Skip to main content
Log in

A stretchable fabric as strain sensor integrating electromagnetic shielding and electrochemical energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multifunctional intelligent fabric plays an integral role in health management, human–machine interaction, wireless energy storage and conversion, and many other artificial intelligence fields. Herein, we demonstrate a newly developed MXene/polyaniline (PANI) multifunctional fabric integrated with strain sensing, electrochemical energy storage, and electromagnetic shielding properties. The multifunctional fabric-based strain sensor possesses a real-time signal response at a sizeable tensile strain of 100% with a minute strain of 0.5%, maintaining a stable and consistent signal response even after 3000 stretch–release cycles. In addition, the multifunctional fabric exhibits excellent electromagnetic shielding capabilities, achieving a total shielding effectiveness value of up to 43 dB, and in the meantime shows attractive electrochemical energy storage performance as an electrode in a supercapacitor, offering a maximum specific capacity and energy density of 522.5 mF·cm−2 and 18.16 µWh·cm−2, respectively. Such a multifunctional intelligent fabric offers versatile opportunities to develop smart clothes for various artificial intelligent applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.

    Article  CAS  Google Scholar 

  2. Wang, L. M.; Li, N.; Zhang, Y. F.; Di, P. J.; Li, M. K.; Lu, M.; Liu, K.; Li, Z. H.; Ren, J. Y.; Zhang, L. Q. et al. Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter 2022, 5, 3417–3431.

    Article  CAS  Google Scholar 

  3. Zhao, Y.; Gao, W. C.; Dai, K.; Wang, S.; Yuan, Z. Q.; Li, J. N.; Zhai, W.; Zheng, G. Q.; Pan, C. F.; Liu, C. T. et al. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv. Mater. 2021, 33, 2102332.

    Article  CAS  Google Scholar 

  4. Zhao, Z. Y.; Xia, K. Q.; Hou, Y.; Zhang, Q. H.; Ye, Z. Z.; Lu, J. G. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers. Chem. Soc. Rev. 2021, 50, 12702–12743.

    Article  CAS  Google Scholar 

  5. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    Article  CAS  Google Scholar 

  6. Li, Y. T.; Miao, X. H.; Chen, J. Y.; Jiang, G. M.; Liu, Q. Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces. Mater. Des. 2021, 197, 109273.

    Article  CAS  Google Scholar 

  7. Peng, J.; Wang, B.; Cheng, H. N.; Yang, R. H.; Yin, Y. J.; Xu, S.; Wang, C. X. Highly sensitive and superhydrophobic fabric sensor based on AgNPs/polypyrrole composite conductive networks for body movement monitoring. Compos. Sci. Technol. 2022, 227, 109561.

    Article  CAS  Google Scholar 

  8. Vu, L. Q.; Kim, K. H.; Schulze, L. J. H.; Rajulu, S. L. Lumbar posture assessment with fabric strain sensors. Comput. Biol. Med. 2020, 118, 103624.

    Article  Google Scholar 

  9. Peng, J.; Han, W. Y.; Tan, Y. S.; Zhang, N. Y.; Yin, Y. J.; Wang, C. X. A highly sensitive, superhydrophobic fabric strain sensor based on polydopamine template-assisted synergetic conductive network. Appl. Surf. Sci. 2023, 617, 156535.

    Article  CAS  Google Scholar 

  10. Wang, B.; Peng, J.; Han, W. Y.; Yin, Y. J.; Wang, C. X. Stretchable and conductive cotton-based fabric for strain sensing, electrothermal heating, and energy storing. Cellulose 2022, 29, 7989–8000.

    Article  CAS  Google Scholar 

  11. Gao, C.; Liu, Y. C.; Gu, F.; Chen, Z.; Su, Z. Y.; Du, H.; Xu, D.; Liu, K. S.; Xu, W. L. Biodegradable ecoflex encapsulated bacterial cellulose/polypyrrole strain sensor detects motion with high sensitivity, flexibility and scalability. Chem. Eng. J. 2023, 460, 141769.

    Article  CAS  Google Scholar 

  12. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Article  CAS  Google Scholar 

  13. Yin, R.; Yang, S. Y.; Li, Q. M.; Zhang, S. D.; Liu, H.; Han, J.; Liu, C. T.; Shen, C. Y. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 2020, 65, 899–908.

    Article  CAS  Google Scholar 

  14. Yang, R. L.; Song, H. Z.; Zhou, Z.; Yang, S. D.; Tang, X.; He, J. K.; Liu, S. Y.; Zeng, Z. P.; Yang, B. R.; Gui, X. C. Ultra-sensitive, multidirectional flexible strain sensors based on an MXene film with periodic wrinkles. ACS Appl. Mater. Interfaces 2023, 15, 8345–8354.

    Article  CAS  Google Scholar 

  15. Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 2011, 28, 1517–1522.

    Article  Google Scholar 

  16. Ma, Y. J.; Zhi, L. J. Functionalized graphene materials: Definition, classification, and preparation strategies. Acta Phys. -Chim. Sic. 2022, 38, 2101004.

    Google Scholar 

  17. Brakat, A.; Zhu, H. W. Nanocellulose-graphene hybrids: Advanced functional materials as multifunctional sensing platform. Nano-Micro Lett. 2021, 13, 94.

    Article  CAS  Google Scholar 

  18. Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2011, 26, 4162–4168.

    Article  Google Scholar 

  19. Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

    Article  CAS  Google Scholar 

  20. Qi, C. Z.; Wu, X. Y.; Liu, J.; Luo, X. J.; Zhang, H. B.; Yu, Z. Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 2023, 135, 213–220.

    Article  CAS  Google Scholar 

  21. Zhang, B. P.; Wong, P. W.; Guo, J. X.; Zhou, Y. S.; Wang, Y.; Sun, J. W.; Jiang, M. N.; Wang, Z. K.; An, A. K. Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nat. Commun. 2022, 13, 3315.

    Article  CAS  Google Scholar 

  22. Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

    Article  CAS  Google Scholar 

  23. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    Article  CAS  Google Scholar 

  24. Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

    Article  CAS  Google Scholar 

  25. Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

    Article  CAS  Google Scholar 

  26. Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

    Article  CAS  Google Scholar 

  27. Zang, X. B.; Wang, J. L.; Qin, Y. J.; Wang, T.; He, C. P.; Shao, Q. G.; Zhu, H. W.; Cao, N. Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: From controlled preparation to composite structure construction. Nano-Micro Lett. 2020, 12, 77.

    Article  CAS  Google Scholar 

  28. Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

    Article  CAS  Google Scholar 

  29. Hope, M. A.; Forse, A. C.; Griffith, K. J.; Lukatskaya, M. R.; Ghidiu, M.; Gogotsi, Y.; Grey, C. P. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 2011, 18, 5099–5102.

    Article  Google Scholar 

  30. Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

    Article  CAS  Google Scholar 

  31. Cao, W. T.; Ma, C.; Mao, D. S.; Zhang, J.; Ma, M. G.; Chen, F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 2019, 29, 1905898.

    Article  CAS  Google Scholar 

  32. Wang, B. L.; Lai, X. J.; Li, H. Q.; Jiang, C. C.; Gao, J. F.; Zeng, X. R. Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 2021, 13, 23020–23029.

    Article  CAS  Google Scholar 

  33. Xu, T.; Song, Q.; Liu, K.; Liu, H. Y.; Pan, J. J.; Liu, W.; Dai, L.; Zhang, M.; Wang, Y. X.; Si, C. L. et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 2023, 15, 98.

    Article  CAS  Google Scholar 

  34. Zang, X. B.; Li, X.; Zhu, M.; Li, X. M.; Zhen, Z.; He, Y. J.; Wang, K. L.; Wei, J. Q.; Kang, F. Y.; Zhu, H. W. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 2015, 7, 7318–7322.

    Article  CAS  Google Scholar 

  35. Ramirez, F. C. R.; Ramakrishnan, P.; Flores-Payag, Z. P.; Shanmugam, S.; Binag, C. A. Polyaniline and carbon nanotube coated pineapple-polyester blended fabric composites as electrodes for supercapacitors. Synthetic. Met. 2017, 230, 65–72.

    Article  CAS  Google Scholar 

  36. Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855–4862.

    Article  CAS  Google Scholar 

  37. Liu, F. W.; Xie, L. Y.; Wang, L.; Chen, W.; Wei, W.; Chen, X.; Luo, S. J.; Dong, L.; Dai, Q. L.; Huang, Y. et al. Hierarchical porous RGO/PEDOT/PANI hybrid for planar/linear supercapacitor with outstanding flexibility and stability. Nano-Micro Lett. 2020, 12, 17.

    Article  Google Scholar 

  38. Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding, L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.

    Article  Google Scholar 

  39. Zhou, T.; Wu, C.; Wang, Y.; Tomsia, A. P.; Li, M.; Saiz, E.; Fang, S.; Baughman, R. H.; Jiang L.; Cheng, Q. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.

    Article  CAS  Google Scholar 

  40. Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 2021, 420, 127720.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program (No. TC220H06N) and the National Natural Science Foundation of China (Nos. U20A20131 and 22209193).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Xue or Linjie Zhi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, X., Zhang, J. et al. A stretchable fabric as strain sensor integrating electromagnetic shielding and electrochemical energy storage. Nano Res. 16, 12753–12761 (2023). https://doi.org/10.1007/s12274-023-6150-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6150-8

Keywords

Navigation