Skip to main content
Log in

Correlating the fluctuated growth of carbon nanotubes with catalyst evolution by atmospheric-pressure environmental transmission electron microscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rate-controlled growth of carbon nanotubes (CNTs) and catalyst design are considered efficient ways for the preparation of CNTs with specific structures and properties. However, due to the difficulties in capturing the growth process of the CNTs with tiny size under a complex growth environment, the growth kinetics of CNTs and their correlation with the catalyst seed have been seldom revealed. Here, we investigated the growth process of CNTs from Ni nanoparticles (NPs) in real-time under atmospheric pressure using transmission electron microscopy equipped with a closed gas cell. It was found that the growth rates of CNTs fluctuated, and a phase transition from Ni3C to Ni, and a reshaping of the catalyst NPs occurred during the growth process. We demonstrated that CNTs dynamically interacted with the connected catalyst NPs and the fluctuated growth rates of CNTs were correlated with the structure change of catalyst NPs. The origin of the growth rate fluctuation is attributed to the change of carbon concentration gradient in catalyst NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

    CAS  Google Scholar 

  2. Berber, S.; Kwon, Y. K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616.

    CAS  Google Scholar 

  3. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    CAS  Google Scholar 

  4. Seo, K.; Park, K. A.; Kim, C.; Han, S.; Kim, B.; Lee, Y. H. Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls. J. Am. Chem. Soc. 2005, 127, 15724–15729.

    CAS  Google Scholar 

  5. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes-the route toward applications. Science 2002, 297, 787–792.

    CAS  Google Scholar 

  6. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    CAS  Google Scholar 

  7. Tang, D. M.; Erohin, S. V.; Kvashnin, D. G.; Demin, V. A.; Cretu, O.; Jiang, S.; Zhang, L. L.; Hou, P. X.; Chen, G. H.; Futaba, D. N. et al. Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science 2021, 374, 1616–1620.

    CAS  Google Scholar 

  8. Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

    CAS  Google Scholar 

  9. Yang, F.; Wang, X.; Si, J.; Zhao, X. L.; Qi, K.; Jin, C. H.; Zhang, Z. Y.; Li, M. H.; Zhang, D. Q.; Yang, J. et al. Water-assisted preparation of high-purity semiconducting (14, 4) carbon nanotubes. ACS Nano 2017, 11, 186–193.

    CAS  Google Scholar 

  10. Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

    CAS  Google Scholar 

  11. Otsuka, K.; Ishimaru, R.; Kobayashi, A.; Inoue, T.; Xiang, R.; Chiashi, S.; Kato, Y. K.; Maruyama, S. Universal map of gas-dependent kinetic selectivity in carbon nanotube growth. ACS Nano 2022, 16, 5627–5635.

    CAS  Google Scholar 

  12. Zhang, S. C.; Wang, X.; Yao, F. R.; He, M. S.; Lin, D. W.; Ma, H.; Sun, Y. Y.; Zhao, Q. C.; Liu, K. H.; Ding, F. et al. Controllable growth of (n, n–1) family of semiconducting carbon nanotubes. Chem 2019, 5, 1182–1193.

    CAS  Google Scholar 

  13. Wang, Y.; Qiu, L.; Zhang, L. L.; Tang, D. M.; Ma, R. X.; Ren, C. L.; Ding, F.; Liu, C.; Cheng, H. M. Growth mechanism of carbon nanotubes from Co-W-C alloy catalyst revealed by atmospheric environmental transmission electron microscopy. Sci. Adv. 2022, 8, eabo5686.

    CAS  Google Scholar 

  14. Ma, R. X.; Qiu, L.; Zhang, L. L.; Tang, D. M.; Wang, Y.; Zhang, B. S.; Ding, F.; Liu, C.; Cheng, H. M. Nucleation of single-wall carbon nanotubes from faceted Pt catalyst particles revealed by in situ transmission electron microscopy. ACS Nano 2022, 16, 16574–16583.

    CAS  Google Scholar 

  15. Bahri, M.; Dembélé, K.; Sassoye, C.; Debecker, D. P.; Moldovan, S.; Gay, A. S.; Hirlimann, C.; Sanchez, C.; Ersen, O. In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructures. Nanoscale 2018, 10, 14957–14965.

    CAS  Google Scholar 

  16. He, M. S.; Wang, X.; Zhang, S. C.; Jiang, H.; Cavalca, F.; Cui, H. Z.; Wagner, J. B.; Hansen, T. W.; Kauppinen, E.; Zhang, J. et al. Growth kinetics of single-walled carbon nanotubes with a (2n, n) chirality selection. Sci. Adv. 2019, 5, eaav9668.

    CAS  Google Scholar 

  17. He, M. S.; Jiang, H.; Kauppinen, E. I.; Lehtonen, J. Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes. Nanoscale 2012, 4, 7394–7398.

    CAS  Google Scholar 

  18. Zhang, L. L.; He, M. S.; Hansen, T. W.; Kling, J.; Jiang, H.; Kauppinen, E. I.; Loiseau, A.; Wagner, J. B. Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy. ACS Nano 2017, 11, 4483–4493.

    CAS  Google Scholar 

  19. Zhang, F.; Sun, J.; Zheng, Y. G.; Hou, P. X.; Liu, C.; Cheng, M.; Li, X.; Cheng, H. M.; Chen, Z. The importance of H2 in the controlled growth of semiconducting single-wall carbon nanotubes. J. Mater. Sci. Technol. 2020, 54, 105–111.

    CAS  Google Scholar 

  20. Zhao, H. F.; Zhu, Y. C.; Ye, H. Y.; He, Y.; Li, H.; Sun, Y. F.; Yang, F.; Wang, R. M. Atomic-scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202206911.

  21. Jiang, Y.; Zhang, Z. F.; Yuan, W. T.; Zhang, X.; Wang, Y.; Zhang, Z. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 2018, 11, 42–67.

    Google Scholar 

  22. Takeda, S.; Kuwauchi, Y.; Yoshida, H. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 2015, 151, 178–190.

    CAS  Google Scholar 

  23. Picher, M.; Lin, P. A.; Gomez-Ballesteros, J. L.; Balbuena, P. B.; Sharma, R. Nucleation of graphene and its conversion to single-walled carbon nanotubes. Nano Lett. 2014, 14, 6104–6108.

    CAS  Google Scholar 

  24. Zhu, H. W.; Suenaga, K.; Hashimoto, A.; Urita, K.; Hata, K.; Iijima, S. Atomic-resolution imaging of the nucleation points of single-walled carbon nanotubes. Small 2005, 1, 1180–1183.

    CAS  Google Scholar 

  25. Zakharov, D.; Zemlyanov, D.; Mane, A.; Elam, J.; Ribeiro, F.; Stach, E. Real time ETEM studies of the nucleation and growth of carbon nanotubes utilizing Fe/Pt catalyst on a spherical Al2O3 support. Microsc. Microanal. 2011, 17, 1526–1527.

    Google Scholar 

  26. Yang, F.; Zhao, H. F.; Wang, W.; Liu, Q. D.; Liu, X.; Hu, Y. C.; Zhang, X. R.; Zhu, S.; He, D. S.; Xu, Y. Y. et al. Carbon-involved near-surface evolution of cobalt nanocatalysts: An in situ study. CCS Chem. 2021, 3, 154–167.

    CAS  Google Scholar 

  27. Silvearv, F.; Larsson, P.; Jones, S. L. T.; Ahuja, R.; Larsson, J. A. Establishing the most favorable metal-carbon bond strength for carbon nanotube catalysts. J. Mater. Chem. C 2015, 3, 3422–3427.

    CAS  Google Scholar 

  28. Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 2007, 7, 2234–2238.

    CAS  Google Scholar 

  29. Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

    CAS  Google Scholar 

  30. Hofmann, S.; Blume, R.; Wirth, C. T.; Cantoro, M.; Sharma, R.; Ducati, C.; Hävecker, M.; Zafeiratos, S.; Schnoerch, P.; Oestereich, A. et al. State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C 2009, 113, 1648–1656.

    CAS  Google Scholar 

  31. Lyu, Y. Q.; Wang, P.; Liu, D. D.; Zhang, F.; Senftle, T. P.; Zhang, G. H.; Zhang, Z. Y.; Wang, J. M.; Liu, W. Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy. Small Methods 2022, 6, 2200235.

    CAS  Google Scholar 

  32. Sharma, R.; Chee, S. W.; Herzing, A.; Miranda, R.; Rez, P. Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures. Nano Lett. 2011, 11, 2464–2471.

    CAS  Google Scholar 

  33. Wang, Y.; Qiu, L.; Zhang, L. L.; Tang, D. M.; Ma, R. X.; Wang, Y. Z.; Zhang, B. S.; Ding, F.; Liu, C.; Cheng, H. M. Precise identification of the active phase of cobalt catalyst for carbon nanotube growth by in situ transmission electron microscopy. ACS Nano 2020, 14, 16823–16831.

    CAS  Google Scholar 

  34. Mazzucco, S.; Wang, Y.; Tanase, M.; Picher, M.; Li, K.; Wu, Z. J.; Irle, S.; Sharma, R. Direct evidence of active and inactive phases of Fe catalyst nanoparticles for carbon nanotube formation. J. Catal. 2014, 319, 54–60.

    CAS  Google Scholar 

  35. Rao, R.; Sharma, R.; Abild-Pedersen, F.; Nørskov, J. K.; Harutyunyan, A. R. Insights into carbon nanotube nucleation: Cap formation governed by catalyst interfacial step flow. Sci. Rep. 2014, 4, 6510.

    CAS  Google Scholar 

  36. Sharma, R.; Rez, P.; Treacy, M. M. J.; Stuart, S. J. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. Microscopy 2005, 54, 231–237.

    CAS  Google Scholar 

  37. Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6, 449–452.

    CAS  Google Scholar 

  38. Sharma, R.; Rez, P.; Brown, M.; Du, G. H.; Treacy, M. M. J. Dynamic observations of the effect of pressure and temperature conditions on the selective synthesis of carbon nanotubes. Nanotechnology 2007, 18, 125602.

    Google Scholar 

  39. Ding, F.; Bolton, K. The importance of supersaturated carbon concentration and its distribution in catalytic particles for single-walled carbon nanotube nucleation. Nanotechnology 2006, 17, 543–548.

    CAS  Google Scholar 

  40. Kohigashi, Y.; Yoshida, H.; Homma, Y.; Takeda, S. Structurally inhomogeneous nanoparticulate catalysts in cobalt-catalyzed carbon nanotube growth. Appl. Phys. Lett. 2014, 105, 073108.

    Google Scholar 

  41. Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.

    CAS  Google Scholar 

  42. Schaper, A. K.; Hou, H. Q.; Greiner, A.; Phillipp, F. The role of iron carbide in multiwalled carbon nanotube growth. J. Catal. 2004, 222, 250–254.

    CAS  Google Scholar 

  43. Hofmann, S.; Sharma, R.; Ducati, C.; Du, G. H.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.; Parvez, A.; Cervantes-Sodi, F. et al. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 2007, 7, 602–608.

    CAS  Google Scholar 

  44. Anton, R. In situ transmission electron microscopy study of the growth of Ni nanoparticles on amorphous carbon and of the graphitization of the support in the presence of hydrogen. J. Mater. Res. 2005, 20, 1837–1843.

    CAS  Google Scholar 

  45. Leng, Y. H.; Xie, L.; Liao, F. H.; Zheng, J.; Li, X. G. Kinetic and thermodynamics studies on the decompositions of Ni3C in different atmospheres. Thermochim. Acta 2008, 473, 14–18.

    CAS  Google Scholar 

  46. Itoh, T.; Sinclair, R. Nickel mediated transformation of amorphous carbon to graphite. MRS Online Proc. Lib. 1994, 349, 31–36.

    CAS  Google Scholar 

  47. Lin, P. A.; Gomez-Ballesteros, J. L.; Burgos, J. C.; Balbuena, P. B.; Natarajan, B.; Sharma, R. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles. J. Catal. 2017, 349, 149–155.

    CAS  Google Scholar 

  48. Huang, X.; Farra, R.; Schlögl, R.; Willinger, M. G. Growth and termination dynamics of multiwalled carbon nanotubes at near ambient pressure: An in situ transmission electron microscopy study. Nano Lett. 2019, 19, 5380–5387.

    CAS  Google Scholar 

  49. Gamalski, A.; Moore, E. S.; Treacy, M. M. J.; Sharma, R.; Rez, P. Diffusion-gradient-induced length instabilities in the catalytic growth of carbon nanotubes. Appl. Phys. Lett. 2009, 95, 233109.

    Google Scholar 

  50. Tang, X.; Xie, Z. Y.; Yin, T.; Wang, J. W.; Yang, P. P.; Huang, Q. Z. Classical molecular dynamics simulations of carbon nanofiber nucleation: The effect of carbon concentration in Ni carbide. Phys. Chem. Chem. Phys. 2013, 15, 16314–16320.

    CAS  Google Scholar 

  51. He, Z. B.; Maurice, J. L.; Lee, C. S.; Cojocaru, C. S.; Pribat, D. Nickel catalyst faceting in plasma-enhanced direct current chemical vapor deposition of carbon nanofibers. Arabian J. Sci. Eng. Sec. C 2010, 35, 1120–1928.

    Google Scholar 

  52. Jourdain, V.; Bichara, C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 2013, 58, 2–39.

    CAS  Google Scholar 

  53. Pigos, E.; Penev, E. S.; Ribas, M. A.; Sharma, R.; Yakobson, B. I.; Harutyunyan, A. R. Carbon nanotube nucleation driven by catalyst morphology dynamics. ACS Nano 2011, 5, 10096–10101.

    CAS  Google Scholar 

  54. Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F. S.; Waite, R. J. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 1972, 26, 51–62.

    CAS  Google Scholar 

  55. Goldberg, D.; Belton, G. R. The diffusion of carbon in iron-carbon alloys at 1560 °C. Metall. Trans. 1974, 5, 1643–1648.

    CAS  Google Scholar 

  56. Zhu, Y. A.; Dai, Y. C.; Chen, D.; Yuan, W. K. First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers. Carbon 2007, 45, 21–27.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51802316, 51927803, 52130209, 51972311, and 52188101), Basic Research Project of Natural Science Foundation of Shandong Province, China (No. ZR2019ZD49), the Natural Science Foundation of Liaoning Province, China (No. 2020-MS-009), Chinese Academy of Sciences, and the Shenyang National Laboratory for Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Zhang or Chang Liu.

Electronic Supplementary Material

Supplementary material, approximately 128 MB.

Supplementary material, approximately 108 MB.

Supplementary material, approximately 56.8 MB.

12274_2023_6174_MOESM4_ESM.pdf

Correlating the fluctuated growth of carbon nanotubes with catalyst evolution by atmospheric-pressure environmental transmission electron microscopy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, RH., Zhang, L., Ma, R. et al. Correlating the fluctuated growth of carbon nanotubes with catalyst evolution by atmospheric-pressure environmental transmission electron microscopy. Nano Res. 16, 12781–12787 (2023). https://doi.org/10.1007/s12274-023-6174-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6174-0

Keywords

Navigation