Skip to main content
Log in

Biological calcium phosphate nanorods for piezocatalytical extraction of U(VI) from water

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The application of nanomaterials in energy and environmental fields has recently made great progress. As a key element in the nuclear industry, the discharge of uranium (U(VI)) contained wastewater usually induces environmental issues and waste of resources. Although the catalytically generated H2O2 by nanomaterials has recently shown application potential in extracting U(VI) from water, low-cost and highly efficient nanocatalysts are still urgently needed. In this work, a cheap and readily available piezocatalyst of calcium phosphate nanorods was successfully fabricated by calcining chicken bones. Under ultrasonication, H2O2 was produced and used to extract U(VI) from water. It is worth noting that the yield of H2O2 reached 179.7 179.7 µmol·g−1·h−1, and the extraction efficiency of U(VI) in water reached 97.16% (100 ppm) within 330 min. Through the capture and quantitative analysis of the active species, it is found that the generation of H2O2 depends on the combination of soluble oxygen and piezoelectrons, which thus dominates the extraction of U(VI). This simple and powerful piezocatalytic strategy greatly reduces the cost of H2O2 production for U(VI) extraction in water, and is of great significance for the treatment of U(VI)-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, Z. R.; Zhen, Y.; Sun, Y. S.; Li, L.; Ding, D. X. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem. Eng. J. 2021, 415, 129002.

    CAS  Google Scholar 

  2. Manos, M. J.; Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134, 16441–16446.

    CAS  Google Scholar 

  3. Cai, Y. W.; Ma, Y. P.; Feng, J. H.; Zhu, M. Y.; Wang, X.; Lv, Z. M.; Fang, M.; Tan, X. L.; Wang, X. K. Insight into the performance and mechanism of low-cost phytic acid modified Zn-Al-Ti LMO for U(VI) removal. Chem. Eng. J. 2020, 402, 125510.

    CAS  Google Scholar 

  4. Zhang, Y. F.; Zhu, M. Y.; Zhang, S.; Cai, Y. W.; Lv, Z. M.; Fang, M.; Tan, X. L.; Wang, X. K. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B Environ. 2020, 279, 119390.

    CAS  Google Scholar 

  5. Chen, Z. S.; Wang, J. Y.; Hao, M. J.; Xie, Y. H.; Liu, X. L.; Yang, H.; Waterhouse, G. I. N.; Wang, X. K.; Ma, S. Q. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 2023, 14, 1106.

    CAS  Google Scholar 

  6. Yang, H.; Hao, M. J.; Xie, Y. H.; Liu, X. L.; Liu, Y. F.; Chen, Z. S.; Wang, X. K.; Waterhouse, G. I. N.; Ma, S. Q. Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angew. Chem., Int. Ed. 2023, 62, e202303129.

    CAS  Google Scholar 

  7. Liao, Y.; Lei, R. L.; Weng, X. F.; Yan, C.; Fu, J. X.; Wei, G. X.; Zhang, C.; Wang, M.; Wang, H. Q. Uranium capture by a layered 2D/2D niobium phosphate/holey graphene architecture via an electro-adsorption and electrocatalytic reduction coupling process. J. Hazard. Mater. 2023, 442, 130054.

    CAS  Google Scholar 

  8. Cai, Y. W.; Zhang, Y. F.; Lv, Z. M.; Zhang, S.; Gao, F. X.; Fang, M.; Kong, M. G.; Liu, P. S.; Tan, X. L.; Hu, B. W. et al. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal. B Environ. 2022, 310, 121343.

    CAS  Google Scholar 

  9. Wei, Y.; Zhang, Y. W.; Geng, W.; Su, H. R.; Long, M. C. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Appl. Catal. B Environ. 2019, 259, 118084.

    CAS  Google Scholar 

  10. Lin, S.; Wang, Q.; Huang, H. W.; Zhang, Y. H. Piezocatalytic and photocatalytic hydrogen peroxide evolution of sulfide solid solution nano-branches from pure water and air. Small 2022, 18, 2200914.

    CAS  Google Scholar 

  11. Lewis, R. J.; Hutchings, G. J. Recent advances in the direct synthesis of H2O2. ChemCatChem 2019, 11, 298–308.

    CAS  Google Scholar 

  12. Ge, L.; Xiao, J.; Liu, W. C.; Ren, G. L.; Zhou, C.; Liu, J. A.; Zou, J. J.; Yang, Z. X. A piezo-fenton system with rapid iron cycling and hydrogen peroxide self-supply driven by ultrasound. Chem. -Eur. J. 2022, 28, e202202494.

    CAS  Google Scholar 

  13. Wang, Y.; Wang, S. H.; Meng, Y. Z.; Liu, Z.; Li, D. J.; Bai, Y. Y.; Yuan, G. L.; Wang, Y. J.; Zhang, X. H.; Li, X. G. et al. Pyro-catalysis for tooth whitening via oral temperature fluctuation. Nat. Commun. 2022, 13, 4419.

    CAS  Google Scholar 

  14. Ma, Y. L.; Wang, B.; Zhong, Y. Z.; Gao, Z. Y.; Song, H. L.; Zeng, Y. J.; Wang, X. Y.; Huang, F.; Li, M. R.; Wang, M. Y. Bifunctional RbBiNb2O7/poly(tetrafluoroethylene) for high-efficiency piezocatalytic hydrogen and hydrogen peroxide production from pure water. Chem. Eng. J. 2022, 446, 136958.

    CAS  Google Scholar 

  15. Hickam, S.; Breier, J.; Cripe, Y.; Cole, E.; Burns, P. C. Effects of H2O2 concentration on formation of uranyl peroxide species probed by dissolution of uranium nitride and uranium dioxide. Inorg. Chem. 2019, 58, 5858–5864.

    CAS  Google Scholar 

  16. Ma, J. P.; Xiong, X.; Wu, D.; Wang, Y.; Ban, C. G.; Feng, Y. J.; Meng, J. Z.; Gao, X. S.; Dai, J. Y.; Han, G. et al. Band position-independent piezo-electrocatalysis for ultrahigh CO2 conversion. Adv. Mater. 2023, 35, 2300027.

    CAS  Google Scholar 

  17. Zhang, C. X.; Lei, D.; Xie, C. F.; Hang, X. S.; He, C. X.; Jiang, H. L. Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect. Adv. Mater. 2021, 33, 2106308.

    CAS  Google Scholar 

  18. Lee, J. T.; Lin, M. C.; Wu, J. M. High-efficiency cycling piezo-degradation of organic pollutants over three liters using MoS2/carbon fiber piezocatalytic filter. Nano Energy 2022, 98, 107280.

    CAS  Google Scholar 

  19. Tian, Q.; Zeng, X. K.; Zhao, C.; Jing, L. Y.; Zhang, X. W.; Liu, J. Exceptional photocatalytic hydrogen peroxide production from sandwich-structured graphene interlayered phenolic resins nanosheets with mesoporous channels. Adv. Funct. Mater. 2023, 33, 2213173.

    CAS  Google Scholar 

  20. Wang, J.; Feng, T.; Chen, J. X.; He, J. H.; Fang, X. S. Flexible 2D Cu metal: Organic framework@MXene film electrode with excellent durability for highly selective electrocatalytic NH3 antithesis. Research 2022, 2022, 9837012.

    CAS  Google Scholar 

  21. Zhang, X. G.; Hao, C. C.; Ma, C.; Shen, Z. Z.; Guo, J. Z.; Sun, R. G. Studied on sonocatalytic degradation of Rhodamine B in aqueous solution. Ultrason. Sonochem. 2019, 58, 104691.

    CAS  Google Scholar 

  22. Chen, X.; Zhang, W. W.; Zhang, L. X.; Feng, L. P.; Zhang, C. X.; Jiang, J.; Yan, T. J.; Wang, H. Sacrificial agent-free photocatalytic H2O2 evolution via two-electron oxygen reduction using a ternary α-Fe2O3/CQD@g-C3N4 photocatalyst with broad-spectrum response. J. Mater. Chem. A 2020, 8, 18816–18825.

    CAS  Google Scholar 

  23. Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem., Int. Ed. 2014, 53, 13454–13459.

    CAS  Google Scholar 

  24. Liu, B. Y.; Du, J. Y.; Ke, G. L.; Jia, B.; Huang, Y. J.; He, H. C.; Zhou, Y.; Zou, Z. G. Boosting O2 reduction and H2O dehydrogenation kinetics: Surface N-hydroxymethylation of g-C3N4 photocatalysts for the efficient production of H2O2. Adv. Funct. Mater. 2022, 32, 2111125.

    CAS  Google Scholar 

  25. Zhao, S.; Zhao, X. Polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework for photocatalytic hydrogen peroxide production under visible light. J. Catal. 2018, 366, 98–106.

    CAS  Google Scholar 

  26. Sun, M. H.; Wang, X. G.; Li, Y.; Pan, H. H.; Murugananthan, M.; Han, Y. D.; Wu, J.; Zhang, M.; Zhang, Y. R.; Kang, Z. H. Bifunctional Pd-Ox center at the liquid-solid-gas triphase interface for H2O2 photosynthesis. ACS Catal. 2022, 12, 2138–2149.

    CAS  Google Scholar 

  27. Wang, K.; Zhang, M. Q.; Li, D. G.; Liu, L. H.; Shao, Z. P.; Li, X. Y.; Arandiyan, H.; Liu, S. M. Ternary BaCaZrTi perovskite oxide piezocatalysts dancing for efficient hydrogen peroxide generation. Nano Energy 2022, 98, 107251.

    CAS  Google Scholar 

  28. Liu, D. M.; Sun, X. R.; Tan, L. N.; Zhang, J. T.; Jin, C. C.; Wang, F. High-performance piezocatalytic hydrogen evolution by (Bi0.5Na0.5)TiO3 cubes decorated with cocatalysts. Ceram. Int. 2023, 49, 20343–20350.

    CAS  Google Scholar 

  29. Li, Y. K.; Li, L.; Liu, F. Y.; Wang, B.; Gao, F.; Liu, C.; Fang, J. Y.; Huang, F.; Lin, Z.; Wang, M. Y. Robust route to H2O2 and H2 via intermediate water splitting enabled by capitalizing on minimum vanadium-doped piezocatalysts. Nano Res. 2022, 15, 7986–7993.

    CAS  Google Scholar 

  30. Yu, K. F.; Jiang, P. Y.; Yuan, H. B.; He, R.; Zhu, W. K.; Wang, L. B. Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Appl. Catal. B Environ. 2021, 288, 119978.

    CAS  Google Scholar 

  31. Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I. FTIR and Raman spectroscopic study of sodium aluminophosphate and sodium aluminum-iron phosphate glasses containing uranium oxides. J. Non-Cryst. Solids 2016, 443, 192–198.

    CAS  Google Scholar 

  32. Britvina, A. S.; Titova, S. M.; Skripchenko, S. Y.; Yakovleva, O. V. Physico-chemical characteristics of uranium peroxide obtained from nitrate-sulfate pregnant solutions. AIP Conf. Proc. 2099, 2174, 020013.

    Google Scholar 

  33. Bliznyuk, V. N.; Conroy, N. A.; Xie, Y.; Podila, R.; Rao, A. M.; Powell, B. A. Increase in the reduction potential of uranyl upon interaction with graphene oxide surfaces. Phys. Chem. Chem. Phys. 2018, 20, 1752–1760.

    CAS  Google Scholar 

  34. Kushwaha, S.; Sreedhar, B.; Padmaja, P. XPS, EXAFS, and FTIR as tools to probe the unexpected adsorption-coupled reduction of U(VI) to U(V) and U(IV) on Borassus flabellifer-based adsorbents. Langmuir 2012, 28, 16038–16048.

    CAS  Google Scholar 

  35. Khavryuchenko, V. D.; Khavryuchenko, O. V.; Lisnyak, V. V. Quantum chemical and spectroscopic analysis of calcium hydroxyapatite and related materials. J. Solid State Chem. 2007, 180, 702–712.

    CAS  Google Scholar 

  36. Spano, T. L.; Niedziela, J. L.; Shields, A. E.; McFarlane, J.; Zirakparvar, A.; Brubaker, Z.; Kapsimalis, R. J.; Miskowiec, A. Structural, spectroscopic, and kinetic insight into the heating rate dependence of studtite and metastudtite dehydration. J. Phys. Chem. C 2020, 124, 26699–26713.

    CAS  Google Scholar 

  37. Frost, R. L.; Čejka, J.; Ayoko, G. Raman spectroscopic study of the uranyl phosphate minerals phosphuranylite and yingjiangite. J. Raman Spectrosc. 2008, 39, 495–502.

    CAS  Google Scholar 

  38. Caculitan, N.; Siekhaus, W. The growth of epitaxial uranium oxide observed by micro-Raman spectroscopy. MRS Online Proc. Libr. 2011, 893, 8930507.

    Google Scholar 

  39. Lobeck, H. L.; Traustason, H.; Julien, P. A.; FitzPatrick, J. R.; Mana, S.; Szymanowski, J. E. S.; Burns, P. C. In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions. Dalton Trans. 2019, 48, 7755–7765.

    CAS  Google Scholar 

  40. Wylie, E. M.; Peruski, K. M.; Weidman, J. L.; Phillip, W. A.; Burns, P. C. Ultrafiltration of uranyl peroxide nanoclusters for the separation of uranium from aqueous solution. ACS Appl. Mater. Interfaces 2014, 6, 473–479.

    CAS  Google Scholar 

  41. Clavier, N.; Du Fou De Kerdaniel, E.; Dacheux, N.; Le Coustumer, P.; Drot, R.; Ravaux, J.; Simoni, E. Behavior of thorium-uranium(IV) phosphate-diphosphate sintered samples during leaching tests. Part II. Saturation processes. J. Nucl. Mater. 2006, 349, 304–316.

    CAS  Google Scholar 

  42. Zheng, N. C.; Yin, L. Y.; Su, M. H.; Liu, Z. Q.; Tsang, D. C. W.; Chen, D. Y. Synthesis of shape and structure-dependent hydroxyapatite nanostructures as a superior adsorbent for removal of U(VI). Chem. Eng. J. 2020, 384, 123262.

    CAS  Google Scholar 

  43. Chen, L.; Wang, Y. Q.; Cao, X. H.; Zhang, Z. B.; Liu, Y. H. Effect of doping cation on the adsorption properties of hydroxyapatite to uranium. J. Solid State Chem. 2023, 317, 123687.

    CAS  Google Scholar 

  44. Zhu, W. C.; Wang, C. T.; Hui, W. H.; Huang, X.; Yang, C. M.; Liang, Y. C. Intrinsically morphological effect of perovskite BaTiO3 boosting piezocatalytic uranium extraction efficiency and mechanism investigation. J. Hazard. Mater. 2023, 455, 131578.

    CAS  Google Scholar 

  45. Cai, Y. W.; Fang, M.; Hu, B. W.; Wang, X. K. Efficient extraction of U(VI) ions from solutions. Nucl. Sci. Tech. 2023, 34, 2.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 22376060, U2267222, and U21A20290) and Qinghai Provincial Science and Technology Project (No. 2021-ZJ-925).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Fang, Xiaoli Tan, Guang Tao Fei or Li De Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Wang, Z., Fang, M. et al. Biological calcium phosphate nanorods for piezocatalytical extraction of U(VI) from water. Nano Res. 16, 12772–12780 (2023). https://doi.org/10.1007/s12274-023-6159-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6159-z

Keywords

Navigation