018, 107, 7–15.

    CAS  Google Scholar 

  73. Camaschella, C. Iron deficiency: New insights into diagnosis and treatment. Hematology 2015, 2015, 8–13.

    Google Scholar 

  74. Aisen, P.; Enns, C.; Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 2001, 33, 940–959.

    CAS  Google Scholar 

  75. Koskenkorva-Frank, T. S.; Weiss, G.; Koppenol, W. H.; Burckhardt, S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 2013, 65, 1174–1194.

    CAS  Google Scholar 

  76. Yuan, H.; Han, Z.; Chen, Y. C.; Qi, F.; Fang, H. B.; Guo, Z. J.; Zhang, S. R.; He, W. J. Ferroptosis photoinduced by new cyclometalated iridium(III) complexes and its synergism with apoptosis in tumor cell inhibition. Angew. Chem., Int. Ed. 2021, 60, 8174–8181.

    CAS  Google Scholar 

  77. Ni, S.; Yuan, Y.; Kuang, Y. B.; Li, X. L. Iron metabolism and immune regulation. Front. Immunol. 2022, 13, 816282.

    CAS  Google Scholar 

  78. Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

    CAS  Google Scholar 

  79. Wen, Q. R.; Liu, J.; Kang, R.; Zhou, B. R.; Tang, D. L. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 2019, 510, 278–283.

    CAS  Google Scholar 

  80. Dai, E. Y.; Han, L.; Liu, J.; Xie, Y. C.; Kroemer, G.; Klionsky, D. J.; Zeh, H. J.; Kang, R.; Wang, J.; Tang, D. L. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 2020, 16, 2069–2083.

    CAS  Google Scholar 

  81. Dai, E. Y.; Han, L.; Liu, J.; Xie, Y. C.; Zeh, H. J.; Kang, R.; Bai, L. L.; Tang, D. L. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat. Commun. 2020, 11, 6339.

    CAS  Google Scholar 

  82. Lei, G.; Zhuang, L.; Gan, B. Y. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022, 22, 381–396.

    CAS  Google Scholar 

  83. Wang, W. M.; Green, M.; Choi, J. E.; Gijon, M.; Kennedy, P. D.; Johnson, J. K.; Liao, P.; Lang, X. T.; Kryczek, I.; Sell, A. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019, 569, 270–274.

    CAS  Google Scholar 

  84. Sato, H.; Fujiwara, K.; Sagara, J.; Bannai, S. Induction of cystine transport activity in mouse peritoneal macrophages by bacterial lipopolysaccharide. Biochem. J. 1995, 310, 547–551.

    CAS  Google Scholar 

  85. Chasapis, C. T.; Ntoupa, P. S. A.; Spiliopoulou, C. A.; Stefanidou, M. E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460.

    CAS  Google Scholar 

  86. Malemud, C. J. Matrix metalloproteinases (MMPs) in health and disease: An overview. Front. Biosci. 2006, 11, 1696–1701.

    CAS  Google Scholar 

  87. Marchant, D. J.; Bellac, C. L.; Moraes, T. J.; Wadsworth, S. J.; Dufour, A.; Butler, G. S.; Bilawchuk, L. M.; Hendry, R. G.; Robertson, A. G.; Cheung, C. T. et al. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat. Med. 2014, 20, 493–502.

    CAS  Google Scholar 

  88. He, M. K.; Le, Y.; Zhang, Y. F.; Ouyang, H. Y.; Jian, P. E.; Yu, Z. S.; Wang, L. J.; Shi, M. Matrix metalloproteinase 12 expression is associated with tumor FOXP3+ regulatory T cell infiltration and poor prognosis in hepatocellular carcinoma. Oncol. Lett. 2018, 16, 475–482.

    Google Scholar 

  89. Düsterhöft, S.; Lokau, J.; Garbers, C. The metalloprotease ADAM17 in inflammation and cancer. Pathol. -Res. Pract. 2019, 215, 152410.

    Google Scholar 

  90. Wang, K.; Xuan, Z. X.; Liu, X. Y.; Zheng, M. L.; Yang, C.; Wang, H. Y. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front. Immunol. 2022, 13, 1059376.

    CAS  Google Scholar 

  91. Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285.

    CAS  Google Scholar 

  92. Tuerk, M. J.; Fazel, N. Zinc deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143.

    CAS  Google Scholar 

  93. Wessels, I.; Haase, H.; Engelhardt, G.; Rink, L.; Uciechowski, P. Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J. Nutr. Biochem. 2013, 24, 289–297.

    CAS  Google Scholar 

  94. Knutson, K. L.; Disis, M. L. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol., Immunother. 2005, 54, 721–728.

    CAS  Google Scholar 

  95. Kitabayashi, C.; Fukada, T.; Kanamoto, M.; Ohashi, W.; Hojyo, S.; Atsumi, T.; Ueda, N.; Azuma, I.; Hirota, H.; Murakami, M. et al. Zinc suppresses Th17 development via inhibition of STAT3 activation. Int. Immunol. 2010, 22, 375–386.

    CAS  Google Scholar 

  96. Prasad, A. S. Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J. Infect. Dis. 2000, 182, S62–S68.

    CAS  Google Scholar 

  97. Sandstead, H. H.; Prasad, A. S.; Penland, J. G.; Beck, F. W. J.; Kaplan, J.; Egger, N. G.; Alcock, N. W.; Carroll, R. M.; Ramanujam, V. M. S.; Dayal, H. H. et al. Zinc deficiency in Mexican American children: Influence of zinc and other micronutrients on T cells, cytokines, and antiinflammatory plasma proteins. Am. J. Clin. Nutr. 2008, 88, 1067–1073.

    CAS  Google Scholar 

  98. Haase, H.; Rink, L. The immune system and the impact of zinc during aging. Immun. Ageing 2009, 6, 9.

    Google Scholar 

  99. Baltaci, S. B.; Mogulkoc, R.; Baltaci, A. K.; Emsen, A.; Artac, H. The effect of zinc and melatonin supplementation on immunity parameters in breast cancer induced by DMBA in rats. Arch. Physiol. Biochem. 2018, 124, 247–252.

    CAS  Google Scholar 

  100. Yang, K. T.; Han, W. B.; Jiang, X. M.; Piffko, A.; Bugno, J.; Han, C. H.; Li, S. R.; Liang, H.; Xu, Z. W.; Zheng, W. X. et al. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. Nat. Nanotechnol. 2022, 17, 1322–1331.

    CAS  Google Scholar 

  101. Olivares, M.; Uauy, R. Copper as an essential nutrient. Am. J. Clin. Nutr. 1996, 63, 791s–796s.

    CAS  Google Scholar 

  102. Turnlund, J. R.; Keyes, W. R.; Anderson, H. L.; Acord, L. L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am. J. Clin. Nutr. 1989, 49, 870–878.

    CAS  Google Scholar 

  103. Kim, B. E.; Nevitt, T.; Thiele, D. J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 2008, 4, 176–185.

    CAS  Google Scholar 

  104. Lutsenko, S. Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol. 2010, 14, 211–217.

    CAS  Google Scholar 

  105. Kaiafa, G. D.; Saouli, Z.; Diamantidis, M. D.; Kontoninas, Z.; Voulgaridou, V.; Raptaki, M.; Arampatzi, S.; Chatzidimitriou, M.; Perifanis, V. Copper levels in patients with hematological malignancies. Eur. J. Intern. Med. 2012, 23, 738–741.

    CAS  Google Scholar 

  106. Lowndes, S. A.; Harris, A. L. The role of copper in tumour angiogenesis. J. Mammary Gland Biol. Neoplasia 2005, 10, 299–310.

    Google Scholar 

  107. Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R. D. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261.

    CAS  Google Scholar 

  108. Rowland, E. A.; Snowden, C. K.; Cristea, I. M. Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease. Curr. Opin. Chem. Biol. 2018, 42, 76–85.

    CAS  Google Scholar 

  109. Antoniades, V.; Sioga, A.; Dietrich, E. M.; Meditskou, S.; Ekonomou, L.; Antoniades, K. Is copper chelation an effective anti-angiogenic strategy for cancer treatment. Med. Hypotheses 2013, 81, 1159–1163.

    CAS  Google Scholar 

  110. Wang, Q. B.; Jing, Z. Y.; Hu, X. M.; Lu, W. X.; Wang, P. Synthesis, structure, and heterogeneous Fenton reaction of new Cu(II)-based discrete Cu2Lx coordination complexes. CrystEngComm 2021, 23, 216–220.

    CAS  Google Scholar 

  111. Li, H. M.; Liu, Y. F.; Li, S. L.; Zhang, S. L.; Huang, B.; Cui, R.; Liu, Y.; Jiang, P. Cu- Doped black phosphorus quantum dots as multifunctional Fenton nanocatalyst for boosting synergistically enhanced H2O2-guided and photothermal chemodynamic cancer therapy. Nanoscale 2022, 14, 3788–3800.

    CAS  Google Scholar 

  112. Tong, K. K.; Hannigan, B. M.; McKerr, G.; Strain, J. J. The effects of copper deficiency on human lymphoid and myeloid cells: An in vitro model. Br. J. Nutr. 1996, 75, 97–108.

    CAS  Google Scholar 

  113. Muñoz, C.; López, M.; Olivares, M.; Pizarro, F.; Arredondo, M.; Araya, M. Differential response of interleukin-2 production to chronic copper supplementation in healthy humans. Eur. Cytokine Netw. 2005, 16, 261–265.

    Google Scholar 

  114. Voli, F.; Valli, E.; Lerra, L.; Kimpton, K.; Saletta, F.; Giorgi, F. M.; Mercatelli, D.; Rouaen, J. R. C.; Shen, S.; Murray, J. E. et al. Intratumoral Copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 2020, 80, 4129–4144.

    CAS  Google Scholar 

  115. Horning, K. J.; Caito, S. W.; Tipps, K. G.; Bowman, A. B.; Aschner, M. Manganese is essential for neuronal health. Annu. Rev. Nutr. 2015, 35, 71–108.

    CAS  Google Scholar 

  116. Yang, G. B.; Ji, J. S.; Liu, Z. Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy. WIREs Nanomed. Nanobiotechnol. 2021, 13, e1720.

    CAS  Google Scholar 

  117. Sun, Z. L.; Wang, Z. Y.; Wang, T.; Wang, J. J.; Zhang, H. T.; Li, Z. Y.; Wang, S. R.; Sheng, F. G.; Yu, J.; Hou, Y. L. Biodegradable MnO-based nanoparticles with engineering surface for tumor therapy: Simultaneous Fenton-like ion delivery and immune activation. ACS Nano 2022, 16, 11862–11875.

    CAS  Google Scholar 

  118. Hou, L.; Tian, C. Y.; Yan, Y. S.; Zhang, L. W.; Zhang, H. J.; Zhang, Z. Z. Manganese- based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano 2020, 14, 3927–3940.

    CAS  Google Scholar 

  119. Curtsinger, J. M.; Lins, D. C.; Mescher, M. F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C) to TCR/CD8 signaling in response to antigen. J. Immunol. 1998, 160, 3236–3243.

    CAS  Google Scholar 

  120. Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

    Google Scholar 

  121. Schürpf, T.; Springer, T. A. Regulation of integrin affinity on cell surfaces. EMBO J. 2011, 30, 4712–4727.

    Google Scholar 

  122. Oyanagi, K.; Kawakami, E.; Kikuchi-Horie, K.; Ohara, K.; Ogata, K.; Takahama, S.; Wada, M.; Kihira, T.; Yasui, M. Magnesium deficiency over generations in rats with special references to the pathogenesis of the Parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Neuropathology 2006, 26, 115–128.

    Google Scholar 

  123. Komiya, Y.; Su, L. T.; Chen, H. C.; Habas, R.; Runnels, L. W. Magnesium and embryonic development. Magnes. Res. 2014, 27, 1–8.

    Google Scholar 

  124. Romani, A. M. P. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 2011, 512, 1–23.

    CAS  Google Scholar 

  125. Wolf, F. I.; Trapani, V. Cell (patho)physiology of magnesium. Clin. Sci. 2008, 114, 27–35.

    CAS  Google Scholar 

  126. de Baaij, J. H. F.; Hoenderop, J. G. J.; Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46.

    Google Scholar 

  127. Qu, X. H.; Jin, F. C.; Hao, Y. Q.; Li, H. W.; Tang, T. T.; Wang, H.; Yan, W. L.; Dai, K. R. Magnesium and the risk of cardiovascular events: A meta-analysis of prospective cohort studies. PLoS One 2013, 8, e57720.

    CAS  Google Scholar 

  128. Costello, R. B.; Nielsen, F. Interpreting magnesium status to enhance clinical care: Key indicators. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 504–511.

    CAS  Google Scholar 

  129. Larsson, S. C.; Orsini, N.; Wolk, A. Dietary magnesium intake and risk of stroke: A meta-analysis of prospective studies. Am. J. Clin. Nutr. 2012, 95, 362–366.

    CAS  Google Scholar 

  130. Sakaguchi, Y.; Fujii, N.; Shoji, T.; Hayashi, T.; Rakugi, H.; Isaka, Y. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int. 2014, 85, 174–181.

    CAS  Google Scholar 

  131. Schulze, M. B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch. Intern. Med. 2007, 167, 956–965.

    CAS  Google Scholar 

  132. Nasulewicz, A.; Wietrzyk, J.; Wolf, F. I.; Dzimira, S.; Madej, J.; Maier, J. A. M.; Rayssiguier, Y.; Mazur, A.; Opolski, A. Magnesium deficiency inhibits primary tumor growth but favors metastasis in mice. Biochim. Biophys. Acta (BBA)- Mol. Basis Dis. 2004, 1739, 26–32.

    CAS  Google Scholar 

  133. Kanellopoulou, C.; George, A. B.; Masutani, E.; Cannons, J. L.; Ravell, J. C.; Yamamoto, T. N.; Smelkinson, M. G.; Jiang, P. D.; Matsuda-Lennikov, M.; Reilley, J. et al. Mg2+ regulation of kinase signaling and immune function. J. Exp. Med. 2019, 216, 1828–1842.

    CAS  Google Scholar 

  134. Mazur, A.; Maier, J. A. M.; Rock, E.; Gueux, E.; Nowacki, W.; Rayssiguier, Y. Magnesium and the inflammatory response: Potential physiopathological implications. Arch. Biochem. Biophys. 2007, 458, 48–56.

    CAS  Google Scholar 

  135. Li, D.; Molldrem, J. J.; Ma, Q. LFA-1 regulates CD8+ T cell activation via T cell receptor-mediated and LFA-1-mediated Erk1/2 signal pathways. J. Biol. Chem. 2009, 284, 21001–21010.

    CAS  Google Scholar 

  136. Gérard, A.; Cope, A. P.; Kemper, C.; Alon, R.; Köchl, R. LFA-1 in T cell priming, differentiation, and effector functions. Trends Immunol. 2001, 42, 706–722.

    Google Scholar 

  137. Kiyoi, H.; Morris, J. D.; Oh, I.; Maeda, Y.; Minami, H.; Miyamoto, T.; Sakura, T.; Iida, H.; Tuglus, C. A.; Chen, Y. Q. et al. Phase 1b/2 study of blinatumomab in Japanese adults with relapsed/refractory acute lymphoblastic leukemia. Cancer Sci. 2020, 111, 1314–1323.

    CAS  Google Scholar 

  138. Abramson, J. S.; Palomba, M. L.; Gordon, L. I.; Lunning, M. A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D. G.; Andreadis, C. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852.

    Google Scholar 

  139. Locke, F. L.; Ghobadi, A.; Jacobson, C. A.; Miklos, D. B.; Lekakis, L. J.; Oluwole, O. O.; Lin, Y.; Braunschweig, I.; Hill, B. T.; Timmerman, J. M. et al. Long- term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42.

    CAS  Google Scholar 

  140. Carafoli, E. Calcium signaling: A tale for all seasons. Proc. Natl. Acad. Sci. USA 2002, 99, 1115–1122.

    CAS  Google Scholar 

  141. Sarode, G. S.; Sarode, S. C.; Patil, S. Multifaceted role of calcium in cancer. J. Contemp. Dent. Pract. 2017, 18, 1–2.

    Google Scholar 

  142. Vig, M.; Kinet, J. P. Calcium signaling in immune cells. Nat. Immunol. 2009, 10, 21–27.

    CAS  Google Scholar 

  143. Chen, J. Q.; Yao, Y. D.; Gong, C.; Yu, F. Y.; Su, S. C.; Chen, J. N.; Liu, B. D.; Deng, H.; Wang, F. S.; Lin, L. et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011, 19, 541–555.

    CAS  Google Scholar 

  144. Raghavan, M.; Wijeyesakere, S. J.; Peters, L. R.; Del Cid, N. Calreticulin in the immune system: Ins and outs. Trends Immunol 2013, 34, 13–21.

    CAS  Google Scholar 

  145. Murakami, T.; Ockinger, J.; Yu, J. J.; Byles, V.; McColl, A.; Hofer, A. M.; Horng, T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. USA 2012, 109, 11282–11287.

    CAS  Google Scholar 

  146. Sharma, B. R.; Kanneganti, T. D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol. 2021, 22, 550–559.

    CAS  Google Scholar 

  147. Gong, N. Q.; Zhang, Y. X.; Teng, X. C.; Wang, Y. C.; Huo, S. D.; Qing, G.; Ni, Q. K.; Li, X. L.; Wang, J. J.; Ye, X. X. et al. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2020, 15, 1053–1064.

    CAS  Google Scholar 

  148. Yarbro, C. H. Carboplatin: A clinical review. Semin. Oncol. Nurs. 1989, 5, 63–69.

    CAS  Google Scholar 

  149. Kouchi, Y.; Maeda, Y.; Ohuchida, A.; Ohsawa, M. Immunotoxic effect of low dose cisplatin in mice. J. Toxicol. Sci. 1996, 21, 227–233.

    CAS  Google Scholar 

  150. Fournel, L.; Wu, Z. R.; Stadler, N.; Damotte, D.; Lococo, F.; Boulle, G.; Ségal-Bendirdjian, E.; Bobbio, A.; Icard, P.; Trédaniel, J. et al. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett. 2019, 464, 5–14.

    CAS  Google Scholar 

  151. Stein, A.; Arnold, D. Oxaliplatin: A review of approved uses. Expert Opin. Pharmacother. 2012, 13, 125–137.

    CAS  Google Scholar 

  152. Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39, 8113–8127.

    CAS  Google Scholar 

  153. Galanski, M. S.; Jakupec, M. A.; Keppler, B. K. Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical approaches. Curr. Med. Chem. 2005, 12, 2075–2094.

    CAS  Google Scholar 

  154. Fine, J. H.; Chen, P.; Mesci, A.; Allan, D. S. J.; Gasser, S.; Raulet, D. H.; Carlyle, J. R. Chemotherapy- induced genotoxic stress promotes sensitivity to natural killer cell cytotoxicity by enabling missing-self recognition. Cancer Res. 2010, 70, 7102–7113.

    CAS  Google Scholar 

  155. Markasz, L.; Skribek, H.; Uhlin, M.; Otvos, R.; Flaberg, E.; Eksborg, S.; Olah, E.; Stuber, G.; Szekely, L. Effect of frequently used chemotherapeutic drugs on cytotoxic activity of human cytotoxic T-lymphocytes. J. Immunother. 2008, 31, 283–293.

    CAS  Google Scholar 

  156. Zhang, Z.; Tsai, P. C.; Ramezanli, T.; Michniak-Kohn, B. B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. WIREs Nanomed. Nanobiotechnol. 2013, 5, 205–218.

    CAS  Google Scholar 

  157. Freimann, K.; Arukuusk, P.; Kurrikoff, K.; Pärnaste, L.; Raid, R.; Piirsoo, A.; Pooga, M.; Langel, Ü. Formulation of stable and homogeneous cell-penetrating peptide nf55 nanoparticles for efficient gene delivery in vivo. Mol. Ther. Nucleic Acids. 2018, 10, 28–35.

    CAS  Google Scholar 

  158. Lang, J. Y.; Zhao, X.; Wang, X. C.; Zhao, Y.; Li, Y. Y.; Zhao, R. F.; Cheng, K. M.; Li, Y.; Han, X. X.; Zheng, X. W. et al. Targeted Co-delivery of the iron chelator deferoxamine and a HIF1α inhibitor impairs pancreatic tumor growth. ACS Nano 2019, 13, 2176–2189.

    CAS  Google Scholar 

  159. Hao, S. H.; Yu, J.; He, W. M.; Huang, Q.; Zhao, Y.; Liang, B. S.; Zhang, S. Y.; Wen, Z. W.; Dong, S. M.; Rao, J. J. et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 2017, 19, 1022–1032.

    CAS  Google Scholar 

  160. Li, K.; Xu, K.; He, Y.; Yang, Y. L.; Tan, M. J.; Mao, Y. L.; Zou, Y. N.; Feng, Q.; Luo, Z.; Cai, K. Y. Oxygen self-generating nanoreactor mediated ferroptosis activation and immunotherapy in triple-negative breast cancer. ACS Nano 2023, 17, 4667–4687.

    CAS  Google Scholar 

  161. Ding, F. X.; Li, F.; Tang, D. S.; Wang, B.; Liu, J. Y.; Mao, X. Y.; Yin, J. Y.; Xiao, H. H.; Wang, J.; Liu, Z. Q. Restoration of the immunogenicity of tumor cells for enhanced cancer therapy via nanoparticle-mediated copper chaperone inhibition. Angew. Chem., Int. Ed. 2022, 61, e202203546.

    CAS  Google Scholar 

  162. Lei, L. L.; Dong, Z.; Xu, L.; Yang, F. R.; Yin, B. L.; Wang, Y. J.; Yue, R. Y.; Guan, G. Q.; Xu, J. T.; Song, G. S. et al. Metal-fluorouracil networks with disruption of mitochondrion enhanced ferroptosis for synergistic immune activation. Theranostics 2022, 12, 6207–6222.

    CAS  Google Scholar 

  163. Cen, D.; Ge, Q. W.; Xie, C. K.; Zheng, Q.; Guo, J. S.; Zhang, Y. Q.; Wang, Y. F.; Li, X.; Gu, Z.; Cai, X. J. ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy. Adv. Mater. 2021, 33, 2104037.

    CAS  Google Scholar 

  164. Zhang, L. X.; Zhao, J.; Hu, X.; Wang, C. H.; Jia, Y. B.; Zhu, C. J.; Xie, S. Z.; Lee, J.; Li, F. Y.; Ling, D. S. A peritumorally injected immunomodulating adjuvant elicits robust and safe metalloimmunotherapy against solid tumors. Adv. Mater. 2022, 34, 2206915.

    CAS  Google Scholar 

  165. Zheng, C. X.; Song, Q. L.; Zhao, H. J.; Kong, Y. Y.; Sun, L. L.; Liu, X. X.; Feng, Q. H.; Wang, L. A nanoplatform to boost multi-phases of cancer-immunity-cycle for enhancing immunotherapy. J. Controlled Release 2021, 339, 403–415.

    CAS  Google Scholar 

  166. Sun, X. Q.; Zhang, Y.; Li, J. Q.; Park, K. S.; Han, K.; Zhou, X. W.; Xu, Y.; Nam, J.; Xu, J.; Shi, X. Y. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 2021, 16, 1260–1270.

    CAS  Google Scholar 

  167. Li, Y. H.; Gong, S. H.; Pan, W.; Chen, Y. Y.; Liu, B.; Li, N.; Tang, B. A tumor acidity activatable and Ca2+-assisted immuno-nanoagent enhances breast cancer therapy and suppresses cancer recurrence. Chem. Sci. 2020, 11, 7429–7437.

    CAS  Google Scholar 

  168. Hallaway, P. E.; Eaton, J. W.; Panter, S. S.; Hedlund, B. E. Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc. Natl. Acad. Sci. USA 1989, 86, 10108–10112.

    CAS  Google Scholar 

  169. Hershko, C. Oral iron chelators: New opportunities and new dilemmas. Haematologica 2006, 91, 1307–1312.

    CAS  Google Scholar 

  170. Sang, Y. J.; Deng, Q. Q.; Cao, F. F.; Liu, Z. W.; You, Y. W.; Liu, H.; Ren, J. S.; Qu, X. G. Remodeling macrophages by an iron nanotrap for tumor growth suppression. ACS Nano 2021, 15, 19298–19309.

    CAS  Google Scholar 

  171. Li, S. X.; Chen, D. J.; Zheng, F. Y.; Zhou, H. F.; Jiang, S. X.; Wu, Y. J. Water-soluble and lowly toxic sulphur quantum dots. Adv. Funct. Mater. 2014, 24, 7133–7138.

    CAS  Google Scholar 

  172. Jung, M.; Mertens, C.; Brüne, B. Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 2015, 220, 295–304.

    CAS  Google Scholar 

  173. Trujillo-Alonso, V.; Pratt, E. C.; Zong, H. L.; Lara-Martinez, A.; Kaittanis, C.; Rabie, M. O.; Longo, V.; Becker, M. W.; Roboz, G. J.; Grimm, J. et al. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol. 2019, 14, 616–622.

    CAS  Google Scholar 

  174. Wang, Y. Y.; Shi, G. W.; Shi, S. F.; Yao, J.; Yu, R.; Ren, Y. Everolimus accelerates Erastin and RSL3-induced ferroptosis in renal cell carcinoma. Gene 2022, 809, 145992.

    CAS  Google Scholar 

  175. Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

    CAS  Google Scholar 

  176. Sato, M.; Kusumi, R.; Hamashima, S.; Kobayashi, S.; Sasaki, S.; Komiyama, Y.; Izumikawa, T.; Conrad, M.; Bannai, S.; Sato, H. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci. Rep. 2018, 2, 968.

    Google Scholar 

  177. Christenson, J. L.; Butterfield, K. T.; Spoelstra, N. S.; Norris, J. D.; Josan, J. S.; Pollock, J. A.; McDonnell, D. P.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A.; Richer, J. K. MMTV-PyMT and derived Met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression. Horm. Cancer 2017, 8, 69–77.

    CAS  Google Scholar 

  178. Liu, Z. J.; Li, T.; Han, F.; Wang, Y.; Gan, Y.; Shi, J. H.; Wang, T. R.; Akhtar, M. L.; Li, Y. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomater. Sci. 2019, 7, 3683–3692.

    CAS  Google Scholar 

  179. Huang, L. H.; Liu, Z. H.; Wu, C. J.; Lin, J. S.; Liu, N. Magnetic nanoparticles enhance the cellular immune response of dendritic cell tumor vaccines by realizing the cytoplasmic delivery of tumor antigens. Bioeng Transl. Med. 2023, 2, e10400.

    Google Scholar 

  180. Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

    Google Scholar 

  181. Tan, M. X.; Chen, Y. L.; Guo, Y.; Yang, C.; Liu, M. Z.; Guo, D.; Wang, Z. G.; Cao, Y.; Ran, H. T. A low-intensity focused ultrasound-assisted nanocomposite for advanced triple cancer therapy: Local chemotherapy, therapeutic extracellular vesicles and combined immunotherapy. Biomater. Sci. 2020, 8, 6703–6717.

    CAS  Google Scholar 

  182. Lacroix, L. M.; Huls, N. F.; Ho, D.; Sun, X. L.; Cheng, K.; Sun, S. H. Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett. 2011, 11, 1641–1645.

    CAS  Google Scholar 

  183. Liu, Y. Z.; Wu, T.; White, J. C.; Lin, D. H. A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nat. Nanotechnol. 2021, 16, 197–205.

    CAS  Google Scholar 

  184. Ghoochani, A.; Hsu, E. C.; Aslan, M.; Rice, M. A.; Nguyen, H. M.; Brooks, J. D.; Corey, E.; Paulmurugan, R.; Stoyanova, T. Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer. Cancer Res. 2021, 81, 1583–1594.

    CAS  Google Scholar 

  185. Feng, J.; Lu, P. Z.; Zhu, G. Z.; Hooi, S. C.; Wu, Y.; Huang, X. W.; Dai, H. Q.; Chen, P. H.; Li, Z. J.; Su, W. J. et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol. Sin. 2021, 42, 160–170.

    CAS  Google Scholar 

  186. Ishikawa, H.; Ma, Z.; Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792.

    CAS  Google Scholar 

  187. Lin, L. S.; Wang, J. F.; Song, J. B.; Liu, Y. J.; Zhu, G. Z.; Dai, Y. L.; Shen, Z. Y.; Tian, R.; Song, J.; Wang, Z. T. et al. Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics 2019, 9, 7200–7209.

    CAS  Google Scholar 

  188. Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61.

    CAS  Google Scholar 

  189. Wong, D. Y. Q.; Ong, W. W. F.; Ang, W. H. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angew. Chem., Int. Ed. 2015, 54, 6483–6487.

    CAS  Google Scholar 

  190. Sriram, G.; Uthappa, U. T.; Losic, D.; Kigga, M.; Jung, H. Y.; Kurkuri, M. D. Mg-Al- layered double hydroxide (LDH) modified diatoms for highly efficient removal of congo red from aqueous solution. Appl. Sci. 2020, 10, 2285.

    CAS  Google Scholar 

  191. Guo, L. L.; He, N. Y.; Zhao, Y. X.; Liu, T. H.; Deng, Y. Autophagy modulated by inorganic nanomaterials. Theranostics 2020, 10, 3206–3222.

    CAS  Google Scholar 

  192. Li, L.; Ng, D. S. W.; Mah, W. C.; Almeida, F. F.; Rahmat, S. A.; Rao, V. K.; Leow, S. C.; Laudisi, F.; Peh, M. T.; Goh, A. M. et al. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ. 2015, 22, 1081–1093.

    CAS  Google Scholar 

  193. Brewer, G. J.; Dick, R. D.; Johnson, V.; Wang, Y.; Yuzbasiyan-Gurkan, V.; Kluin, K.; Fink, J. K.; Aisen, A. Treatment of Wilson’s disease with ammonium tetrathiomolybdate. I. Initial therapy in 17 neurologically affected patients. Arch. Neurol. 1994, 51, 545–554.

    CAS  Google Scholar 

  194. Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 19507–19512.

    CAS  Google Scholar 

  195. Brewer, G. J. The use of copper-lowering therapy with tetrathiomolybdate in medicine. Expert Opin. Investig. Drugs 2009, 18, 89–97.

    CAS  Google Scholar 

  196. Chatterjee, S.; Mookerjee, A.; Basu, J. M.; Chakraborty, P.; Ganguly, A.; Adhikary, A.; Mukhopadhyay, D.; Ganguly, S.; Banerjee, R.; Ashraf, M. et al. A novel copper chelate modulates tumor associated macrophages to promote anti-tumor response of T cells. PLoS One 2009, 4, e7048.

    Google Scholar 

  197. Mookerjee, A.; Mookerjee Basu, J.; Dutta, P.; Majumder, S.; Bhattacharyya, S.; Biswas, J.; Pal, S.; Mukherjee, P.; Raha, S.; Baral, R. N. et al. Overcoming drug-resistant cancer by a newly developed copper chelate through host-protective cytokine-mediated apoptosis. Clin. Cancer Res. 2006, 12, 4339–4349.

    CAS  Google Scholar 

  198. Chaviara, A. T.; Christidis, P. C.; Papageorgiou, A.; Chrysogelou, E.; Hadjipavlou-Litina, D. J.; Bolos, C. A. In vivo anticancer, anti-inflammatory, and toxicity studies of mixed-ligand Cu(II) complexes of dien and its Schiff dibases with heterocyclic aldehydes and 2-amino-2-thiazoline. Crystal structure of [Cu(dien)(Br)(2a-2tzn)](Br)(H2O). J. Inorg. Biochem. 2005, 99, 2102–2109.

    CAS  Google Scholar 

  199. Wang, J.; Luo, C.; Shan, C. L.; You, Q. C.; Lu, J. Y.; Elf, S.; Zhou, Y.; Wen, Y.; Vinkenborg, J. L.; Fan, J. et al. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat. Chem. 2015, 7, 968–979.

    CAS  Google Scholar 

  200. Di, D. R.; He, Z. Z.; Sun, Z. Q.; Liu, J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomed.: Nanotechnol., Biol. Med. 2012, 8, 1233–1241.

    CAS  Google Scholar 

  201. Behzadi, E.; Sarsharzadeh, R.; Nouri, M.; Attar, F.; Akhtari, K.; Shahpasand, K.; Falahati, M. Albumin binding and anticancer effect of magnesium oxide nanoparticles. Int. J. Nanomedicine 2019, 14, 257–270.

    CAS  Google Scholar 

  202. Al-Fahdawi, M. Q.; Rasedee, A.; Al-Doghachi, F. A.; Rosli, R.; Taufiq-Yap, Y. H.; Al-Qubaisi, M. Anticancer palladium-doped magnesia nanoparticles: Synthesis, characterization, and in vitro study. Nanomedicine 2020, 15, 547–561.

    CAS  Google Scholar 

  203. Li, C. S.; Yao, H.; Wang, H. B.; Fang, J. Y.; Xu, J. Repurposing screen identifies Amlodipine as an inducer of PD-L1 degradation and antitumor immunity. Oncogene 2021, 40, 1128–1146.

    CAS  Google Scholar 

  204. Wu, L.; Lin, W. H.; Liao, Q.; Wang, H.; Lin, C.; Tang, L. H.; Lian, W. D.; Chen, Z. T.; Li, K. T.; Xu, L. J. et al. Calcium channel blocker nifedipine suppresses colorectal cancer progression and immune escape by preventing NFAT2 nuclear translocation. Cell Rep. 2020, 33, 108327.

    CAS  Google Scholar 

  205. Bi, Y.; Lv, B. C.; Li, L. L.; Lee, R. J.; Xie, J.; Qiu, Z. D.; Teng, L. S. A liposomal formulation for improving solubility and oral bioavailability of nifedipine. Molecules 2020, 25, 338.

    CAS  Google Scholar 

  206. Wu, L.; Lian, W. D.; Zhao, L. Calcium signaling in cancer progression and therapy. FEBS J. 2021, 288, 6187–6205.

    CAS  Google Scholar 

  207. Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 2019, 305, 221–222.

    CAS  Google Scholar 

  208. Pena, Q.; Wang, A.; Zaremba, O.; Shi, Y.; Scheeren, H. W.; Metselaar, J. M.; Kiessling, F.; Pallares, R. M.; Wuttke, S.; Lammers, T. Metallodrugs in cancer nanomedicine. Chem. Soc. Rev. 2022, 51, 2544–2582.

    CAS  Google Scholar 

  209. Culver, H. R.; Clegg, J. R.; Peppas, N. A. Analyte-responsive hydrogels: Intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 2018, 51, 2600.

    CAS  Google Scholar 

  210. Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA 2016, 113, 4164–4169.

    CAS  Google Scholar 

  211. Wang, D. G.; Wang, T. T.; Yu, H. J.; Feng, B.; Zhou, L.; Zhou, F. Y.; Hou, B.; Zhang, H. W.; Luo, M.; Li, Y. P. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci. Immunol. 2019, 4, eaau6584.

    CAS  Google Scholar 

  212. Park, S. J.; Ye, W. D.; Xiao, R.; Silvin, C.; Padget, M.; Hodge, J. W.; Van Waes, C.; Schmitt, N. C. Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral. Oncol. 2019, 95, 127–135.

    CAS  Google Scholar 

  213. Anthony, E. J.; Bolitho, E. M.; Bridgewater, H. E.; Carter, O. W. L.; Donnelly, J. M.; Imberti, C.; Lant, E. C.; Lermyte, F.; Needham, R. J.; Palau, M. et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917.

    CAS  Google Scholar 

  214. Tellez-Gabriel, M.; Ory, B.; Lamoureux, F.; Heymann, M. F.; Heymann, D. Tumour heterogeneity: The key advantages of single-cell analysis. Int. J. Mol. Sci. 2016, 17, 2142.

    Google Scholar 

  215. Lewis, S. M.; Asselin-Labat, M. L.; Nguyen, Q.; Berthelet, J.; Tan, X.; Wimmer, V. C.; Merino, D.; Rogers, K. L.; Naik, S. H. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 2021, 18, 997–1012.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (Nos. 2021YFA1201100, and 2022YFA1206100), the National Natural Science Foundation of China (Nos. 32271449, 32201158, and 51773188), CAS Project for Young Scientists in Basic Research (No. YSBR-036), Key Project of Natural Science Foundation of Shandong Province (No. ZR2020KE016), Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project, No. 2022CXGC010505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Chang or Motao Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Chen, L., Hamza, M. et al. Regulating metalloimmunology with nanomedicine for cancer therapy. Nano Res. 16, 13164–13181 (2023). https://doi.org/10.1007/s12274-023-6212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6212-y

Keywords

Navigation