Skip to main content
Log in

Design of advanced porous silver powder with high-sintering activity to improve silicon solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silver (Ag) paste is widely used in semiconductor metallization, especially in silicon solar cells. Ag powder is the material with the highest proportion in Ag paste. The morphology and structure of Ag powder are crucial which determine its characteristics, especially for the sintering activity. In this work, a simple method was developed to synthesize a type of microcrystalline spherical Ag particles (SP-A) with internal pores and the structural changes and sintering behavior were thoroughly studied by combining ultra-small-angle X-ray scattering (USAXS), small-angle X-ray scattering (SAXS), in-situ heating X-ray diffraction (XRD), focused ion beam (FIB), and thermal analysis measurement. Due to the unique internal pores, the grain size of SP-A is smaller, and the coefficient of thermal expansion (CTE) is higher than that of traditional solid Ag particles. As a result, the sintering activity of SP-A is excellent, which can form a denser sintered body and form silver nanoparticles at the Ag–Si interface to improve silver silicon contact. Polycrystalline silicon solar cell built with SP-A obtained a low series resistance (Rs) and a high photoelectric conversion efficiency (PCE) of 19.26%. These fill a gap in Ag particle structure research, which is significant for the development of high-performance electronic Ag particles and efficient semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helveston, J. P.; He, G.; Davidson, M. R. Quantifying the cost savings of global solar photovoltaic supply chains. Nature 2022, 612, 83–87.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Buiting, A. G. M.; Thompson, J.; van der Keur, D.; Schmal-Bauer, W. C.; Bertina, R. M. Procoagulant activity of endocardial vegetations and blood monocytes in rabbits with streptococcus sanguis endocarditis. Thromb. Haemost. 1989, 62, 1029–1033.

    Article  CAS  PubMed  Google Scholar 

  3. Schubert, G.; Fischer, B.; Fath, P. Formation and nature of Ag thick film front contacts on crystalline silicon solar cells. Proc. 18th Eur. Photovoltaic Sol. Energy Conf., 2002, pp 343–346.

  4. Yang, Y.; Seyedmohammadi, S.; Kumar, U.; Gnizak, D.; Graddy, E. D.; Shaikh, A. Screen printable silver paste for silicon solar cells with high sheet resistance emitters. Energy Procedia 2011, 8, 607–613.

    Article  CAS  Google Scholar 

  5. Deng, W. W.; Ye, F.; Xiong, Z.; Chen, D. M.; Guo, W. W.; Chen, Y. F.; Yang, Y.; Altermatt, P. P.; Feng, Z. Q.; Verlinden, P. J. Development of high-efficiency industrial p-type multi-crystalline PERC solar cells with efficiency greater than 21%. Energy Procedia 2016, 92, 721–729.

    Article  CAS  Google Scholar 

  6. Hang, K. W.; Wang, Y. L. Glass composition and its use in conductive silver paste. U. S. Patent 2, 013, 021, 114, November 14, 2013.

  7. Fu, M.; Li, H. Y.; Wang, Y.; Fan, L.; Chen, D.; Feng, Z. Study on the synthesis and performances of ultrafine silver powder used as silicon solar cell front silver contacts. Mater. Sci. Forum 2016, 852, 378–384.

    Article  Google Scholar 

  8. Fields, J. D.; Ahmad, M. I.; Pool, V. L.; Yu, J. F.; Van Campen, D. G.; Parilla, P. A.; Toney, M. F.; van Hest, M. F. A. M. The formation mechanism for printed silver-contacts for silicon solar cells. Nat. Commun. 2016, 7, 11143.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Muchmore, P. Collections may depend on your own attitudes. Dent. Econ. 1982, 72, 51–54.

    CAS  PubMed  Google Scholar 

  10. Li, W.; Yu, C. X.; Wang, Y. K.; Yao, Y.; Yu, X. L.; Zuo, C.; Yu, Y. Experimental investigation of effect of flake silver powder content on sintering structure and properties of front silver paste of silicon solar cell. Materials 2022, 15, 7142.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Zhang, X. F.; Liu, Z. G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shen, W. F.; Zhang, X. P.; Huang, Q. J.; Xu, Q. S.; Song, W. J. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 2014, 6, 1622–1628.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Sundaram, D.; Yang, V.; Yetter, R. A. Metal-based nanoenergetic materials: Synthesis, properties, and applications. Prog. Energy Combust. Sci. 2017, 61, 293–365.

    Article  Google Scholar 

  14. Pasquino, R.; Grizzuti, N.; Maffettone, P. L.; Greco, F. Rheology of dilute and semidilute noncolloidal hard sphere suspensions. J. Rheol. 2008, 52, 1369–1384.

    Article  CAS  ADS  Google Scholar 

  15. Avramović, L.; Pavlović, M. M.; Maksimović, V. M.; Vuković, M.; Stevanović, J. S.; Bugarin, M.; Nikolić, N. D. Comparative morphological and crystallographic analysis of electrochemically- and chemically-produced silver powder particles. Metals 2017, 7, 160.

    Article  Google Scholar 

  16. Gebauer, J. S.; Treuel, L. Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles. J. Colloid Interface Sci. 2011, 354, 546–554.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Sangsuk, S. Preparation of high surface area silver powder via Tollens process under sonication. Mater. Lett. 2010, 64, 775–777.

    Article  CAS  Google Scholar 

  18. Jose, M.; Sakthivel, M. Synthesis and characterization of silver nanospheres in mixed surfactant solution. Mater. Lett. 2014, 117, 78–81.

    Article  CAS  Google Scholar 

  19. Khanna, P. K.; Singh, N.; Kulkarni, D.; Deshmukh, S.; Charan, S.; Adhyapak, P. V. Water based simple synthesis of re-dispersible silver nano-particles. Mater. Lett. 2007, 61, 3366–3370.

    Article  CAS  Google Scholar 

  20. Wang, Q. H.; Zhu, Y. X.; Xue, J.; Zhao, X. S.; Guo, Z. P.; Wang, C. General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties. ACS Appl. Mater. Interfaces 2016, 8, 17226–17232.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, N.; Zhao, S. P.; Yang, Z. L.; Liu, B. Patchy templated synthesis of macroporous colloidal hollow spheres and their application as catalytic microreactors. ACS Appl. Mater. Interfaces 2019, 11, 47008–47014.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, P.; Du, N.; Zhang, H.; Zhai, C. X.; Yang, D. R. Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. ACS Appl. Mater. Interfaces 2011, 3, 1946–1952.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, B.; Li, Y. S.; Chen, Y. J.; Chen, H. B.; Zhu, C.; Liu, J.; Lin, Y.; Pan, F. Interface tuning through the MoO3 additive in Al paste to enhance the performance of crystalline silicon solar cells. ACS Appl. Energy Mater. 2022, 5, 13254–13260.

    Article  CAS  Google Scholar 

  24. Xu, J.; Zhu, X. Z.; Xu, L. H.; Kan, C. X.; Shi, D. N. Template-directed growth of Ag nanostructures: Soft templates versus hard templates. Nanoscale 2023, 15, 1687–1694.

    Article  CAS  PubMed  Google Scholar 

  25. Tuin, G.; Stein, H. N. Adsorption of ionic surfactant on polystyrene particles in the absence and presence of cosurfactant. Langmuir 1994, 10, 1054–1059.

    Article  CAS  Google Scholar 

  26. Sarma, S.; Bora, M.; Dutta, R. K. Effects of alcohol on partition equilibrium of phenol red in micellar solutions and O/W microemulsions of anionic surfactants. Colloid Surf. A Physicochem. Eng. Asp. 2005, 256, 105–110.

    Article  CAS  ADS  Google Scholar 

  27. Sarma, S.; Gohain, B.; Dutta, R. K. A visible spectroscopic study of microstructure of O/W microemulsions of anionic surfactants: Effect of cosurfactant. J. Dispersion Sci. Technol. 2006, 27, 899–905.

    Article  Google Scholar 

  28. Ahsan, T.; Aveyard, R.; Binks, B. P. Winsor transitions and interfacial film compositions in systems containing sodium dodecylbenzene sulphonate and alkanols. Colloids Surf. 1991, 52, 339–352.

    Article  CAS  Google Scholar 

  29. Giannini, C.; Ladisa, M.; Altamura, D.; Siliqi, D.; Sibillano, T.; De Caro, L. X-ray diffraction: A powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals 2016, 6, 87.

    Article  Google Scholar 

  30. Chen, Z. W.; Yang, M. L.; Chen, G. J.; Tang, G. X.; Huang, Z. Y.; Chu, M. H.; Qi, R.; Li, S. M.; Wang, R.; Wang, C. Q. et al. Triggering anionic redox activity in Fe/Mn-based layered oxide for high-performance sodium-ion batteries. Nano Energy 2022, 94, 106958.

    Article  CAS  Google Scholar 

  31. Yan, X. S.; Lin, P.; Qi, X.; Yang, L. Finnis-sinclair potentials for fcc Au−Pd and Ag−Pt alloys. Int. J. Mater. Res. 2011, 102, 381–388.

    Article  CAS  Google Scholar 

  32. Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘debyescherrer equation’. Nat. Nanotechnol. 2011, 6, 534.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Hammouda, B. Analysis of the beaucage model. J. Appl. Crystallogr. 2010, 43, 1474–1478.

    Article  CAS  ADS  Google Scholar 

  34. Hammouda, B. A new guinier-porod model. J. Appl. Crystallogr. 2010, 43, 716–719.

    Article  CAS  ADS  Google Scholar 

  35. Porod, G. Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. II. Teil. Kolloid-Zeitschrift 1952, 125, 108–122.

    Article  Google Scholar 

  36. Guinier, A.; Fournet, G. Small-Angle Scattering of X-Rays; Walker, C. B., trans. Wiley: New York, 1955.

    Google Scholar 

  37. Li, Z. H.; Gong, Y. J.; Wu, D.; Sun, Y. H.; Wang, J.; Liu, Y.; Dong, B. Z. A negative deviation from Porod’s law in SAXS of organo-MSU-X. Microporous Mesoporous Mater. 2001, 46, 75–80.

    Article  CAS  ADS  Google Scholar 

  38. Maruyama, I.; Sakamoto, N.; Matsui, K.; Igarashi, G. Microstructural changes in white Portland cement paste under the first drying process evaluated by WAXS, SAXS, and USAXS. Cem. Concr. Res. 2017, 91, 24–32.

    Article  CAS  Google Scholar 

  39. Beaucage, G.; Kammler, H. K.; Pratsinis, S. E. Particle size distributions from small-angle scattering using global scattering functions. J. Appl. Crystallogr. 2004, 37, 523–535.

    Article  CAS  ADS  Google Scholar 

  40. Wang, W. S.; Zhen, L.; Xu, C. Y.; Yang, L.; Shao, W. Z. Controlled synthesis of calcium tungstate hollow microspheres via ostwald ripening and their photoluminescence property. J. Phys. Chem. C 2008, 112, 19390–19398.

    Article  CAS  Google Scholar 

  41. Möller, J.; Jacob, K. I.; Schmelzer, J. Ostwald ripening in porous viscoelastic materials. J. Phys. Chem. Solids 1998, 59, 1097–1103.

    Article  ADS  Google Scholar 

  42. Gill, P.; Moghadam, T. T.; Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech. 2010, 21, 167–193.

    PubMed  PubMed Central  Google Scholar 

  43. Rhodes, W. H. Agglomerate and particle size effects on sintering yttria-stabilized zirconia. J. Am. Ceram. Soc. 1981, 64, 19–22.

    Article  CAS  Google Scholar 

  44. Exner, H. E. Role of interfaces in sintering. Metal Science 1982, 16, 451–456.

    Article  CAS  Google Scholar 

  45. Edelson, L. H.; Glaeser, A. M. Role of particle substructure in the sintering of monosized titania. J. Am. Ceram. Soc. 1988, 71, 225–235.

    Article  CAS  Google Scholar 

  46. Coble, R. L. Sintering crystalline solids. I. Intermediate and final state diffusion models. In Sintering Key Papers. Sōmiya, S.; Moriyoshi, Y., Eds.; Springer: Dordrecht, 1990; pp 55–67.

    Chapter  Google Scholar 

  47. Chen, P.; Raghavan, P.; Yazzie, K.; Fei, H. Y. On the effective coefficient of thermal expansion (CTE) of bilayer/trilayer in semiconductor package substrates. In 2015 IEEE 65th Electronic Components and Technology Conference, San Diego, USA, 2015, pp 1932–1937.

  48. Kang, S. J. L. Sintering densification, grain growht, and microstructure. Int. J. Powder Metall. 2005, 41, 73–74.

    Google Scholar 

  49. Li, P.; Chen, S. Y.; Dai, H. F.; Yang, Z. M.; Chen, Z. Q.; Wang, Y. S.; Chen, Y. Q.; Peng, W. Q.; Shan, W. B.; Duan, H. G. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 2021, 13, 1529–1565.

    Article  CAS  PubMed  Google Scholar 

  50. Li, M. Y.; Xiao, Y.; Zhang, Z. H.; Yu, J. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. ACS Appl. Mater. Interfaces 2015, 7, 9157–9168.

    Article  CAS  PubMed  Google Scholar 

  51. Kim, H. S.; Cho, S. B.; Kim, H.; Kim, D.; Dovrat, M.; Eytan, G.; Huh, J. Y. Electrochemical nature of contact firing reactions for screen-printed silicon solar cells: Origin of “gray finger” phenomenon. Prog. Photovolt. 2016, 24, 1237–1250.

    Article  CAS  Google Scholar 

  52. Schroder, D. K.; Meier, D. L. Solar-cell contact resistance—A review. IEEE Trans. Electron Devices 1984, 31, 637–647.

    Article  ADS  Google Scholar 

  53. Wan, L.; Zhang, C. L.; Ge, K. P.; Yang, X. L.; Li, F.; Yan, W. S.; Xu, Z.; Yang, L.; Xu, Y.; Song, D. Y. et al. Conductive hole-selective passivating contacts for crystalline silicon solar cells. Adv. Energy Mater. 2020, 10, 1903851.

    Article  CAS  Google Scholar 

  54. Zhao, S. X.; Qiao, Q.; Zhang, S.; Ji, J. J.; Shi, Z. R.; Li, G. H. Rear passivation of commercial multi-crystalline PERC solar cell by PECVD Al2O3. Appl. Surf. Sci. 2014, 290, 66–70.

    Article  CAS  ADS  Google Scholar 

  55. Karpowich, L.; Mayberry, R. W.; Hörteis, M. Impact of glass chemistry on contact formation for silver metallization pastes. In 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 2017, pp 617–621.

  56. Eberstein, M.; Falk-Windisch, H.; Peschel, M.; Schilm, J.; Seuthe, T.; Wenzel, M.; Kretzschmar, C.; Partsch, U. Sintering and contact formation of glass containing silver pastes. Energy Procedia, 2012, 27, 522–530.

    Article  CAS  Google Scholar 

  57. Keithley Instruments, Inc. Making Precision Low Voltage and Low Resistance Measurements [Online]. https://download.tek.com/document/LV_LR_e-hnbook_91113.pdf (accessed Aug 17, 2023).

  58. Wu, W.; Chan, C.; Lewittes, M.; Zhang, L.; Roelofs, K. Study of carrier transport in silver paste metallized silicon solar cells. Energy Procedia 2016, 92, 984–989.

    Article  CAS  Google Scholar 

  59. Kumar, P.; Aabdin, Z.; Pfeffer, M.; Eibl, O. High-efficiency, single-crystalline, p- and n-type Si solar cells: Microstructure and chemical analysis of the glass layer. Sol. Energy Mater. Sol. Cells 2018, 178, 52–64.

    Article  CAS  Google Scholar 

  60. Li, W.; Wu, T.; Jiao, R. B.; Zhang, B. P.; Li, S. Y.; Zhou, Y.; Li, L. L. Effects of silver nanoparticles on the firing behavior of silver paste on crystalline silicon solar cells. Colloids Surf. A Physicochem. Eng. Asp. 2015, 466, 132–137.

    Article  CAS  Google Scholar 

  61. Deng, D. Y.; Chen, Z. Y.; Hu, Y. L.; Tong, Y. G.; Liang, X. B. Preparation and post-treatment of silver powders for front contact pastes of silicon solar cells. Int. J. Mater. Res. 2021, 112, 457–464.

    Article  CAS  Google Scholar 

  62. Hilali, M. M. The effect of Ag Powder surface topography on the viscoelastic behavior of thick-film Ag gridlines and solar cell performance. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, USA, 2018, pp 2663–2666.

  63. Lan, F.; Bai, J. T.; Wang, H. The preparation of oleylamine modified micro-size sphere silver particles and its application in crystalline silicon solar cells. RSC Adv. 2018, 8, 16866–16872.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgments

The author would thank the support of the Soft Science Research Project of Guangdong Province (No. 2017B030301013), the Guangdong Innovative Team Program (No. 2013N080), and the Guangdong Province Major Talent Introducing Program (No. 2021QN020687). USAXS experiments supported by Dr. Feng Tian and BL10U1 beamline at SSRF are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Zhou, Yuan Lin or Feng Pan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, Z., Zhou, R. et al. Design of advanced porous silver powder with high-sintering activity to improve silicon solar cells. Nano Res. 17, 3189–3197 (2024). https://doi.org/10.1007/s12274-023-6163-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6163-3

Keywords

Navigation