Skip to main content
Log in

Nano-imaging agents for brain diseases: Environmentally responsive imaging and therapy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Precise imaging is essential for the accurate diagnosis and surgical guidance of brain diseases but it is challenging due to the difficulties in crossing the blood-brain barrier (BBB), the difficulties in disease lesion targeting, and the limited contrast in the brain environment. Nano-imaging agents were characterized by functionalized modifications, high contrast, small size, and high biocompatibility, thus providing advantages in BBB crossing, brain targeting, imaging resolution, and real-time monitoring, holding great potential in brain disease imaging. Specific characteristics in brain environment and brain diseases (e.g., marker proteins on the BBB, the pathogenic proteins in the neurodegenerative diseases or brain tumors, and the tumor and inflammatory microenvironment) provide opportunities for the functionalized nano-imaging agents to improve BBB crossing and disease targeting. Moreover, the versatile nano-imaging agents are endowed with therapeutic agents to facilitate the theranostics of brain diseases. Here, we summarized the common materials and imaging techniques of nano-imaging agents and their imaging treatment applications. We discussed their BBB penetration, environmental response for disease targeting, and therapeutic effects. We also provided insights on the advantages, challenges, and application of nano-imaging agents in detecting and treating brain diseases such as neurodegenerative diseases, brain tumors, stroke, and traumatic brain injury. These discussions will help develop nano-imaging agents-based theranostic platforms for the precise diagnosis and treatment of brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jansen, I. G. H.; Berkhemer, O. A.; Yoo, A. J.; Vos, J. A.; Lycklama, A. N. G. J.; Sprengers, M. E. S.; van Zwam, W. H.; Schonewille, W. J.; Boiten, J.; van Walderveen, M. A. A. et al. Comparison of CTA- and DSA-based collateral flow assessment in patients with anterior circulation stroke. AJNR Am. J. Neuroradiol. 2016, 37, 2037–2042.

    CAS  Google Scholar 

  2. Czap, A. L.; Sheth, S. A. Overview of imaging modalities in stroke. Neurology 2021, 97, S42–S51.

    Google Scholar 

  3. Terstappen, G. C.; Meyer, A. H.; Bell, R. D.; Zhang, W. D. Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383.

    CAS  Google Scholar 

  4. Dube, T.; Kumar, N.; Bishnoi, M.; Panda, J. J. Dual blood-brain barrier-glioma targeting peptide-poly(levodopamine) hybrid nanoplatforms as potential near infrared phototheranostic agents in glioblastoma. Bioconjug. Chem. 2021, 32, 2014–2031.

    CAS  Google Scholar 

  5. Kim, H. S.; Seo, M.; Park, T. E.; Lee, D. Y. A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy. J. Nanobiotechnology 2022, 20, 14.

    CAS  Google Scholar 

  6. Zhu, M. T.; Sheng, Z. H.; Jia, Y. L.; Hu, D. H.; Liu, X.; Xia, X. Y.; Liu, C. B.; Wang, P.; Wang, X. B.; Zheng, H. R. Indocyanine green-holo-transferrin nanoassemblies for tumor-targeted dual-modal imaging and photothermal therapy of glioma. ACS Appl. Mater. Interfaces 2017, 9, 39249–39258.

    CAS  Google Scholar 

  7. Dube, T.; Kompella, U. B.; Panda, J. J. Near infrared triggered chemo-PTT-PDT effect mediated by glioma directed twin functional-chimeric peptide-decorated gold nanoroses. J. Photochem. Photobiol. B 2022, 228, 112407.

    CAS  Google Scholar 

  8. Wan, Q.; Zou, C.; Hu, D. H.; Zhou, J.; Chen, M. J.; Tie, C. J.; Qiao, Y. Z.; Yan, F.; Cheng, C. L.; Sheng, Z. H. et al. Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy. Biomater. Sci. 2019, 7, 3007–3015.

    CAS  Google Scholar 

  9. Miao, J.; Miao, M. Q.; Jiang, Y.; Zhao, M.; Li, Q.; Zhang, Y.; An, Y.; Pu, K. Y.; Miao, Q. Q. An activatable NIR-II fluorescent reporter for in vivo imaging of Amyloid-β plaques. Angew. Chem., Int. Ed. 2023, 62, e202216351.

    CAS  Google Scholar 

  10. Elbatrawy, A. A.; Hyeon, S. J.; Yue, N.; Osman, E. E. A.; Choi, S. H.; Lim, S.; Kim, Y. K.; Ryu, H.; Cui, M. C.; Nam, G. “Turn-on” quinoline-based fluorescent probe for selective imaging of tau aggregates in Alzheimer’s disease: Rational design, synthesis, and molecular docking. ACS Sens. 2021, 6, 2281–2289.

    CAS  Google Scholar 

  11. Su, J.; Yao, Z. P.; Chen, Z. X.; Zhou, S. S.; Wang, Z.; Xia, H. P.; Liu, S. Q.; Wu, Y. F. TfR Aptamer enhanced blood-brain barrier penetration of biomimetic nanocomplexes for intracellular transglutaminase 2 imaging and silencing in glioma. Small 2022, 18, 2203448.

    CAS  Google Scholar 

  12. Deng, G. J.; Peng, X. H.; Sun, Z. H.; Zheng, W.; Yu, J.; Du, L. L.; Chen, H. J.; Gong, P.; Zhang, P. F.; Cai, L. T. et al. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano 2020, 14, 11452–11462.

    CAS  Google Scholar 

  13. Chen, S. Y.; Miao, H.; Jiang, X. Y.; Sun, P. F.; Fan, Q. L.; Huang, W. Starlike polymer brush-based ultrasmall nanoparticles with simultaneously improved NIR-II fluorescence and blood circulation for efficient orthotopic glioblastoma imaging. Biomaterials 2021, 275, 120916.

    CAS  Google Scholar 

  14. Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Lyu, Y.; Zhang, L. L.; Xiong, Q. H.; Pramanik, M.; Pu, K. Y. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett. 2017, 17, 4964–4969.

    CAS  Google Scholar 

  15. Jia, G.; Han, Y.; An, Y. L.; Ding, Y. N.; He, C.; Wang, X. H.; Tang, Q. S. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018, 178, 302–316.

    CAS  Google Scholar 

  16. Liu, X. G.; Zhang, L.; Lu, S.; Liu, D. Q.; Zhang, L. X.; Yu, X. L.; Liu, R. T. Multifunctional superparamagnetic iron oxide nanoparticles conjugated with Aβ oligomer-specific scFv antibody and class a scavenger receptor activator show early diagnostic potentials for Alzheimer’s disease. Int. J. Nanomedicine 2020, 15, 4919–4932.

    CAS  Google Scholar 

  17. Tang, C. M.; Wang, C.; Zhang, Y.; Xue, L. J.; Li, Y. Y.; Ju, C. Y.; Zhang, C. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett. 2019, 19, 4470–4477.

    CAS  Google Scholar 

  18. Mishra, S. K.; Khushu, S.; Singh, A. K.; Gangenahalli, G. Homing and tracking of iron oxide labelled mesenchymal stem cells after infusion in traumatic brain injury mice: A longitudinal in vivo MRI study. Stem Cell Rev. Rep. 2018, 14, 888–900.

    CAS  Google Scholar 

  19. Xu, H. L.; Yang, J. J.; ZhuGe, D. L.; Lin, M. T.; Zhu, Q. Y.; Jin, B. H.; Tong, M. Q.; Shen, B. X.; Xiao, J.; Zhao, Y. Z. Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv. Healthc. Mater. 2018, 7, 1701130.

    Google Scholar 

  20. Zhang, J.; Chen, N.; Wang, H.; Gu, W.; Liu, K.; Ai, P. H.; Yan, C. X.; Ye, L. Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J. Colloid Interface Sci. 2016, 469, 86–92.

    CAS  Google Scholar 

  21. Wang, H.; Mu, Q. X.; Revia, R.; Wang, K.; Tian, B. W.; Lin, G. Y.; Lee, W.; Hong, Y. K.; Zhang, M. Q. Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy. J. Control. Release 2018, 289, 70–78.

    CAS  Google Scholar 

  22. Richard, S.; Saric, A.; Boucher, M.; Slomianny, C.; Geffroy, F.; Mériaux, S.; Lalatonne, Y.; Petit, P. X.; Motte, L. Antioxidative theranostic iron oxide nanoparticles toward brain tumors imaging and ROS production. ACS Chem. Biol. 2016, 11, 2812–2819.

    CAS  Google Scholar 

  23. Sukumar, U. K.; Bose, R. J. C.; Malhotra, M.; Babikir, H. A.; Afjei, R.; Robinson, E.; Zeng, Y. T.; Chang, E.; Habte, F.; Sinclair, R. et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 2019, 218, 119342.

    CAS  Google Scholar 

  24. Liu, H.; Chen, X.; Xue, W.; Chu, C. C.; Liu, Y.; Tong, H. P.; Du, X. S.; Xie, T.; Liu, G.; Zhang, W. G. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging. Int. J. Nanomedicine 2016, 11, 5099–5108.

    CAS  Google Scholar 

  25. Meng, X. X.; Wan, J. Q.; Jing, M.; Zhao, S. G.; Cai, W.; Liu, E. Z. Specific targeting of gliomas with multifunctional superparamagnetic iron oxide nanoparticle optical and magnetic resonance imaging contrast agents. Acta Pharmacol. Sin. 2007, 28, 2019–2026.

    CAS  Google Scholar 

  26. Karimian-Jazi, K.; Münch, P.; Alexander, A.; Fischer, M.; Pfleiderer, K.; Piechutta, M.; Karreman, M. A.; Solecki, G. M.; Berghoff, A. S.; Friedrich, M. et al. Monitoring innate immune cell dynamics in the glioma microenvironment by magnetic resonance imaging and multiphoton microscopy (MR-MPM). Theranostics 2020, 10, 1873–1883.

    CAS  Google Scholar 

  27. Bernal, G. M.; LaRiviere, M. J.; Mansour, N.; Pytel, P.; Cahill, K. E.; Voce, D. J.; Kang, S. J.; Spretz, R.; Welp, U.; Noriega, S. E. et al. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine 2014, 10, 149–157.

    CAS  Google Scholar 

  28. Lei, H. L.; Nan, X.; Wang, Z. Y.; Gao, L.; Xie, L. S.; Zou, C.; Wan, Q.; Pan, D.; Beauchamp, N.; Yang, X. M. et al. Stem cell labeling with superparamagnetic iron oxide nanoparticles using focused ultrasound and magnetic resonance imaging tracking. J. Nanosci. Nanotechnol. 2015, 15, 2605–2612.

    CAS  Google Scholar 

  29. Liu, H. R.; Sun, R.; Wang, L.; Chen, X. Y.; Li, G. L.; Cheng, Y.; Zhai, G. H.; Bay, B. H.; Yang, F.; Gu, N. et al. Biocompatible iron oxide nanoring-labeled mesenchymal stem cells: An innovative magnetothermal approach for cell tracking and targeted stroke therapy. ACS Nano 2022, 16, 18806–18821.

    CAS  Google Scholar 

  30. Pan, Y. B.; Wang, S. Q.; He, X. C.; Tang, W. W.; Wang, J. H.; Shao, A. W.; Zhang, J. M. A combination of glioma in vivo imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. J. Mater. Chem. B 2019, 7, 7683–7689.

    CAS  Google Scholar 

  31. Sun, D.; Liu, K. J.; Li, Y.; Xie, T.; Zhang, M.; Liu, Y.; Tong, H. P.; Guo, Y.; Zhang, Q. H.; Liu, H. et al. Intrinsically bioactive manganese-eumelanin nanocomposites mediated antioxidation and anti-neuroinflammation for targeted theranostics of traumatic brain injury. Adv. Healthc. Mater. 2022, 11, 2200517.

    CAS  Google Scholar 

  32. Zhao, Q. Q.; Du, W. X.; Zhou, L. L.; Wu, J. R.; Zhang, X. X.; Wei, X. E.; Wang, S. J.; Huang, Y.; Li, Y. H. Transferrin-enabled blood-brain barrier crossing manganese-based nanozyme for rebalancing the reactive oxygen species level in ischemic stroke. Pharmaceutics 2022, 14, 1122.

    CAS  Google Scholar 

  33. Terry, A. V. Jr.; Beck, W. D.; Lin, P. C.; Callahan, P. M.; Rudic, R. D.; Hamrick, M. W. Manganese-enhanced magnetic resonance imaging method detects age-related impairments in axonal transport in mice and attenuation of the impairments by a microtubule-stabilizing compound. Brain Res. 2022, 1789, 147947.

    CAS  Google Scholar 

  34. Hou, W. J.; Jiang, Y. Z.; Xie, G. C.; Zhao, L.; Zhao, F. S.; Zhang, X. J.; Sun, S. K.; Yu, C. S.; Pan, J. B. Biocompatible BSA-MnO2 nanoparticles for in vivo timely permeability imaging of blood-brain barrier and prediction of hemorrhage transformation in acute ischemic stroke. Nanoscale 2021, 13, 8531–8542.

    CAS  Google Scholar 

  35. Xiao, T. T.; He, M. J.; Xu, F.; Fan, Y.; Jia, B. Y.; Shen, M. W.; Wang, H.; Shi, X. Y. Macrophage membrane-camouflaged responsive polymer nanogels enable magnetic resonance imaging-guided chemotherapy/chemodynamic therapy of orthotopic glioma. ACS Nano 2021, 15, 20377–20390.

    CAS  Google Scholar 

  36. Jiang, S. Q.; Li, X. H.; Zhang, F.; Mao, J. J.; Cao, M. H.; Zhang, X. N.; Huang, S. M.; Duan, X. H.; Shen, J. Manganese dioxide-based nanocarrier delivers paclitaxel to enhance chemotherapy against orthotopic glioma through hypoxia relief. Small Methods 2022, 6, 2101531.

    CAS  Google Scholar 

  37. Lai, J. X.; Wang, T. J.; Wang, H.; Shi, F. Q.; Gu, W.; Ye, L. MnO nanoparticles with unique excitation-dependent fluorescence for multicolor cellular imaging and MR imaging of brain glioma. Mikrochim. Acta 2018, 185, 244.

    Google Scholar 

  38. Tan, J. Y.; Duan, X. H.; Zhang, F.; Ban, X. H.; Mao, J. J.; Cao, M. H.; Han, S. S.; Shuai, X. T.; Shen, J. Theranostic nanomedicine for synergistic chemodynamic therapy and chemotherapy of orthotopic glioma. Adv. Sci. 2020, 7, 2003036.

    CAS  Google Scholar 

  39. Wang, R. N.; Zhang, X. R.; Huang, J. Y.; Feng, K. H.; Zhang, Y. J.; Wu, J.; Ma, L.; Zhu, A. R.; Di, L. Q. Bio-fabricated nanodrugs with chemo-immunotherapy to inhibit glioma proliferation and recurrence. J. Control. Release 2023, 354, 572–587.

    CAS  Google Scholar 

  40. Xu, K.; Zhao, Z. H.; Zhang, J. F.; Xue, W.; Tong, H. P.; Liu, H.; Zhang, W. G. Albumin-stabilized manganese-based nanocomposites with sensitive tumor microenvironment responsivity and their application for efficient siRNA delivery in brain tumors. J. Mater. Chem. B 2020, 8, 1507–1515.

    CAS  Google Scholar 

  41. Liang, K. C.; Li, Z. C.; Luo, Y.; Zhang, Q. H.; Yin, F. F.; Xu, L. J.; Chen, H. R.; Wang, H. Intelligent nanocomposites with intrinsic blood-brain-barrier crossing ability designed for highly specific MR imaging and sonodynamic therapy of glioblastoma. Small 2020, 16, 1906985.

    CAS  Google Scholar 

  42. Liu, H. M.; Zhou, M. J.; Sheng, Z. H.; Chen, Y.; Yeh, C. K.; Chen, W. T.; Liu, J.; Liu, X.; Yan, F.; Zheng, H. R. Theranostic nanosensitizers for highly efficient MR/fluorescence imaging-guided sonodynamic therapy of gliomas. J. Cell. Mol. Med. 2018, 22, 5394–5405.

    CAS  Google Scholar 

  43. Qin, R. X.; Li, S.; Qiu, Y. W.; Feng, Y. S.; Liu, Y. Q.; Ding, D. D.; Xu, L. H.; Ma, X. Q.; Sun, W. J.; Chen, H. M. Carbonized paramagnetic complexes of Mn(II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors. Nat. Commun. 2022, 13, 1938.

    CAS  Google Scholar 

  44. Chen, N.; Shao, C.; Li, S.; Wang, Z. H.; Qu, Y. M.; Gu, W.; Yu, C. J.; Ye, L. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. J. Colloid Interface Sci. 2015, 457, 27–34.

    CAS  Google Scholar 

  45. Rodriguez, O.; Schaefer, M. L.; Wester, B.; Lee, Y. C.; Boggs, N.; Conner, H. A.; Merkle, A. C.; Fricke, S. T.; Albanese, C.; Koliatsos, V. E. Manganese-enhanced magnetic resonance imaging as a diagnostic and dispositional tool after mild-moderate blast traumatic brain injury. J. Neurotrauma 2016, 33, 662–671.

    Google Scholar 

  46. Song, G. R.; Zhang, B. R.; Song, L. Y.; Li, W. Z.; Liu, C. X.; Chen, L. S.; Liu, A. H. MnCO3@BSA-ICG nanoparticles as a magnetic resonance/photoacoustic dual-modal contrast agent for functional imaging of acute ischemic stroke. Biochem. Biophys. Res. Commun. 2022, 614, 125–131.

    CAS  Google Scholar 

  47. Kim, J. H.; Ha, T. L.; Im, G. H.; Yang, J.; Seo, S. W.; Lee, I. S.; Lee, J. H. Magnetic resonance imaging of amyloid plaques using hollow manganese oxide nanoparticles conjugated with antibody Aβ1-40 in a transgenic mouse model. Neuroreport 2013, 24, 16–21.

    CAS  Google Scholar 

  48. Zhang, L. R.; Chen, D. Y.; Zhang, J. J.; Cai, R.; Xu, L. X.; Yu, N. H.; Zhang, S. Y.; Yan, H.; Jiang, J. Z.; Du, F. Y. et al. A novel cholchicine/gadolinium-loading tubulin self-assembly nanocarrier for MR imaging and chemotherapy of glioma. Nanotechnology 2020, 31, 255601.

    CAS  Google Scholar 

  49. Shen, Z. Y.; Liu, T.; Yang, Z.; Zhou, Z. J.; Tang, W.; Fan, W. P.; Liu, Y. J.; Mu, J.; Li, L.; Bregadze, V. I. et al. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials 2020, 235, 119783.

    CAS  Google Scholar 

  50. Zhang, H.; Wang, T. J.; Zheng, Y. Y.; Yan, C. X.; Gu, W.; Ye, L. Comparative toxicity and contrast enhancing assessments of Gd2O3@BSA and MnO2@BSA nanoparticles for MR imaging of brain glioma. Biochem. Biophys. Res. Commun. 2018, 499, 488–492.

    CAS  Google Scholar 

  51. Bony, B. A.; Miller, H. A.; Tarudji, A. W.; Gee, C. C.; Sarella, A.; Nichols, M. G.; Kievit, F. M. Ultrasmall mixed Eu-Gd oxide nanoparticles for multimodal fluorescence and magnetic resonance imaging of passive accumulation and retention in TBI. ACS Omega 2020, 5, 16220–16227.

    CAS  Google Scholar 

  52. Hubert, V.; Hristovska, I.; Karpati, S.; Benkeder, S.; Dey, A.; Dumot, C.; Amaz, C.; Chounlamountri, N.; Watrin, C.; Comte, J. C. et al. Multimodal imaging with NanoGd reveals spatiotemporal features of neuroinflammation after experimental stroke. Adv. Sci. 2021, 8, 2101433.

    CAS  Google Scholar 

  53. Wang, X. L.; Chan, H. N.; Desbois, N.; Gros, C. P.; Bolze, F.; Li, Y. H.; Li, H. W.; Wong, M. S. Multimodal theranostic cyanine-conjugated gadolinium(III) complex for in vivo imaging of amyloid-β in an Alzheimer’s disease mouse model. ACS Appl. Mater. Interfaces 2021, 13, 18525–18532.

    CAS  Google Scholar 

  54. Zhang, X. H.; Ye, D. Z.; Yang, L. H.; Yue, Y. M.; Sultan, D.; Pacia, C. P.; Pang, H.; Detering, L.; Heo, G. S.; Luehmann, H. et al. Magnetic resonance imaging-guided focused ultrasound-based delivery of radiolabeled copper nanoclusters to diffuse intrinsic pontine glioma. ACS Appl. Nano. Mater. 2020, 3, 11129–11134.

    CAS  Google Scholar 

  55. Shi, X. D.; Shen, L. T. Integrin αvβ3 receptor targeting PET/MRI dual-modal imaging probe based on the 64Cu labeled manganese ferrite nanoparticles. J. Inorg. Biochem. 2018, 186, 257–263.

    CAS  Google Scholar 

  56. Liu, Y. J.; Yang, Z.; Huang, X. L.; Yu, G. C.; Wang, S.; Zhou, Z. J.; Shen, Z. Y.; Fan, W. P.; Liu, Y.; Davisson, M. et al. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano 2018, 12, 8129–8137.

    CAS  Google Scholar 

  57. Gao, X.; Pan, H. J.; Han, Y. C.; Feng, L. X.; Xiong, J. P.; Luo, S. Z.; Li, H. M. Quantitative imaging of amyloid beta peptide (Aβ) in Alzheimer’s brain tissue by laser ablation ICP-MS using gold nanoparticles as labels. Anal. Chim. Acta 2021, 1148, 238197.

    CAS  Google Scholar 

  58. Chan, M. H.; Chen, W.; Li, C. H.; Fang, C. Y.; Chang, Y. C.; Wei, D. H.; Liu, R. S.; Hsiao, M. An advanced in situ magnetic resonance imaging and ultrasonic theranostics nanocomposite platform: Crossing the blood-brain barrier and improving the suppression of glioblastoma using iron-platinum nanoparticles in nanobubbles. ACS Appl. Mater. Interfaces 2021, 13, 26759–26769.

    CAS  Google Scholar 

  59. Zhao, L. Z.; Li, Y. J.; Zhu, J. Y.; Sun, N.; Song, N. N.; Xing, Y.; Huang, H.; Zhao, J. H. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J. Nanobiotechnology 2019, 17, 30.

    Google Scholar 

  60. Chen, M.; Zhang, L.; Gao, M. X.; Zhang, X. M. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite. Talanta 2017, 172, 176–181.

    CAS  Google Scholar 

  61. Basu, S. S.; McMinn, M. H.; Gimenéz-Cassina Lopéz, B.; Regan, M. S.; Randall, E. C.; Clark, A. R.; Cox, C. R.; Agar, N. Y. R. Metal oxide laser ionization mass spectrometry imaging (MOLI MSI) using cerium(IV) oxide. Anal. Chem. 2019, 91, 6800–6807.

    CAS  Google Scholar 

  62. Shao, C.; Li, S.; Gu, W.; Gong, N. Q.; Zhang, J.; Chen, N.; Shi, X. Y.; Ye, L. Multifunctional gadolinium-doped manganese carbonate nanoparticles for targeted MR/fluorescence imaging of tiny brain gliomas. Anal. Chem. 2015, 87, 6251–6257.

    CAS  Google Scholar 

  63. Li, J.; Kong, J. L.; Ma, S. H.; Li, J. C.; Mao, M. R.; Chen, Z. T.; Zhang, J. X.; Chang, Y. N.; Yuan, H.; Liu, T. et al. Exosome-coated 10B carbon dots for precise boron neutron capture therapy in a mouse model of glioma in situ. Adv. Funct. Mater. 2021, 31, 2100969.

    CAS  Google Scholar 

  64. Tak, K.; Sharma, R.; Dave, V.; Jain, S.; Sharma, S. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of Alzheimer’s disease. ACS Chem. Neurosci. 2020, 11, 3741–3748.

    CAS  Google Scholar 

  65. Chen, C. Q.; Cai, Q.; Luo, F.; Dong, N.; Guo, L. H.; Qiu, B.; Lin, Z. Y. Sensitive fluorescent sensor for hydrogen sulfide in rat brain microdialysis via CsPbBr3 quantum dots. Anal. Chem. 2019, 91, 15915–15921.

    CAS  Google Scholar 

  66. Huang, D. H.; Cao, Y. H.; Yang, X.; Liu, Y. Y.; Zhang, Y. J.; Li, C. Y.; Chen, G. C.; Wang, Q. B. A nanoformulation-mediated multifunctional stem cell therapy with improved beta-amyloid clearance and neural regeneration for Alzheimer’s disease. Adv. Mater. 2021, 33, 2006357.

    CAS  Google Scholar 

  67. Song, D.; Zhu, M. T.; Chi, S. Y.; Xia, L.; Li, Z.; Liu, Z. H. Sensitizing the luminescence of lanthanide-doped nanoparticles over 1500 nm for high-contrast and deep imaging of brain injury. Anal. Chem. 2021, 93, 7949–7957.

    CAS  Google Scholar 

  68. Ag Seleci, D.; Maurer, V.; Barlas, F. B.; Porsiel, J. C.; Temel, B.; Ceylan, E.; Timur, S.; Stahl, F.; Scheper, T.; Garnweitner, G. Transferrin-decorated niosomes with integrated InP/ZnS quantum dots and magnetic iron oxide nanoparticles: Dual targeting and imaging of glioma. Int. J. Mol. Sci. 2021, 22, 4556.

    Google Scholar 

  69. Lv, Z. J.; Jin, L. H.; Cao, Y.; Zhang, H.; Xue, D. Z.; Yin, N.; Zhang, T. Q.; Wang, Y. H.; Liu, J. H.; Liu, X. G. et al. A nanotheranostic agent based on Nd3+-doped YVO4 with blood-brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma. Light Sci. Appl. 2022, 11, 116.

    CAS  Google Scholar 

  70. Liu, Z.; Yun, B. F.; Han, Y. B.; Jiang, Z. L.; Zhu, H. Q.; Ren, F.; Li, Z. Dye-sensitized rare earth nanoparticles with up/down conversion luminescence for on-demand gas therapy of glioblastoma guided by NIR-II fluorescence imaging. Adv. Healthc. Mater. 2022, 11, 2102042.

    CAS  Google Scholar 

  71. Wang, Z. J.; Zhang, M.; Chi, S. Y.; Zhu, M. T.; Wang, C. X.; Liu, Z. H. Brain tumor cell membrane-coated lanthanide-doped nanoparticles for NIR-IIb luminescence imaging and surgical navigation of glioma. Adv. Healthc. Mater. 2022, 11, 2200521.

    CAS  Google Scholar 

  72. Li, C. B.; Jiang, G. Y.; Yu, J.; Ji, W. W.; Liu, L. X.; Zhang, P. F.; Du, J.; Zhan, C. L.; Wang, J. G.; Tang, B. Z. Fluorination enhances NIR-II emission and photothermal conversion efficiency of phototheranostic agents for imaging-guided cancer therapy. Adv. Mater. 2023, 35, 2208229.

    CAS  Google Scholar 

  73. Zhu, X. L.; Ye, H. Y.; Liu, J. W.; Yu, R. Q.; Jiang, J. H. Multivalent self-assembled DNA polymer for tumor-targeted delivery and live cell imaging of telomerase activity. Anal. Chem. 2018, 90, 13188–13192.

    CAS  Google Scholar 

  74. Qi, R. L.; Zhao, H.; Zhou, X.; Liu, J.; Dai, N.; Zeng, Y.; Zhang, E. D.; Lv, F. T.; Huang, Y. M.; Liu, L. B. et al. In situ synthesis of photoactive polymers on a living cell surface via bio-palladium catalysis for modulating biological functions. Angew. Chem., Int. Ed. 2021, 60, 5759–5765.

    CAS  Google Scholar 

  75. García-Belda, P.; Prima-García, H.; Aliena-Valero, A.; Castelló-Ruiz, M.; Ulloa-Navas, M. J.; Ten-Esteve, A.; Martí-Bonmatí, L.; Salom, J. B.; García-Verdugo, J. M.; Gil-Perotín, S. Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: An ultrastructural insight into cell fate within the brain. Nanomedicine 2022, 39, 102464.

    Google Scholar 

  76. Huang, Y. P.; Zhang, B. L.; Xie, S. B.; Yang, B. N.; Xu, Q.; Tan, J. Superparamagnetic iron oxide nanoparticles modified with tween 80 pass through the intact blood-brain barrier in rats under magnetic field. ACS Appl. Mater. Interfaces 2016, 8, 11336–11341.

    CAS  Google Scholar 

  77. Wu, V. M.; Huynh, E.; Tang, S. A.; Uskoković, V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater. 2019, 88, 422–447.

    CAS  Google Scholar 

  78. Li, B. Y.; Chen, X.; Qiu, W.; Zhao, R. R.; Duan, J. Z.; Zhang, S. J.; Pan, Z. W.; Zhao, S. L.; Guo, Q. D.; Qi, Y. H. et al. Synchronous disintegration of ferroptosis defense axis via engineered exosome-conjugated magnetic nanoparticles for glioblastoma therapy. Adv. Sci. 2022, 9, e2105451.

  79. Liu, T.; Wang, Y.; Lu, L. J.; Liu, Y. SPIONs mediated magnetic actuation promotes nerve regeneration by inducing and maintaining repair-supportive phenotypes in Schwann cells. J. Nanobiotechnology 2022, 20, 159.

    CAS  Google Scholar 

  80. Kanda, T.; Oba, H.; Toyoda, K.; Kitajima, K.; Furui, S. Brain gadolinium deposition after administration of gadolinium-based contrast agents. Jpn. J. Radiol. 2016, 34, 3–9.

    CAS  Google Scholar 

  81. Perlman, O.; Weitz, I. S.; Azhari, H. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys. Med. Biol. 2015, 60, 5767–5783.

    CAS  Google Scholar 

  82. Shi, H.; Yan, R. Q.; Wu, L. Y.; Sun, Y. D.; Liu, S.; Zhou, Z. Y.; He, J.; Ye, D. J. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Acta Biomater. 2018, 72, 256–265.

    CAS  Google Scholar 

  83. Li, M.; Wang, Y.; Li, T.; Zhang, J.; Wang, X.; Luo, J.; You, M.; Yang, T.; Deng, Y. B.; Yang, H. et al. Albumin-templated platinum(II) sulfide nanodots for size-dependent cancer theranostics. Acta Biomater. 2023, 155, 564–574.

    CAS  Google Scholar 

  84. You, Q.; Zhang, K. Y.; Liu, J. Y.; Liu, C. L.; Wang, H. Y.; Wang, M. T.; Ye, S. Y.; Gao, H. Q.; Lv, L. T.; Wang, C. et al. Persistent regulation of tumor hypoxia microenvironment via a bioinspired Pt-based oxygen nanogenerator for multimodal imaging-guided synergistic phototherapy. Adv. Sci. 2020, 7, 1903341.

    CAS  Google Scholar 

  85. Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2021, 21, 37–50.

    CAS  Google Scholar 

  86. Yu, J.; He, X. D.; Zhang, Q. F.; Zhou, D. F.; Wang, Z. G.; Huang, Y. B. Iodine conjugated Pt(IV) nanoparticles for precise chemotherapy with iodine-pt guided computed tomography imaging and biotin-mediated tumor-targeting. ACS Nano 2022, 16, 6835–6846.

    CAS  Google Scholar 

  87. Yang, Y. H.; Guo, L. N.; Wang, Z.; Liu, P.; Liu, X. J.; Ding, J. S.; Zhou, W. H. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials 2021, 264, 120390.

    CAS  Google Scholar 

  88. Tang, S. H.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, 1701503.

    Google Scholar 

  89. Mansur, A. A. P.; Mansur, H. S.; Carvalho, S. M.; Caires, A. J. One-pot aqueous synthesis of fluorescent Ag-In-Zn-S quantum dot/polymer bioconjugates for multiplex optical bioimaging of glioblastoma cells. Contrast Media Mol. Imaging 2017, 2017, 3896107.

    Google Scholar 

  90. Zhou, X. T.; You, M.; Wang, F. H.; Wang, Z. Z.; Gao, X. F.; Jing, C.; Liu, J. M.; Guo, M. Y.; Li, J. Y.; Luo, A. P. et al. Multifunctional graphdiyne-cerium oxide nanozymes facilitate MicroRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv. Mater. 2021, 33, 2100556.

    CAS  Google Scholar 

  91. Lord, M. S.; Berret, J. F.; Singh, S.; Vinu, A.; Karakoti, A. S. Redox active cerium oxide nanoparticles: Current status and burning issues. Small 2021, 17, 2102342.

    CAS  Google Scholar 

  92. Hu, H.; Huang, P.; Weiss, O. J.; Yan, X. F.; Yue, X. Y.; Zhang, M. G.; Tang, Y. X.; Nie, L. M.; Ma, Y.; Niu, G. et al. PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters. Biomaterials 2014, 35, 9868–9876.

    CAS  Google Scholar 

  93. Zhang, L.; Jiang, C. J.; Li, B.; Liu, Z. W.; Gu, B. X.; He, S. M.; Li, P. L.; Sun, Y.; Song, S. L. A core–shell Au@Cu2−xSe heterogeneous metal nanocomposite for photoacoustic and computed tomography dual-imaging-guided photothermal boosted chemodynamic therapy. J. Nanobiotechnology 2021, 19, 410.

    CAS  Google Scholar 

  94. Chen, L. L.; Zhao, L.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Near-infrared-II quantum dots for in vivo imaging and cancer therapy. Small 2022, 18, 2104567.

    CAS  Google Scholar 

  95. Kumar, V. B.; Sher, I.; Rencus-Lazar, S.; Rotenstreich, Y.; Gazit, E. Functional carbon quantum dots for ocular imaging and therapeutic applications. Small 2023, 19, 2205754.

    CAS  Google Scholar 

  96. Chung, S.; Revia, R. A.; Zhang, M. Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33, 1904362.

    CAS  Google Scholar 

  97. Zhang, X. N.; Li, S. S.; Ma, H. Z.; Wang, H.; Zhang, R. P.; Zhang, X. D. Activatable NIR-II organic fluorescent probes for bioimaging. Theranostics 2022, 12, 3345–3371.

    CAS  Google Scholar 

  98. Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-earth based nanoparticles. ACS Nano 2011, 5, 8488–8505.

    CAS  Google Scholar 

  99. Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Y. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678.

    CAS  Google Scholar 

  100. Obermeier, B.; Daneman, R.; Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 2013, 19, 1584–1596.

    CAS  Google Scholar 

  101. Rufino-Ramos, D.; Albuquerque, P. R.; Carmona, V.; Perfeito, R.; Nobre, R. J.; Pereira de Almeida, L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J. Control. Release 2017, 262, 247–258.

    CAS  Google Scholar 

  102. Kutchy, N. A.; Ma, R.; Liu, Y. T.; Buch, S.; Hu, G. K. Extracellular vesicle-mediated delivery of ultrasmall superparamagnetic iron oxide nanoparticles to mice brain. Front. Pharmacol. 2022, 13, 819516.

    CAS  Google Scholar 

  103. Ramalho, M. J.; Loureiro, J. A.; Coelho, M. A. N.; Pereira, M. C. Transferrin receptor-targeted nanocarriers: Overcoming barriers to treat glioblastoma. Pharmaceutics 2022, 12, 279.

    Google Scholar 

  104. Dong, C. Y.; Huang, Q. X.; Cheng, H.; Zheng, D. W.; Hong, S.; Yan, Y.; Niu, M. T.; Xu, J. G.; Zhang, X. Z. Neisseria meningitidis opca protein/MnO2 hybrid nanoparticles for overcoming the blood-brain barrier to treat glioblastoma. Adv. Mater. 2022, 32, 2109213.

    Google Scholar 

  105. Huang, N.; Cheng, S.; Zhang, X.; Tian, Q.; Pi, J. L.; Tang, J.; Huang, Q.; Wang, F.; Chen, J.; Xie, Z. et al. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine 2017, 13, 83–93.

    CAS  Google Scholar 

  106. di Polidoro, A. C.; Cafarchio, A.; Vecchione, D.; Donato, P.; De Nola, F.; Torino, E. Revealing angiopep-2/LRP1 molecular interaction for optimal delivery to glioblastoma (GBM). Molecules 2022, 27, 6696.

    CAS  Google Scholar 

  107. Xie, R. X.; Wu, Z. J.; Zeng, F. X.; Cai, H. W.; Wang, D.; Gu, L.; Zhu, H. Y.; Lui, S.; Guo, G.; Song, B. et al. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glioblastoma. Signal Transduct. Target. Ther. 2021, 6, 309.

    CAS  Google Scholar 

  108. Gao, X. H.; Xu, J. L.; Yao, T. T.; Liu, X. X.; Zhang, H. C.; Zhan, C. Y. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv. Drug Deliv. Rev. 2022, 187, 114362.

    CAS  Google Scholar 

  109. Raja, R.; Rosenberg, G. A.; Caprihan, A. MRI measurements of blood-brain barrier function in dementia: A review of recent studies. Neuropharmacology 2018, 134, 259–271.

    CAS  Google Scholar 

  110. Ware, J. B.; Sinha, S.; Morrison, J.; Walter, A. E.; Gugger, J. J.; Schneider, A. L. C.; Dabrowski, C.; Zamore, H.; Wesley, L.; Magdamo, B. et al. Dynamic contrast enhanced MRI for characterization of blood-brain-barrier dysfunction after traumatic brain injury. Neuroimage Clin. 2022, 36, 103236.

    Google Scholar 

  111. Nguyen, G. T.; Coulthard, A.; Wong, A.; Sheikh, N.; Henderson, R.; O’Sullivan, J. D.; Reutens, D. C. Measurement of blood-brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data. Neuroimage Clin. 2013, 2, 658–662.

    Google Scholar 

  112. Huang, B.; Tang, T.; Chen, S. H.; Li, H.; Sun, Z. J.; Zhang, Z. L.; Zhang, M. X.; Cui, R. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nat. Commun. 2023, 12, 197.

    Google Scholar 

  113. Yousaf, T.; Dervenoulas, G.; Politis, M. Advances in MRI methodology. Int. Rev. Neurobiol. 2018, 121, 31–76.

    Google Scholar 

  114. Smits, M. MRI biomarkers in neuro-oncology. Nat. Rev. Neurol. 2021, 17, 486–500.

    Google Scholar 

  115. Krasnovskaya, O.; Spector, D.; Zlobin, A.; Pavlov, K.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Metals in imaging of Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 9790.

    Google Scholar 

  116. Pfeiffer, D.; Pfeiffer, F.; Rummeny, E. Advanced X-ray imaging technology. In Molecular Imaging in Oncology. Schober, O.; Kiessling, F.; Debus, J., Eds.; Springer: Cham, 2020; pp 3–30.

    Google Scholar 

  117. Méndez-Gómez, J. L.; Pelletier, A.; Rougier, M. B.; Korobelnik, J. F.; Schweitzer, C.; Delyfer, M. N.; Catheline, G.; Monfermé, S.; Dartigues, J. F.; Delcourt, C. et al. Association of retinal nerve fiber layer thickness with brain alterations in the visual and limbic networks in elderly adults without dementia. JAMA Netw. Open 2018, 1, e184406.

  118. Liu, D. D.; Dai, X. L.; Zhang, W.; Zhu, X. Y.; Zha, Z.; Qian, H. S.; Cheng, L.; Wang, X. W. Liquid exfoliation of ultrasmall zirconium carbide nanodots as a noninflammatory photothermal agent in the treatment of glioma. Biomaterials 2023, 292, 121917.

    CAS  Google Scholar 

  119. Liang, S. Y.; Zhou, Q.; Wang, M.; Zhu, Y. H.; Wu, Q. Z.; Yang, X. L. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int. J. Nanomedicine 2015, 10, 2325–2333.

    CAS  Google Scholar 

  120. Zhang, X. J.; Guan, Z. PET/CT in the diagnosis and prognosis of osteosarcoma. Front. Biosci. 2018, 23, 2157–2165.

    CAS  Google Scholar 

  121. Gao, Y.; Wu, C. X.; Chen, X. Q.; Ma, L. L.; Zhang, X.; Chen, J. Z.; Liao, X. H.; Liu, M. PET/CT molecular imaging in the era of immune-checkpoint inhibitors therapy. Front. Immunol. 2022, 13, 1049043.

    CAS  Google Scholar 

  122. Brighi, C.; Reid, L.; White, A. L.; Genovesi, L. A.; Kojic, M.; Millar, A.; Bruce, Z.; Day, B. W.; Rose, S.; Whittaker, A. K. et al. MR-guided focused ultrasound increases antibody delivery to nonenhancing high-grade glioma. Neurooncol. Adv. 2020, 2, vdaa030.

    Google Scholar 

  123. Jiang, Y. Y.; Pu, K. Y. Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents. Adv. Biosyst. 2018, 2, e1700262.

    Google Scholar 

  124. Li, C. X.; Wang, Y.; Nong, H. Y.; Hu, X. X.; Wu, Y.; Zhang, Y. J.; Liang, C. M.; Chen, K. G.; Li, S. L. Manganese and dysprosium codoped carbon quantum dots as a potential fluorescent/T1/T2/CT quadri-modal imaging nanoprobe. Nanotechnology 2021, 33, 025101.

    Google Scholar 

  125. Wang, Z. M.; Chen, L. N.; Huang, C. S.; Huang, Y. K.; Jia, N. Q. Albumin-mediated platinum nanocrystals for in vivo enhanced computed tomography imaging. J. Mater. Chem. B 2017, 5, 3498–3510.

    CAS  Google Scholar 

  126. Gröhl, J.; Schellenberg, M.; Dreher, K.; Maier-Hein, L. Deep learning for biomedical photoacoustic imaging: A review. Photoacoustics 2021, 22, 100241.

    Google Scholar 

  127. Guo, B.; Sheng, Z. H.; Hu, D. H.; Liu, C. B.; Zheng, H. R.; Liu, B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 2018, 30, 1802591.

    Google Scholar 

  128. Yuan, K. S.; Jurado-Sánchez, B.; Escarpa, A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: A review. J. Nanobiotechnology 2022, 20, 537.

    CAS  Google Scholar 

  129. Chen, J.; Sheng, Z. H.; Li, P. H.; Wu, M. X.; Zhang, N. S.; Yu, X. F.; Wang, Y. W.; Hu, D. H.; Zheng, H. R.; Wang, G. P. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale 2017, 9, 11888–11901.

    CAS  Google Scholar 

  130. Khlebtsov, B.; Burov, A.; Pylaev, T.; Savkina, A.; Prikhozhdenko, E.; Bratashov, D.; Khlebtsov, N. Improving SERS bioimaging of subcutaneous phantom in vivo with optical clearing. J. Biophotonics 2022, 15, e202100281.

  131. Pang, Y. F.; Wang, C. G.; Lu, L. C.; Wang, C. W.; Sun, Z. W.; Xiao, R. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron. 2019, 130, 204–213.

    CAS  Google Scholar 

  132. Bai, X. R.; Wang, L. H.; Ren, J. Q.; Bai, X. W.; Zeng, L. W.; Shen, A. G.; Hu, J. M. Accurate clinical diagnosis of liver cancer based on simultaneous detection of ternary specific antigens by magnetic induced mixing surface-enhanced Raman scattering emissions. Anal. Chem. 2019, 91, 2955–2963.

    CAS  Google Scholar 

  133. Yang, Z. Z.; Du, Y. T.; Sun, Q.; Peng, Y. W.; Wang, R. D.; Zhou, Y.; Wang, Y. Q.; Zhang, C. L.; Qi, X. R. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano 2020, 12, 6191–6212.

    Google Scholar 

  134. Gao, D. Y.; Li, Y. X.; Wu, Y. Y.; Liu, Y.; Hu, D. H.; Liang, S. M.; Liao, J. L.; Pan, M.; Zhang, P. F.; Li, K. et al. Albumin-consolidated AIEgens for boosting glioma and cerebrovascular NIR-II fluorescence imaging. ACS Appl. Mater. Interfaces 2023, 15, 3–13.

    CAS  Google Scholar 

  135. Zhang, J.; Han, L. L.; Wu, H. G.; Zhong, Y.; Shangguan, P.; Liu, Y. S.; He, M.; Sun, H.; Song, C. H.; Wang, X. et al. A brain-targeting NIR-II ferroptosis system: Effective visualization and oncotherapy for orthotopic glioblastoma. Adv. Sci. 2023, 10, 2206333.

    CAS  Google Scholar 

  136. Li, Y.; Gao, J. F.; Wang, S. P.; Du, M. X.; Hou, X. W.; Tian, T.; Qiao, X.; Tian, Z. Q.; Stang, P. J.; Li, S. J. et al. Self-assembled NIR-II fluorophores with ultralong blood circulation for cancer imaging and image-guided surgery. J. Med. Chem. 2022, 65, 2078–2090.

    CAS  Google Scholar 

  137. Na, S.; Russin, J. J.; Lin, L.; Yuan, X. Y.; Hu, P.; Jann, K. B.; Yan, L. R.; Maslov, K.; Shi, J. H.; Wang, D. J. et al. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. Eng. 2022, 6, 584–592.

    CAS  Google Scholar 

  138. Fu, Q. R.; Zhu, R.; Song, J. B.; Yang, H. H.; Chen, X. Y. Photoacoustic imaging: Contrast agents and their biomedical applications. Adv. Mater. 2019, 31, 1805875.

    Google Scholar 

  139. Xia, J. Z.; Feng, G.; Xia, X. R.; Hao, L.; Wang, Z. G. NH4HCO3 gas-generating liposomal nanoparticle for photoacoustic imaging in breast cancer.. Int. J. Nanomedicine 2017, 12, 1803–1813.

    CAS  Google Scholar 

  140. Spedalieri, C.; Kneipp, J. Surface enhanced Raman scattering for probing cellular biochemistry. Nanoscale 2022, 14, 5314–5328.

    CAS  Google Scholar 

  141. Andreiuk, B.; Nicolson, F.; Clark, L. M.; Panikkanvalappil, S. R.; Kenry; Rashidian, M.; Harmsen, S.; Kircher, M. F. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022, 6, 10–30.

    Google Scholar 

  142. Wang, J.; Ni, D. L.; Bu, W. B.; Zhou, Q.; Fan, W. P.; Wu, Y.; Liu, Y. Y.; Yin, L. K.; Cui, Z. W.; Zhang, X. X. et al. BaHoF5 nanoprobes as high-performance contrast agents for multi-modal CT imaging of ischemic stroke. Biomaterials 2015, 71, 110–118.

    CAS  Google Scholar 

  143. Bloom, G. S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508.

    Google Scholar 

  144. Busche, M. A.; Hyman, B. T. Synergy between amyloid-β and Tau in Alzheimer’s disease. Nat. Neurosci. 2020, 23, 1183–1193.

    CAS  Google Scholar 

  145. Cisternas, P.; Taylor, X.; Lasagna-Reeves, C. A. The amyloid-tauneuroinflammation axis in the context of cerebral amyloid angiopathy. Int. J. Mol. Sci. 2019, 20, 6319.

    CAS  Google Scholar 

  146. Rai, H.; Gupta, S.; Kumar, S.; Yang, J.; Singh, S. K.; Ran, C. Z.; Modi, G. Near-infrared fluorescent probes as imaging and theranostic modalities for amyloid-beta and tau aggregates in Alzheimer’s disease. J. Med. Chem. 2022, 65, 8550–8595.

    CAS  Google Scholar 

  147. Zhou, J.; Jangili, P.; Son, S.; Ji, M. S.; Won, M.; Kim, J. S. Fluorescent diagnostic probes in neurodegenerative diseases. Adv. Mater. 2020, 32, 2001945.

    CAS  Google Scholar 

  148. Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol. 2022, 21, 726–734.

    CAS  Google Scholar 

  149. Villemagne, V. L.; Doré, V.; Burnham, S. C.; Masters, C. L.; Rowe, C. C. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat. Rev. Neurol. 2018, 14, 225–236.

    CAS  Google Scholar 

  150. Duan, P.; Chen, K. J.; Wijegunawardena, G.; Dregni, A. J.; Wang, H. K.; Wu, H. F.; Hong, M. Binding sites of a positron emission tomography imaging agent in Alzheimer’s β-amyloid fibrils studied using 19F solid-state NMR. J. Am. Chem. Soc. 2022, 144, 1416–1430.

    CAS  Google Scholar 

  151. Miao, J. J.; Wang, L.; Zhu, M. Y.; Xiao, W. W.; Wu, H. J.; Di, M. P.; Huang, Y. Q.; Huang, S. M.; Han, F.; Deng, X. W. et al. Corrigendum to “long-term survival and late toxicities of elderly nasopharyngeal carcinoma (NPC) patients treated by high-total- and fractionated-dose simultaneous modulated accelerated radiotherapy with or without chemotherapy” [Oral Oncol. 89 (2019) 40–47]. Oral Oncol. 2019, 90, 136.

    Google Scholar 

  152. Surmeier, D. J.; Obeso, J. A.; Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 101–113.

    CAS  Google Scholar 

  153. Liu, J. Y.; Liu, C.; Zhang, J. F.; Zhang, Y. M.; Liu, K. Y.; Song, J. X.; Sreenivasmurthy, S. G.; Wang, Z. Y.; Shi, Y. S.; Chu, C. C. et al. A self-assembled α-synuclein nanoscavenger for Parkinson’s disease. ACS Nano 2020, 14, 1533–1549.

    CAS  Google Scholar 

  154. Gao, L. Q.; Wang, W.; Wang, X.; Yang, F.; Xie, L. X.; Shen, J.; Brimble, M. A.; Xiao, Q. C.; Yao, S. Q. Fluorescent probes for bioimaging of potential biomarkers in Parkinson’s disease. Chem. Soc. Rev. 2021, 50, 1219–1250.

    CAS  Google Scholar 

  155. Wang, P. Z.; Yu, L.; Gong, J. K.; Xiong, J. H.; Zi, S.; Xie, H.; Zhang, F.; Mao, Z. Q.; Liu, Z. H.; Kim, J. S. An activity-based fluorescent probe for imaging fluctuations of peroxynitrite (ONOO) in the Alzheimer’s disease brain. Angew. Chem., Int. Ed. 2022, 61, e202206894.

    CAS  Google Scholar 

  156. An, R. B.; Liu, L. J.; Wei, S. X.; Huang, Z.; Qiu, L.; Lin, J. G.; Liu, H.; Ye, D. J. Controlling disassembly of paramagnetic prodrug and photosensitizer nanoassemblies for on-demand orthotopic glioma theranostics. ACS Nano 2022, 16, 20607–20621.

    CAS  Google Scholar 

  157. Andersen, B. M.; Faust Akl, C.; Wheeler, M. A.; Chiocca, E. A.; Reardon, D. A.; Quintana, F. J. Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat. Rev. Cancer 2021, 21, 786–802.

    CAS  Google Scholar 

  158. Crivii, C. B.; Boşca, A. B.; Melincovici, C. S.; Constantin, A. M.; Mărginean, M.; Dronca, E.; Sufleţel, R.; Gonciar, D.; Bungărdean, M.; Sovrea, A. Glioblastoma microenvironment and cellular interactions. Cancers 2022, 14, 1092.

    CAS  Google Scholar 

  159. Martha, S. R.; Fraser, J. F.; Pennypacker, K. R. Acid-base and electrolyte changes drive early pathology in ischemic stroke. Neuromolecular Med. 2019, 21, 540–545.

    CAS  Google Scholar 

  160. Cheung, E. C.; Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297.

    CAS  Google Scholar 

  161. Huang, G. N.; Zang, J. K.; He, L. Z.; Zhu, H. L.; Huang, J. R.; Yuan, Z. W.; Chen, T. F.; Xu, A. D. Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke. ACS Nano 2022, 16, 431–452.

    CAS  Google Scholar 

  162. Moulton, M. J.; Barish, S.; Ralhan, I.; Chang, J. L.; Goodman, L. D.; Harland, J. G.; Marcogliese, P. C.; Johansson, J. O.; Ioannou, M. S.; Bellen, H. J. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer’s disease-associated genes. Proc. Natl. Acad. Sci. USA 2021, 118, e2112095118.

    CAS  Google Scholar 

  163. Zhou, Y.; Wang, L.; Wang, C. J.; Wu, Y. L.; Chen, D. M.; Lee, T. H. Potential implications of hydrogen peroxide in the pathogenesis and therapeutic strategies of gliomas. Arch. Pharm. Res. 2020, 43, 187–203.

    Google Scholar 

  164. Amantea, D.; Marrone, M. C.; Nisticò, R.; Federici, M.; Bagetta, G.; Bernardi, G.; Mercuri, N. B. Oxidative stress in stroke pathophysiology validation of hydrogen peroxide metabolism as a pharmacological target to afford neuroprotection. Int. Rev. Neurobiol. 2009, 85, 363–374.

    CAS  Google Scholar 

  165. Wu, Z.; Liu, M. M.; Liu, Z. C.; Tian, Y. Real-time imaging and simultaneous quantification of mitochondrial H2O2 and ATP in neurons with a single two-photon fluorescence-lifetime-based probe. J. Am. Chem. Soc. 2020, 142, 7532–7541.

    CAS  Google Scholar 

  166. Wang, X.; Li, P.; Ding, Q.; Wu, C. C.; Zhang, W.; Tang, B. Corrigendum: Illuminating the function of the hydroxyl radical in the brains of mice with depression phenotypes by two-photon fluorescence imaging. Angew. Chem., Int. Ed. 2022, 61, e202200503.

    CAS  Google Scholar 

  167. Lu, S. C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153.

    CAS  Google Scholar 

  168. Venkateshappa, C.; Harish, G.; Mahadevan, A.; Srinivas Bharath, M. M.; Shankar, S. K. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: Implications for neurodegeneration in Alzheimer’s disease. Neurochem. Res. 2012, 37, 1601–1614.

    CAS  Google Scholar 

  169. Aoyama, K. Glutathione in the brain. Int. J. Mol. Sci. 2021, 22, 5010.

    CAS  Google Scholar 

  170. von Mässenhausen, A.; Zamora Gonzalez, N.; Maremonti, F.; Belavgeni, A.; Tonnus, W.; Meyer, C.; Beer, K.; Hannani, M. T.; Lau, A.; Peitzsch, M. et al. Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion. Sci. Adv. 2022, 8, eabl8920.

  171. Bansal, A.; Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell. Biol. 2018, 217, 2291–2298.

    CAS  Google Scholar 

  172. Shi, J. L.; Zuo, H.; Ni, L. C.; Xia, L.; Zhao, L. X.; Gong, M. J.; Nie, D. K.; Gong, P. P.; Cui, D. M.; Shi, W. et al. An IDH1 mutation inhibits growth of glioma cells via GSH depletion and ROS generation. Neurol. Sci. 2014, 35, 839–845.

    Google Scholar 

  173. Miao, Y. B.; Chen, K. H.; Chen, C. T.; Mi, F. L.; Lin, Y. J.; Chang, Y.; Chiang, C. S.; Wang, J. T.; Lin, K. J.; Sung, H. W. A noninvasive gut-to-brain oral drug delivery system for treating brain tumors. Adv. Mater. 2021, 33, 2100701.

    CAS  Google Scholar 

  174. Zou, Y.; Sun, X. H.; Wang, Y. B.; Yan, C. N.; Liu, Y. J.; Li, J.; Zhang, D. Y.; Zheng, M.; Chung, R. S.; Shi, B. Y. Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv. Mater. 2020, 32, 2000416.

    CAS  Google Scholar 

  175. Cisneros-Mejorado, A.; Pérez-Samartín, A.; Gottlieb, M.; Matute, C. ATP signaling in brain: Release, excitotoxicity and potential therapeutic targets. Cell. Mol. Neurobiol. 2015, 35, 1–6.

    CAS  Google Scholar 

  176. Rajendran, M.; Dane, E.; Conley, J.; Tantama, M. Imaging adenosine triphosphate (ATP). Biol. Bull. 2016, 231, 73–84.

    CAS  Google Scholar 

  177. Butterfield, D. A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160.

    CAS  Google Scholar 

  178. Di Virgilio, F.; Sarti, A. C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 2018, 18, 601–618.

    CAS  Google Scholar 

  179. Gu, B. J.; Wiley, J. S. Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood 2006, 107, 4946–4953.

    CAS  Google Scholar 

  180. Zheng, J. Y.; Li, X. X.; Wang, K.; Song, J. J.; Qi, H. L. Electrochemical nanoaptasensor for continuous monitoring of ATP fluctuation at subcellular level. Anal. Chem. 2020, 92, 10940–10945.

    CAS  Google Scholar 

  181. Wang, W.; Li, X.; Tang, K.; Song, Z. L.; Luo, X. L. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP. J. Mater. Chem. B 2020, 8, 5945–5951.

    CAS  Google Scholar 

  182. Liu, M.; Walter, G. A.; Pathare, N. C.; Forster, R. E.; Vandenborne, K. A quantitative study of bioenergetics in skeletal muscle lacking carbonic anhydrase III using 31P magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 2007, 104, 371–376.

    CAS  Google Scholar 

  183. Sun, P. P.; Chen, H. C.; Lu, S. Y.; Hai, J.; Guo, W. T.; Jing, Y. H.; Wang, B. D. Simultaneous sensing of H2S and ATP with a two-photon fluorescent probe in Alzheimer’s disease: Toward understanding why H2S regulates glutamate-induced ATP dysregulation. Anal. Chem. 2022, 94, 11573–11581.

    CAS  Google Scholar 

  184. Cheng, Y.; Cheng, A. R.; Jia, Y. L.; Yang, L.; Ning, Y.; Xu, L.; Zhong, Y. Z.; Zhuang, Z. R.; Guan, J. T.; Zhang, X. L. et al. pH-responsive multifunctional theranostic rapamycin-loaded nanoparticles for imaging and treatment of acute ischemic stroke. ACS Appl. Mater. Interfaces 2021, 13, 56909–56922.

    CAS  Google Scholar 

  185. Fang, H. X.; Zhang, H.; Li, L.; Ni, Y.; Shi, R. R.; Li, Z.; Yang, X. K.; Ma, B.; Zhang, C. W.; Wu, Q. et al. Rational design of a two-photon fluorogenic probe for visualizing monoamine oxidase A activity in human glioma tissues. Angew. Chem., Int. Ed. 2020, 59, 7536–7541.

    CAS  Google Scholar 

  186. Li, N.; Zhang, W. F.; Khan, M.; Lin, L.; Lin, J. M. MoS2-LA-PEI nanocomposite carrier for real-time imaging of ATP metabolism in glioma stem cells co-cultured with endothelial cells on a microfluidic system. Biosens. Bioelectron. 2018, 99, 142–149.

    CAS  Google Scholar 

  187. Peter, S. B.; Nandhan, V. R. 31-Phosphorus magnetic resonance spectroscopy in evaluation of glioma and metastases in 3T MRI. Indian J. Radiol. Imaging 2021, 31, 873–881.

    Google Scholar 

  188. Yan, J. W.; Li, A. Q.; Chen, X. L.; Cao, K. X.; Song, M. C.; Guo, S.; Li, Z.; Huang, S. Q.; Li, Z. L.; Xu, D. H. et al. Glycolysis inhibition ameliorates brain injury after ischemic stroke by promoting the function of myeloid-derived suppressor cells. Pharmacol. Res. 2022, 179, 106208.

    CAS  Google Scholar 

  189. McVicar, N.; Li, A. X.; Gonçalves, D. F.; Bellyou, M.; Meakin, S. O.; Prado, M. A.; Bartha, R. Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J. Cereb. Blood Flow Metab. 2014, 32, 690–698.

    Google Scholar 

  190. Zhang, Z. X.; Li, X.; Yang, F.; Chen, C.; Liu, P.; Ren, Y.; Sun, P. K.; Wang, Z. X.; You, Y. P.; Zeng, Y. X. et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat. Commun. 2021, 12, 5872.

    CAS  Google Scholar 

  191. Wang, Q.; Zhang, C.; Zhu, J. L.; Zhang, L.; Chen, H. R.; Qian, J.; Luo, C. Crucial role of RLIP76 in promoting glycolysis and tumorigenesis by stabilization of HIF-1α in glioma cells under hypoxia. Mol. Neurobiol. 2022, 59, 6724–6739.

    CAS  Google Scholar 

  192. Su, R.; Dong, L.; Li, C. Y.; Nachtergaele, S.; Wunderlich, M.; Qing, Y.; Deng, X. L.; Wang, Y. G.; Weng, X. C.; Hu, C. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 2018, 172, 90–105.e23.

    CAS  Google Scholar 

  193. Duan, W. J.; Yue, Q.; Liu, Y.; Zhang, Y. F.; Guo, Q. H.; Wang, C.; Yin, S. J.; Fan, D. D.; Xu, W. J. et al. A pH ratiometrically responsive surface enhanced resonance Raman scattering probe for tumor acidic margin delineation and image-guided surgery. Chem. Sci. 2020, 11, 4397–4402.

    CAS  Google Scholar 

  194. Lu, H. W.; Chen, A.; Zhang, X. D.; Wei, Z. X.; Cao, R.; Zhu, Y.; Lu, J. X.; Wang, Z. L.; Tian, L. L. A pH-responsive T1-T2 dualmodal MRI contrast agent for cancer imaging. Nat. Commun. 2022, 13, 7948.

    CAS  Google Scholar 

  195. Jones, D. N.; Raghanti, M. A. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J. Chem. Neuroanat. 2021, 114, 101957.

    CAS  Google Scholar 

  196. Youdim, M. B. H.; Edmondson, D.; Tipton, K. F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 2006, 7, 295–309.

    CAS  Google Scholar 

  197. Naoi, M.; Maruyama, W.; Inaba-Hasegawa, K. Type A and B monoamine oxidase in age-related neurodegenerative disorders: Their distinct roles in neuronal death and survival. Curr. Top. Med. Chem. 2012, 12, 2177–2188.

    CAS  Google Scholar 

  198. Wang, Y. C.; Wang, X.; Yu, J. J.; Ma, F. Y.; Li, Z.; Zhou, Y.; Zeng, S.; Ma, X. Y.; Li, Y. R.; Neal, A. et al. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat. Commun. 2021, 12, 3530.

    CAS  Google Scholar 

  199. Libert, S.; Pointer, K.; Bell, E. L.; Das, A.; Cohen, D. E.; Asara, J. M.; Kapur, K.; Bergmann, S.; Preisig, M.; Otowa, T. et al. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 2011, 147, 1459–1472.

    CAS  Google Scholar 

  200. Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: From neurotransmitter imbalance to impaired neurogenesis. J. Neural. Transm. 2018, 125, 53–66.

    CAS  Google Scholar 

  201. Chun, H.; Lim, J.; Park, K. D.; Lee, C. J. Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model. Glia 2022, 70, 354–367.

    CAS  Google Scholar 

  202. Davis, N.; Mota, B. C.; Stead, L.; Palmer, E. O. C.; Lombardero, L.; Rodríguez-Puertas, R.; de Paola, V.; Barnes, S. J.; Sastre, M. Pharmacological ablation of astrocytes reduces Aβ degradation and synaptic connectivity in an ex vivo model of Alzheimer’s disease. J. Neuroinflammation 2021, 18, 73.

    CAS  Google Scholar 

  203. Tan, Y. Y.; Jenner, P.; Chen, S. D. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Parkinsons Dis. 2022, 12, 477–493.

    CAS  Google Scholar 

  204. Kim, D.; Baik, S. H.; Kang, S.; Cho, S. W.; Bae, J.; Cha, M. Y.; Sailor, M. J.; Mook-Jung, I.; Ahn, K. H. Close correlation of monoamine oxidase activity with progress of Alzheimer’s disease in mice, observed by in vivo two-photon imaging. ACS Cent. Sci. 2016, 2, 967–975.

    CAS  Google Scholar 

  205. Li, L.; Zhang, C. W.; Ge, J. Y.; Qian, L. H.; Chai, B. H.; Zhu, Q.; Lee, J. S.; Lim, K. L.; Yao, S. Q. A small-molecule probe for selective profiling and imaging of monoamine oxidase B activities in models of Parkinson’s disease. Angew. Chem., Int. Ed. 2015, 54, 10821–10825.

    CAS  Google Scholar 

  206. Chan, Z. C. K.; Oentaryo, M. J.; Lee, C. W. MMP-mediated modulation of ECM environment during axonal growth and NMJ development. Neurosci. Lett. 2020, 724, 134822.

    CAS  Google Scholar 

  207. Knapinska, A. M.; Fields, G. B. The expanding role of MT1-MMP in cancer progression. Pharmaceuticals 2019, 12, 77.

    CAS  Google Scholar 

  208. Wozniak, J.; Floege, J.; Ostendorf, T.; Ludwig, A. Key metalloproteinase-mediated pathways in the kidney. Nat. Rev. Nephrol. 2021, 17, 513–527.

    CAS  Google Scholar 

  209. Reinhard, S. M.; Razak, K.; Ethell, I. M. A delicate balance: Role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front. Cell. Neurosci. 2015, 9, 280.

    Google Scholar 

  210. Walz, W.; Cayabyab, F. S. Neutrophil infiltration and matrix metalloproteinase-9 in lacunar infarction. Neurochem. Res. 2017, 42, 2560–2565.

    CAS  Google Scholar 

  211. Zheng, X. W.; Zhong, C. K.; Zhu, Z. B.; Zhang, K. X.; Peng, H.; Xu, T.; Bu, X. Q.; Che, B. Z.; Xu, T.; Wang, A. L. et al. Association between serum matrix metalloproteinase-9 and poor prognosis in acute ischemic stroke patients: The role of dyslipidemia. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 209–215.

    CAS  Google Scholar 

  212. Rosell, A.; Cuadrado, E.; Ortega-Aznar, A.; Hernandez-Guillamon, M.; Lo, E. H.; Montaner, J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 2008, 39, 1121–1126.

    CAS  Google Scholar 

  213. Huang, Y. M.; Zhang, B. L.; Haneke, H.; Haage, V.; Lubas, M.; Yuan, Y.; Xia, P. F.; Motta, E.; Nanvuma, C.; Dzaye, O. et al. Glial cell line-derived neurotrophic factor increases matrix metallopeptidase 9 and 14 expression in microglia and promotes microglia-mediated glioma progression. J. Neurosci. Res. 2021, 99, 1048–1063.

    CAS  Google Scholar 

  214. Ruan, Z. Z.; Zhang, D. D.; Huang, R. X.; Sun, W.; Hou, L. Y.; Zhao, J.; Wang, Q. S. Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson’s disease mouse model. Int. J. Mol. Sci. 2022, 23, 2793.

    CAS  Google Scholar 

  215. Rui, X.; Ma, S. X. A retrospective study of probiotics for the treatment of children with antibiotic-associated diarrhea. Medicine 2020, 99, e20631.

  216. Wang, Y. P.; Lin, T. T.; Zhang, W. Y.; Jiang, Y. F.; Jin, H. Y.; He, H. N.; Yang, V. C.; Chen, Y.; Huang, Y. Z. A prodrug-type, MMP-2-targeting nanoprobe for tumor detection and imaging. Theranostics 2015, 5, 787–795.

    CAS  Google Scholar 

  217. Cai, Y.; Leng, S.; Ma, Y. Y.; Xu, T. T.; Chang, D.; Ju, S. H. Dynamic change of MMP-9 in diabetic stroke visualized by optical imaging and treated with CD28 superagonist. Biomater. Sci. 2021, 9, 2562–2570.

    CAS  Google Scholar 

  218. Cárcel-Márquez, J.; Cullell, N.; Muiño, E.; Gallego-Fabrega, C.; Lledós, M.; Ibañez, L.; Krupinski, J.; Montaner, J.; Cruchaga, C.; Lee, J. M. et al. Causal effect of MMP-1 (matrix metalloproteinase-1), MMP-8, and MMP-12 levels on ischemic stroke: A mendelian randomization study. Stroke 2021, 52, e316–e320.

    Google Scholar 

  219. Chelluboina, B.; Nalamolu, K. R.; Klopfenstein, J. D.; Pinson, D. M.; Wang, D. Z.; Vemuganti, R.; Veeravalli, K. K. MMP-12, a promising therapeutic target for neurological diseases. Mol. Neurobiol. 2018, 55, 1405–1409.

    CAS  Google Scholar 

  220. Larochelle, J.; Yang, C. J.; Liu, L.; Candelario-Jalil, E. An unexplored role for MMP-7 (matrix metalloproteinase-7) in promoting gut permeability after ischemic stroke. Stroke 2022, 53, 3238–3242.

    Google Scholar 

  221. Hu, X.; Hai, Z. J.; Wu, C. F.; Zhan, W. J.; Liang, G. L. A Golgitargeting and dual-color “turn-on” probe for spatially precise imaging of furin. Anal. Chem. 2021, 93, 1636–1642.

    CAS  Google Scholar 

  222. Wang, C. C.; Du, W.; Wu, C. F.; Dan, S.; Sun, M.; Zhang, T.; Wang, B.; Yuan, Y.; Liang, G. L. Cathespin B-initiated cypate nanoparticle formation for tumor photoacoustic imaging. Angew. Chem., Int. Ed. 2022, 61, e202114766.

    CAS  Google Scholar 

  223. Wang, S.; Shen, H. L.; Mao, Q. L.; Tao, Q.; Yuan, G. T.; Zeng, L. L.; Chen, Z. Y.; Zhang, Y. J.; Cheng, L.; Zhang, J. Z. et al. Macrophage-mediated porous magnetic nanoparticles for multimodal imaging and postoperative photothermal therapy of gliomas. ACS Appl. Mater. Interfaces 2021, 13, 56825–56837.

    CAS  Google Scholar 

  224. Dallet, L.; Stanicki, D.; Voisin, P.; Miraux, S.; Ribot, E. J. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci. Rep. 2021, 11, 3286.

    CAS  Google Scholar 

  225. Tan, J.; Zhou, X. Y.; Zhang, S. Y. Iron-doped cross-linked lipoic acid nano-aggregates for ferroptosis-mediated cancer treatment. Acta Biomater. 2023, 159, 289–299.

    CAS  Google Scholar 

  226. Xu, Y. Z.; Liu, S. Y.; Zeng, L. L.; Ma, H. S.; Zhang, Y. F.; Yang, H. H.; Liu, Y. C.; Fang, S.; Zhao, J.; Xu, Y. S. et al. An enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy. Adv. Mater. 2022, 34, 2204733.

    CAS  Google Scholar 

  227. Wu, M.; Liu, X. G.; Chen, H.; Duan, Y. K.; Liu, J. J.; Pan, Y. T.; Liu, B. Activation of pyroptosis by membrane-anchoring AIE photosensitizer design: New prospect for photodynamic cancer cell ablation. Angew. Chem., Int. Ed. 2021, 60, 9093–9098.

    CAS  Google Scholar 

  228. Chen, Y.; Gao, Y. J.; Chen, Y.; Liu, L.; Mo, A. C.; Peng, Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J. Control. Release 2020, 328, 251–262.

    CAS  Google Scholar 

  229. Zhi, D. F.; Yang, T.; O’Hagan, J.; Zhang, S. B.; Donnelly, R. F. Photothermal therapy. J. Control. Release 2020, 325, 52–71.

    CAS  Google Scholar 

  230. Broadwater, D.; Medeiros, H. C. D.; Lunt, R. R.; Lunt, S. Y. Current advances in photoactive agents for cancer imaging and therapy. Annu. Rev. Biomed. Eng. 2021, 23, 29–60.

    CAS  Google Scholar 

  231. Terrazzano, G.; Rubino, V.; Damiano, S.; Sasso, A.; Petrozziello, T.; Ucci, V.; Palatucci, A. T.; Giovazzino, A.; Santillo, M.; De Felice, B. et al. T cell activation induces CuZn superoxide dismutase (SOD)-1 intracellular re-localization, production and secretion. Biochim. Biophys. Acta 2014, 1843, 265–274.

    CAS  Google Scholar 

  232. Xu, J. J.; Yu, S.; Wang, X. D.; Qian, Y. Y.; Wu, W. S.; Zhang, S. H.; Zheng, B. B.; Wei, G. G.; Gao, S.; Cao, Z. L. et al. High affinity of chlorin e6 to immunoglobulin G for intraoperative fluorescence image-guided cancer photodynamic and checkpoint blockade therapy. ACS Nano 2019, 13, 10242–10260.

    CAS  Google Scholar 

  233. Lv, Z. J.; Jin, L. H.; Gao, W. H.; Cao, Y.; Zhang, H.; Xue, D. Z.; Yin, N.; Zhang, T. Q.; Wang, Y. H.; Zhang, H. J. Novel YOF-based theranostic agents with a cascade effect for NIR-II fluorescence imaging and synergistic starvation/photodynamic therapy of orthotopic gliomas. ACS Appl. Mater. Interfaces 2022, 14, 30523–30532.

    CAS  Google Scholar 

  234. Huang, R. Y.; Li, G. Z.; Wang, Z. L.; Hu, H. M.; Zeng, F.; Zhang, K. N.; Wang, K.; Wu, F. Identification of an ATP metabolism-related signature associated with prognosis and immune microenvironment in gliomas. Cancer Sci. 2020, 111, 2325–2335.

    Google Scholar 

  235. Qian, J. W.; Wang, C.; Wang, B.; Yang, J.; Wang, Y. D.; Luo, F. F.; Xu, J. Y.; Zhao, C. J.; Liu, R. H.; Chu, Y. W. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: Hints for glioma anti-PD-1/PD-L1 therapy. J. Neuroinflammation 2018, 15, 290.

    CAS  Google Scholar 

  236. Genoud, V.; Marinari, E.; Nikolaev, S. I.; Castle, J. C.; Bukur, V.; Dietrich, P. Y.; Okada, H.; Walker, P. R. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 2018, 7, e1501137.

    Google Scholar 

  237. Zhang, J.; Chen, C.; Li, A. N.; Jing, W. Q.; Sun, P.; Huang, X. Y.; Liu, Y. C.; Zhang, S. C.; Du, W.; Zhang, R. et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat. Nanotechnol. 2021, 16, 538–548.

    CAS  Google Scholar 

  238. Park, J. H.; Kim, H. J.; Kim, C. W.; Kim, H. C.; Jung, Y.; Lee, H. S.; Lee, Y.; Ju, Y. S.; Oh, J. E.; Park, S. H. et al. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat. Immunol. 2021, 22, 336–346.

    CAS  Google Scholar 

  239. Li, F.; Lv, B. K.; Liu, Y.; Hua, T.; Han, J. B.; Sun, C. M.; Xu, L. M.; Zhang, Z. F.; Feng, Z. M.; Cai, Y. Q. et al. Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells. Oncoimmunology 2018, 7, e1391973.

    Google Scholar 

  240. Macrez, R.; Ali, C.; Toutirais, O.; Le Mauff, B.; Defer, G.; Dirnagl, U.; Vivien, D. Stroke and the immune system: From pathophysiology to new therapeutic strategies. Lancet Neurol. 2011, 10, 471–480.

    CAS  Google Scholar 

  241. Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang, J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

    Google Scholar 

  242. Liu, Y.; Chongsathidkiet, P.; Crawford, B. M.; Odion, R.; Dechant, C. A.; Kemeny, H. R.; Cui, X. Y.; Maccarini, P. F.; Lascola, C. D.; Fecci, P. E. et al. Plasmonic gold nanostar-mediated photothermal immunotherapy for brain tumor ablation and immunologic memory. Immunotherapy 2019, 11, 1293–1302.

    CAS  Google Scholar 

  243. Yu, M.; Duan, X. H.; Cai, Y. J.; Zhang, F.; Jiang, S. Q.; Han, S. S.; Shen, J.; Shuai, X. T. Multifunctional nanoregulator reshapes immune microenvironment and enhances immune memory for tumor immunotherapy. Adv. Sci. 2019, 6, 1900037.

    Google Scholar 

  244. Liang, F. M.; Zhu, L.; Wang, C.; Yang, Y. L.; He, Z. H. BSA-MnO2-SAL multifunctional nanoparticle-mediated M1 macrophages polarization for glioblastoma therapy. RSC Adv. 2021, 11, 35331–35341.

    CAS  Google Scholar 

  245. Abe, C.; Miyazawa, T.; Miyazawa, T. Current use of Fenton reaction in drugs and food. Molecules 2022, 27, 5451.

    CAS  Google Scholar 

  246. Zhang, Y. L.; Fu, X.; Jia, J. S.; Wikerholmen, T.; Xi, K. Y.; Kong, Y.; Wang, J. P.; Chen, H. J.; Ma, Y.; Li, Z. W. et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 43408–43421.

    CAS  Google Scholar 

  247. Wang, X.; Hu, A. D.; Du, K.; Feng, F. D. Biomimetic polymer-templated copper nanoparticles stabilize a temozolomide intermediate for chemotherapy against glioblastoma multiforme. ACS Appl. Bio Mater. 2021, 4, 8004–8012.

    CAS  Google Scholar 

  248. Tang, Z. M.; Zhao, P. R.; Wang, H.; Liu, Y. Y.; Bu, W. B. Biomedicine meets Fenton chemistry. Chem. Rev. 2021, 121, 1981–2019.

    CAS  Google Scholar 

  249. Li, C. Y.; Wan, Y. L.; Zhang, Y. F.; Fu, L. H.; Blum, N. T.; Cui, R.; Wu, B. D.; Zheng, R.; Lin, J.; Li, Z. M. et al. In situ sprayed starvation/chemodynamic therapeutic gel for post-surgical treatment of IDH1 (R132H) glioma. Adv. Mater. 2022, 32, 2103980.

    Google Scholar 

  250. Chan, M. H.; Li, C. H.; Chang, Y. C.; Hsiao, M. Iron-based ceramic composite nanomaterials for magnetic fluid hyperthermia and drug delivery. Pharmaceutics 2022, 12, 2584.

    Google Scholar 

  251. Chandrasekharan, P.; Tay, Z. W.; Hensley, D.; Zhou, X. Y.; Fung, B. K.; Colson, C.; Lu, Y.; Fellows, B. D.; Huynh, Q.; Saayujya, C. et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics 2020, 10, 2965–2981.

    CAS  Google Scholar 

  252. Zhao, L. Y.; Zheng, Y. J.; Yan, H.; Xie, W. S.; Sun, X. D.; Li, N.; Tang, J. T. 2-Deoxy-D-Glucose modified magnetic nanoparticles with dual functional properties: Nanothermotherapy and magnetic resonance imaging. J. Nanosci. Nanotechnol. 2016, 16, 2401–2407.

    CAS  Google Scholar 

  253. Zhang, H. M.; Lu, H. Q.; Xiang, L. S.; Bullen, J. W.; Zhang, C. Z.; Samanta, D.; Gilkes, D. M.; He, J. J.; Semenza, G. L. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc. Natl. Acad. Sci. USA 2015, 112, E6215–E6223.

    CAS  Google Scholar 

  254. Ding, X. C.; Wang, L. L.; Zhang, X. D.; Xu, J. L.; Li, P. F.; Liang, H.; Zhang, X. B.; Xie, L.; Zhou, Z. H.; Yang, J. et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J. Hematol. Oncol. 2021, 12, 92.

    Google Scholar 

  255. Boyd, N. H.; Tran, A. N.; Bernstock, J. D.; Etminan, T.; Jones, A. B.; Gillespie, G. Y.; Friedman, G. K.; Hjelmeland, A. B. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 2021, 11, 665–683.

    CAS  Google Scholar 

  256. Ren, P.; Wang, J. Y.; Zeng, Z. R.; Li, N. X.; Chen, H. L.; Peng, X. G.; Bhawal, U. K.; Guo, W. Z. A novel hypoxia-driven gene signature that can predict the prognosis and drug resistance of gliomas. Front. Genet. 2022, 13, 976356.

    CAS  Google Scholar 

  257. Kaur, B.; Khwaja, F. W.; Severson, E. A.; Matheny, S. L.; Brat, D. J.; Van Meir, E. G. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro. Oncol. 2005, 7, 134–153.

    CAS  Google Scholar 

  258. Fu, C. P.; Duan, X. H.; Cao, M. H.; Jiang, S. Q.; Ban, X. H.; Guo, N.; Zhang, F.; Mao, J. J.; Huyan, T.; Shen, J. et al. Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma. Adv. Healthc. Mater. 2019, 8, 1900047.

    Google Scholar 

  259. Jiang, Q.; Geng, X. K.; Warren, J.; Eugene Paul Cosky, E.; Kaura, S.; Stone, C.; Li, F. W.; Ding, Y. C. Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent-pyroptotic and apoptotic cell death following ischemic stroke. Neuroscience 2020, 448, 126–139.

    CAS  Google Scholar 

  260. Tsao, C. C.; Baumann, J.; Huang, S. F.; Kindler, D.; Schroeter, A.; Kachappilly, N.; Gassmann, M.; Rudin, M.; Ogunshola, O. O. Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 2021, 22, 823–842.

    Google Scholar 

  261. Higashida, T.; Peng, C. Y.; Li, J.; Dornbos III, D.; Teng, K. L.; Li, X. H.; Kinni, H.; Guthikonda, M.; Ding, Y. C. Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr. Neurovasc. Res. 2011, 8, 44–51.

    CAS  Google Scholar 

  262. Chen, W. Y.; Chang, M. S. IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J. Immunol. 2009, 182, 5003–5012.

    CAS  Google Scholar 

  263. Jakubauskienė, E.; Vilys, L.; Pečiulienė, I.; Kanopka, A. The role of hypoxia on Alzheimer’s disease-related APP and Tau mRNA formation. Gene 2021, 766, 145146.

    Google Scholar 

  264. Sun, X. L.; He, G. Q.; Qing, H.; Zhou, W. H.; Dobie, F.; Cai, F.; Staufenbiel, M.; Huang, L. E.; Song, W. H. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. USA 2006, 103, 18727–18732.

    CAS  Google Scholar 

  265. Zhang, F.; Zhong, R. J.; Li, S.; Fu, Z. F.; Cheng, C.; Cai, H. B.; Le, W. D. Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer’s disease mice and wild-type littermates. Front. Aging Neurosci. 2017, 9, 282.

    Google Scholar 

  266. Guo, M. Y.; Ji, X. M.; Liu, J. Hypoxia and alpha-synuclein: Inextricable link underlying the pathologic progression of Parkinson’s disease. Front. Aging Neurosci. 2022, 12, 919343.

    Google Scholar 

  267. Wu, X.; Gong, L. J.; Xie, L.; Gu, W. Y.; Wang, X. Y.; Liu, Z. L.; Li, S. Q. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-parkin pathway of mitophagy in a murine model of sleep apnea. Front. Immunol. 2021, 12, 628168.

    CAS  Google Scholar 

  268. Al-Obaidi, M. M. J.; Desa, M. N. M. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cell. Mol. Neurobiol. 2018, 38, 1349–1368.

    CAS  Google Scholar 

  269. Yau, B.; Hunt, N. H.; Mitchell, A. J.; Too, L. K. Blood-brain barrier pathology and CNS outcomes in Streptococcus pneumoniae meningitis. Int. J. Mol. Sci. 2018, 19, 3555.

    Google Scholar 

  270. Donovan, J.; Figaji, A.; Imran, D.; Phu, N. H.; Rohlwink, U.; Thwaites, G. E. The neurocritical care of tuberculous meningitis. Lancet Neurol. 2019, 18, 771–783.

    Google Scholar 

  271. Gerber, J.; Seitz, R. C.; Bunkowski, S.; Brück, W.; Nau, R. Evidence for frequent focal and diffuse acute axonal injury in human bacterial meningitis. Clin. Neuropathol. 2009, 28, 33–39.

    CAS  Google Scholar 

  272. Zhang, X. C.; Zhang, Z. C.; Shu, Q. M.; Xu, C.; Zheng, Q. Q.; Guo, Z.; Wang, Z. X.; Hao, Z. X.; Liu, X.; Wang, G. Q. et al. Copper clusters: An effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo. Adv. Funct. Mater. 2021, 31, 2008720.

    CAS  Google Scholar 

  273. Meng, X. D.; Sun, S. R.; Gong, C. C.; Yang, J. Y.; Yang, Z.; Zhang, X. J.; Dong, H. F. Ag-doped metal-organic frameworks’ heterostructure for sonodynamic therapy of deep-seated cancer and bacterial infection. ACS Nano 2023, 17, 1174–1186.

    CAS  Google Scholar 

  274. Mauro, M.; Crosera, M.; Bovenzi, M.; Adami, G.; Filon, F. L. Pilot study on in vitro silver nanoparticles permeation through meningeal membrane. Colloids Surf. B: Biointerfaces 2016, 146, 245–249.

    CAS  Google Scholar 

  275. Rudi, L.; Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Peshkova, A.; Cepoi, A.; Grozdov, D. Accumulation and effect of silver nanoparticles functionalized with Spirulina platensis on rats. Nanomaterials 2021, 11, 2992.

    CAS  Google Scholar 

  276. Mota, F.; Ruiz-Bedoya, C. A.; Tucker, E. W.; Holt, D. P.; De Jesus, P.; Lodge, M. A.; Erice, C.; Chen, X. Y.; Bahr, M.; Flavahan, K. et al. Dynamic 18F-pretomanid PET imaging in animal models of TB meningitis and human studies. Nat. Commun. 2022, 13, 7974.

    CAS  Google Scholar 

  277. Tian, S.; Bai, H. T.; Li, S. L.; Xiao, Y. F.; Cui, X.; Li, X. Z.; Tan, J. H.; Huang, Z. M.; Shen, D.; Liu, W. M. et al. Water-soluble organic nanoparticles with programable intermolecular charge transfer for NIR-II photothermal anti-bacterial therapy. Angew. Chem., Int. Ed. 2021, 60, 11758–11762.

    CAS  Google Scholar 

  278. Qin, X.; Zhang, J.; Wang, B.; Xu, G.; Yang, X.; Zou, Z.; Yu, C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 2021, 17, 4266–4285.

    CAS  Google Scholar 

  279. Chen, X.; Kang, R.; Kroemer, G.; Tang, D. L. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296.

    CAS  Google Scholar 

  280. Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

    CAS  Google Scholar 

  281. Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R. D. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261.

    CAS  Google Scholar 

  282. Yuan, J. X.; Liu, H. H.; Zhang, H.; Wang, T. T.; Zheng, Q.; Li, Z. Controlled activation of TRPV1 channels on microglia to boost their autophagy for clearance of alpha-synuclein and enhance therapy of Parkinson’s disease. Adv. Mater. 2022, 34, 2108435.

    CAS  Google Scholar 

  283. Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021, 6, 128.

    Google Scholar 

  284. Zheng, P.; Ding, B. B.; Zhu, G. Q.; Li, C. X.; Lin, J. Biodegradable Ca2+ nanomodulators activate pyroptosis through mitochondrial Ca2+ overload for cancer immunotherapy. Angew. Chem., Int. Ed. 2022, 61, e202204904.

    CAS  Google Scholar 

  285. Wang, X. Z.; He, S. S.; Cheng, P. H.; Pu, K. Y. A dual-locked tandem fluorescent probe for imaging of pyroptosis in cancer chemo-immunotherapy. Adv. Mater. 2023, 35, 2206510.

    CAS  Google Scholar 

  286. Liu, X. G.; Nie, L. T.; Zhang, Y. L.; Yan, Y. L.; Wang, C.; Colic, M.; Olszewski, K.; Horbath, A.; Chen, X.; Lei, G. et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol. 2023, 25, 404–414.

    CAS  Google Scholar 

  287. Koutsaliaris, I. K.; Moschonas, I. C.; Pechlivani, L. M.; Tsouka, A. N.; Tselepis, A. D. Inflammation, oxidative stress, vascular aging and atherosclerotic ischemic stroke. Curr. Med. Chem. 2022, 29, 5496–5509.

    CAS  Google Scholar 

  288. Zhu, W. W.; Fang, T.; Zhang, W. J.; Liang, A.; Zhang, H.; Zhang, Z. P.; Zhang, X. E.; Li, F. A ROS scavenging protein nanocage for in vitro and in vivo antioxidant treatment. Nanoscale 2021, 13, 4634–4643.

    CAS  Google Scholar 

  289. Bao, Q. Q.; Hu, P.; Xu, Y. Y.; Cheng, T. S.; Wei, C. Y.; Pan, L. M.; Shi, J. L. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018, 12, 6794–6805.

    CAS  Google Scholar 

  290. Zhang, T. F.; Chen, X. Y.; Yuan, C. M.; Pang, X. B.; Shangguan, P.; Liu, Y. S.; Han, L. L.; Sun, J. W.; Lam, J. W. Y.; Liu, Y. et al. Near-infrared aggregation-induced emission luminogens for in vivo theranostics of Alzheimer’s disease. Angew. Chem., Int. Ed. 2023, 62, e202211550.

    CAS  Google Scholar 

  291. Edwards III, G.; Zhao, J.; Dash, P. K.; Soto, C.; Moreno-Gonzalez, I. Traumatic brain injury induces tau aggregation and spreading. J. Neurotrauma 2020, 37, 80–92.

    Google Scholar 

  292. Gulani, V.; Calamante, F.; Shellock, F. G.; Kanal, E.; Reeder, S. B. Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol. 2017, 16, 564–570.

    Google Scholar 

  293. Funke, S. K. I.; Factor, C.; Rasschaert, M.; Lezius, L.; Sperling, M.; Karst, U.; Robert, P. Long-term gadolinium retention in the healthy rat brain: Comparison between gadopiclenol, gadobutrol, and gadodiamide. Radiology 2022, 305, 179–189.

    Google Scholar 

  294. Mallio, C. A.; Rovira, À.; Parizel, P. M.; Quattrocchi, C. C. Exposure to gadolinium and neurotoxicity: Current status of preclinical and clinical studies. Neuroradiology 2020, 62, 925–934.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Key Research and Development Program of China (No. 2021YFA1201504), the Strategic Priority Research Program of the Chinese Academy of Science (No. XDB36000000), and the National Natural Science Foundation of China (Nos. 31971295, 21721002, and 81870927).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohui He, Yanlian Yang or Ling Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., You, Q., Ma, X. et al. Nano-imaging agents for brain diseases: Environmentally responsive imaging and therapy. Nano Res. 16, 13134–13163 (2023). https://doi.org/10.1007/s12274-023-6149-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6149-1

Keywords

Navigation