Skip to main content
Log in

Hollow multishelled structural TiN as multi-functional catalytic host for high-performance lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) battery has attracted extensive attention because of its ultrahigh theoretical energy density and low cost. However, its commercialization is seriously hampered by its short cycling life, mainly due to the shuttle of soluble lithium polysulfides (LiPSs) and poor rate capability due to sluggish reaction kinetics. Although significant efforts have been devoted to solving the problems, it is still challenging to simultaneously address all the issues. Herein, titanium nitride hollow multishelled structure (TiN HoMS) sphere is designed as a multi-functional catalytic host for sulfur cathode. TiN, with good conductivity, can effectively catalyze the redox conversion of S and LiPSs, while its surficial oxidation passivation layer can strongly anchor LiPSs. Besides, HoMS enables TiN nanoparticle subunits to expose abundant active sites for anchoring and promoting conversion of LiPSs, while the multiple shells provide physical barriers to restrict the shuttle effect. In addition, HoMS can buffer the volume expansion of sulfur and shorten the charge transport pathway. As a result, the sulfur cathode based on triple-shelled TiN HoMS exhibits an initial specific capacity of 1016 mAh·g−1 at a high sulfur loading of 2.8 mg·cm−2 and maintains 823 mAh·g−1 after 100 cycles. Moreover, it shows a four times higher specific capacity than the one without TiN host at 2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

    CAS  Google Scholar 

  2. Li, H.; Song, J. P.; Wu, F. L.; Wang, R.; Liu, D.; Tang, H. L. Metal-nitrogen-doped hybrid ionic/electronic conduction triple-phase interfaces for high-performance all-solid-state lithium-sulfur batteries. Nano Res. 2023, 16, 10956–10965.

    CAS  Google Scholar 

  3. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    CAS  Google Scholar 

  4. Yang, M.; Bi, R. Y.; Wang, J. Y.; Yu, R. B.; Wang, D. Decoding lithium batteries through advanced in situ characterization techniques. Int. J. Miner. Metall. Mater. 2022, 29, 965–989.

    Google Scholar 

  5. Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 2022, 1, e9120012.

    Google Scholar 

  6. Liu, Y. S.; Zhao, X. H.; Li, S. S.; Zhang, Q.; Wang, K. X.; Chen, J. S. Towards high-performance lithium-sulfur batteries: The modification of polypropylene separator by 3D porous carbon structure embedded with Fe3C/Fe nanoparticles. Chem. Res. Chin. Univ. 2022, 38, 147–154.

    Google Scholar 

  7. Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Li, Y. L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy 2019, 68, 104307.

    Google Scholar 

  8. Li, B. Q.; Peng, H. J.; Chen, X.; Zhang, S. Y.; Xie, J.; Zhao, C. X.; Zhang, Q. Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium-sulfur batteries. CCS Chem. 2019, 1, 128–137.

    CAS  Google Scholar 

  9. Lu, R. C.; Cheng, M.; Mao, L. J.; Zhang, M.; Yuan, H. X.; Amin, K.; Yang, C.; Cheng, Y. L.; Meng, Y. N.; Wei, Z. X. Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery. EcoMat 2020, 2, e12010.

    CAS  Google Scholar 

  10. Du, L. Y.; Wang, H. M.; Yang, M.; Liu, L. L.; Niu, Z. Q. Freestanding nanostructured architecture as a promising platform for high-performance lithium-sulfur batteries. Small Struct. 2020, 1, 2000047.

    Google Scholar 

  11. Razaq, R.; Zhang, N. N.; Xin, Y.; Li, Q.; Wang, J.; Zhang, Z. L. Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow N-doped carbon flowers for Li-S batteries. EcoMat 2020, 2, e12020.

    CAS  Google Scholar 

  12. Pan, H.; Cheng, Z. B.; Fransaer, J.; Luo, J. S.; Wübbenhorst, M. Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li-S batteries under lean electrolyte conditions. Nano Res. 2020, 15, 8091–8100.

    Google Scholar 

  13. Liu, H. T.; Liu, F.; Qu, Z. H.; Chen, J. L.; Liu, H.; Tan, Y. Q.; Guo, J. B.; Yan, Y.; Zhao, S.; Zhao, X. S. et al. High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy 2023, 2, e9120049.

    Google Scholar 

  14. Li, Z.; Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q.; Chen, C. M.; Liu, Q. B.; Xiang, R.; Zhang, Q. A Nafion protective layer for stabilizing lithium metal anodes in working lithium-sulfur batteries. Battery Energy. 2022, 1, 20220006.

    CAS  Google Scholar 

  15. Wang, C. D.; Ma, Y.; Du, X. F.; Zhang, H. R.; Xu, G. J.; Cui, G. L. A polysulfide radical anions scavenging binder achieves long-life lithium-sulfur batteries. Battery Energy. 2022, 1, 20220010.

    CAS  Google Scholar 

  16. Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Google Scholar 

  17. Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat Commun. 2016, 7, 13065.

    CAS  Google Scholar 

  18. Zhang, C.; Liu, D. H.; Geng, C. N.; Hua, W. X.; Tang, Q. J.; Ling, G. W.; Yang, Q. H. Solution-based preparation of high sulfur content sulfur/graphene cathode material for Li-S battery. Chem. Res. Chin. Univ. 2021, 37, 323–327.

    CAS  Google Scholar 

  19. Huang, X.; Qiu, T. F.; Zhang, X. H.; Wang, L.; Luo, B.; Wang, L. Z. Recent advances of hollow-structured sulfur cathodes for lithium-sulfur batteries. Mater. Chem. Front. 2020, 4, 2517–2547.

    CAS  Google Scholar 

  20. Yuan, K.; Yuan, L. X.; Chen, J.; Xiang, J. W.; Liao, Y. Q.; Li, Z.; Huang, Y. H. Methods and cost estimation for the synthesis of nanosized lithium sulfide. Small Struct. 2021, 2, 2000059.

    CAS  Google Scholar 

  21. Wang, L.; Li, G. R.; Liu, S.; Gao, X. P. Hollow molybdate microspheres as catalytic hosts for enhancing the electrochemical performance of sulfur cathode under high sulfur loading and lean electrolyte. Adv. Funct. Mater. 2021, 31, 2010693.

    CAS  Google Scholar 

  22. Chen, W. J.; Xia, H. C.; Guo, K.; Jin, W. Z.; Du, Y.; Yan, W. F.; Qu, G.; Zhang, J. N. Atomically dispersed Fe-N4 sites and Fe3C particles catalyzing polysulfides conversion in Li-S batteries. Chem. Res. Chin. Univ. 2022, 38, 1232–1238.

    CAS  Google Scholar 

  23. Qian, J.; Xing, Y.; Yang, Y.; Li, Y.; Yu, K. X.; Li, W. L.; Zhao, T.; Ye, Y. S.; Li, L.; Wu, F. et al. Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium-sulfur batteries. Adv. Mater. 2021, 33, e2100810.

    Google Scholar 

  24. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

    CAS  Google Scholar 

  25. Salhabi, E. H. M.; Zhao, J. L.; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2−x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 9078–9082.

    CAS  Google Scholar 

  26. Wei, Y. Z.; You, F. F.; Zhao, D. C.; Wan, J. W.; Gu, L.; Wang, D. Heterogeneous hollow multi-shelled structures with amorphous-crystalline outer-shells for sequential photoreduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202212049.

    CAS  Google Scholar 

  27. Zhao, D. C.; Wei, Y. Z.; Jin, Q.; Yang, N. L.; Yang, Y.; Wang, D. PEG-functionalized hollow multishelled structures with on-off switch and rate-regulation for controllable antimicrobial release. Angew. Chem., Int. Ed. 2022, 61, e202206807.

    CAS  Google Scholar 

  28. Wei, Y. Z.; Wan, J. W.; Yang, N. L.; Yang, Y.; Ma, Y. W.; Wang, S. C.; Wang, J. Y.; Yu, R. B.; Gu, L.; Wang, L. H. et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev. 2020, 7, 1638–1646.

    CAS  Google Scholar 

  29. Chen, X. B.; Yang, N. L.; Wang, Y. L.; He, H. Y.; Wang, J. Y.; Wan, J. W.; Jiang, H. Y.; Xu, B.; Wang, L. M.; Yu, R. B. et al. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites. Adv. Mater. 2022, 34, 2107400.

    CAS  Google Scholar 

  30. Zhao, D. C.; Yang, N. L.; Wei, Y.; Jin, Q.; Wang, Y. L.; He, H. Y.; Yang, Y.; Han, B.; Zhang, S. J.; Wang, D. Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nat. Commun. 2020, 11, 4450.

    CAS  Google Scholar 

  31. Wang, L.; Wan, J. W.; Wang, J. Y.; Wang, D. Small structures bring big things: Performance control of hollow multishelled structures. Small Struct. 2021, 2, 2000041.

    CAS  Google Scholar 

  32. Zhang, Y. T.; Ran, L.; Li, Z. W.; Zhai, P. L.; Zhang, B.; Fan, Z. Z.; Wang, C.; Zhang, X. M.; Hou, J. G.; Sun, L. C. Simultaneously efficient solar light harvesting and charge transfer of hollow octahedral Cu2S/CdS p–n heterostructures for remarkable photocatalytic hydrogen generation. Trans. Tianjin Univ. 2021, 27, 348–357.

    CAS  Google Scholar 

  33. Wang, J. Y.; Yang, M.; Wang, D. Progress and perspectives of hollow multishelled structures. Chin. J. Chem. 2022, 40, 1190–1203.

    Google Scholar 

  34. Wang, J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 2016, 1, 16050.

    CAS  Google Scholar 

  35. Wang, J. Y.; Wan, J. W.; Yang, N. L.; Li, Q.; Wang, D. Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour. Nat. Rev. Chem. 2020, 4, 159–168.

    CAS  Google Scholar 

  36. Luo, D.; Li, G. R.; Deng, Y. P.; Zhang, Z.; Li, J. D.; Liang, R. L.; Li, M.; Jiang, Y.; Zhang, W. W.; Liu, Y. S. et al. Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900228.

    Google Scholar 

  37. Mao, D.; Wan, J. W.; Wang, J. Y.; Wang, D. Sequential templating approach: A groundbreaking strategy to create hollow multishelled structures. Adv. Mater. 2019, 31, 1802874.

    Google Scholar 

  38. Zhao, J. L.; Wang, J. Y.; Bi, R. Y.; Yang, M.; Wan, J. W.; Jiang, H. Y.; Gu, L.; Wang, D. General synthesis of multiple-cores@multiple-shells hollow composites and their application to lithium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 25719–25722.

    CAS  Google Scholar 

  39. Wang, J. Y.; Wang, Z. M.; Mao, D.; Wang, D. The development of hollow multishelled structure: From the innovation of synthetic method to the discovery of new characteristics. Sci. China Chem. 2022, 65, 7–19.

    CAS  Google Scholar 

  40. Li, B.; Bi, R. Y.; Yang, M.; Gao, W.; Wang, J. Y. Coating conductive polypyrrole layers on multiple shells of hierarchical SnO2 spheres and their enhanced cycling stability as lithium-ion battery anode. Appl. Surf. Sci. 2022, 586, 152836.

    CAS  Google Scholar 

  41. Li, B.; Wang, J. Y.; Bi, R. Y.; Yang, N. L.; Wan, J. W.; Jiang, H. Y.; Gu, L.; Du, J.; Cao, A. M.; Gao, W. et al. Accurately localizing multiple nanoparticles in a multishelled matrix through shell-to-core evolution for maximizing energy-storage capability. Adv. Mater. 2022, 34, 2200206.

    CAS  Google Scholar 

  42. Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

    CAS  Google Scholar 

  43. Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926–6931.

    CAS  Google Scholar 

  44. Qi, B.; Zhao, X. S.; Wang, S. G.; Chen, K.; Wei, Y. J.; Chen, G.; Gao, Y.; Zhang, D.; Sun, Z. H.; Li, F. Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 14359–14366.

    CAS  Google Scholar 

  45. Deng, D. R.; An, T. H.; Li, Y. J.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li-S batteries. J. Mater. Chem. A 2016, 4, 16184–16190.

    CAS  Google Scholar 

  46. Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN–VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.

    CAS  Google Scholar 

  47. Wang, Y. K.; Zhang, R. F.; Pang, Y. C.; Chen, X.; Lang, J. X.; Xu, J. J.; Xiao, C. H.; Li, H. L.; Xi, K.; Ding, S. J. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235.

    Google Scholar 

  48. Mosavati, N.; Chitturi, V. R.; Salley, S. O.; Ng, K. Y. S. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries. J. Power Sources 2016, 321, 87–93.

    CAS  Google Scholar 

  49. Li, Z.; Zhang, J. T.; Guan, B. Y.; Lou, X. W. Mesoporous carbon@titanium nitride hollow spheres as an efficient SeS2 host for advanced Li-SeS2 batteries. Angew. Chem., Int. Ed. 2017, 56, 16003–16007.

    CAS  Google Scholar 

  50. Yu, Y.; Yan, M.; Dong, W. D.; Wu, L.; Tian, Y. W.; Deng, Z.; Chen, L. H.; Hasan, T.; Li, Y.; Su, B. L. Optimizing inner voids in yolk–shell TiO2 nanostructure for high-performance and ultralonglife lithium-sulfur batteries. Chem. Eng. J. 2021, 417, 129241.

    CAS  Google Scholar 

  51. Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 9592–9595.

    CAS  Google Scholar 

  52. Tan, X. N.; Wang, X. G.; Wang, X. Q.; Wang, Y. F.; Li, C.; Xia, D. G. NiCo2S4 yolk-shell hollow spheres with physical and chemical interaction toward polysulfides for advanced lithium-sulfur batteries. Ionics 2019, 25, 4047–4056.

    CAS  Google Scholar 

  53. Zhu, Y. J.; Wang, J. Y.; Xie, C.; Yang, M.; Zheng, Z. J.; Yu, R. B. Hollow multishelled structural NiO as a “sheher” for high-performance Li-S batteries. Mater. Chem. Front. 2020, 4, 2971–2975.

    CAS  Google Scholar 

  54. Wei, Y. Z.; Cheng, Y. P.; Zhao, D. C.; Feng, Y.; Wei, P.; Wang, J. Y.; Ge, W.; Wang, D. A universal formation mechanism of hollow multi-shelled structures dominated by concentration waves. Angew. Chem., Int. Ed. 2023, 62, e202302621.

    CAS  Google Scholar 

  55. Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

    CAS  Google Scholar 

  56. Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core-shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792–2797.

    CAS  Google Scholar 

  57. Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 50, 2738–2741.

    CAS  Google Scholar 

  58. Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 2014, 14, 6679–6684.

    CAS  Google Scholar 

  59. Sun, X. M.; Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 597–601.

    Google Scholar 

  60. Liao, Y. Q.; Xiang, J. W.; Yuan, L. X.; Hao, Z. X.; Gu, J. F.; Chen, X.; Yuan, K.; Kalambate, P. K.; Huang, Y. H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 37955–37962.

    CAS  Google Scholar 

  61. Huang, S. Z.; Lim, Y. V.; Zhang, X. M.; Wang, Y.; Zheng, Y.; Kong, D. Z.; Ding, M.; Yang, S. A.; Yang, H. Y. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. Nano Energy 2018, 51, 340–348.

    CAS  Google Scholar 

  62. Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

    CAS  Google Scholar 

  63. Wild, M.; O’Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494.

    CAS  Google Scholar 

  64. Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.

    Google Scholar 

  65. Bi, R. Y.; Xu, N.; Ren, H.; Yang, N. L.; Sun, Y. G.; Cao, A. M.; Yu, R. B.; Wang, D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew. Chem., Int. Ed. 2020, 59, 4865–4868.

    CAS  Google Scholar 

  66. Mahankali, K.; Thangavel, N. K.; Gopchenko, D.; Arava, L. M. R. Atomically engineered transition metal dichalcogenides for liquid polysulfide adsorption and their effective conversion in Li-S batteries. ACS Appl. Mater. Interfaces 2020, 12, 27112–27121.

    CAS  Google Scholar 

  67. Zhu, W.; Paolella, A.; Kim, C. S.; Liu, D.; Feng, Z.; Gagnon, C.; Trottier, J.; Vijh, A.; Guerfi, A.; Mauger, A. et al. Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction. Sustainable Energy Fuels 2017, 1, 737–747.

    CAS  Google Scholar 

Download references

Acknowledgements

This study received support from the National Natural Science Foundation of China (Nos. 21820102002, 52301296, 51932001, 52372170, and 52261160573), the National Key R&D Program (Nos. 2018YFA0703503, 2021YFC2902503, and 2022YFA1504101), the Cooperation Fund of the Institute of Clean Energy Innovation, Chinese Academy of Sciences (No. DNL202020), the Zhongke-Yuneng Joint R&D Center Program (No. ZKYN2022008), and Institute of Process Engineering (IPE) Project for Frontier Basic Research (No. QYJC-2022-008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangyan Wang, Ranbo Yu or Dan Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Bi, R., Yang, M. et al. Hollow multishelled structural TiN as multi-functional catalytic host for high-performance lithium-sulfur batteries. Nano Res. 16, 12745–12752 (2023). https://doi.org/10.1007/s12274-023-6144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6144-6

Keywords

Navigation