Skip to main content
Log in

Sulfite activation by ZnO-encapsulated hydrogels for degradation of trimethylphenol

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Trimethylphenol is an organic toxic byproduct of industrial process, which is difficult to be eliminated through conventional degradation without harsh conditions. In this work, a sulfite-based oxidation process activated by ZnO-embedded hydrogel was studied for the degradation of 2,4,6-trimethylphenols in the ambient conditions. The ZnO/Na2SO3 oxidative system can effectively degrade trimethylphenol via the generation of radicals such as \({\rm{S}}{{\rm{O}}_4}^{. - }\), OH·, and \({\rm{S}}{{\rm{O}}_3}^{. - }\). The presence of hydrogel matrix facilitates the distribution and recyclability of ZnO catalysts while maintaining high degradation kinetics and little leaching of metal ions. Results suggest the promising potential of ZnO-hydrogel in wastewater treatment with good performance in terms of pH sensitivity, anion interference, recyclability, etc. The combination of ZnO catalysts, hydrogel, and sulfite-based advanced oxidation process may provide essential support for the current treatment of alkylated phenols with strong potential in the commercial scale-ups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saka, E. T.; Çağlar, Y. New Co(II) and Cu(II) phthalocyanine catalysts reinforced by long alkyl chains for the degradation of organic pollutants. Catal. Lett. 2017, 147, 1471–1477.

    CAS  Google Scholar 

  2. Abellán, M. N.; Bayarri, B.; Giménez, J.; Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B: Environ. 2007, 74, 233–241.

    Google Scholar 

  3. Terzian, R.; Serpone, N.; Hidaka, H. Photocatalyzed mineralization of a trimethylated phenol in oxygenated aqueous titania. An alternative to microbial degradation. Catal. Lett. 1995, 32, 227–233.

    CAS  Google Scholar 

  4. Aguer, J. P.; Mailhot, G.; Bolte, M. Unexpected 2,4,6-trimethylphenol oxidation in the presence of Fe(III) aquacomplexes. New J. Chem. 2006, 30, 191–196.

    CAS  Google Scholar 

  5. Wu, S. H.; Shen, L. Y.; Lin, Y.; Yin, K.; Yang, C. P. Sulfite-based advanced oxidation and reduction processes for water treatment. Chem. Eng. J. 2021, 414, 128872.

    CAS  Google Scholar 

  6. Das, A.; Basak, D. Efficacy of ion implantation in zinc oxide for optoelectronic applications: A review. ACS Appl. Electron. Mater. 2021, 3, 3693–3714.

    CAS  Google Scholar 

  7. Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas-sensor applications: A review. Nano-Micro Lett. 2015, 7, 97–120.

    Google Scholar 

  8. Tang, H. C.; Tian, Y.; Wu, Z. S.; Zeng, Y. J.; Wang, Y.; Hou, Y.; Ye, Z. Z.; Lu, J. G. AC line filter electrochemical capacitors: Materials, morphology, and configuration. Energy Environ. Mater. 2022, 5, 1060–1083.

    CAS  Google Scholar 

  9. Guo, Y. C.; Wang, Z. Y.; Lu, X. S.; Lu, J. G.; Rabia, K.; Chen, H. W.; Hu, R.; Tang, H. C.; Zhang, Q. H.; Li, Z. P. Core–shell ZnO@C:N hybrids derived from MOFs as long-cycling anodes for lithium ion batteries. Chem. Commun. 2020, 56, 1980–1983.

    CAS  Google Scholar 

  10. Rasoulzadeh, H.; Alinejad, A.; Sheikhmohammadi, A. Improvement of floxin photocatalytic degradability in the presence of sulfite: Performance, kinetic, degradation pathway, energy consumption and total cost of system. Int. J. Environ. Health Res. 2022, 32, 2781–2797.

    CAS  Google Scholar 

  11. Pan, X. H.; Cheng, S. Y.; Zhang, C.; Jiao, Y. Z.; Lin, X. P.; Dong, W.; Qi, X. L. Mussel-inspired magnetic pullulan hydrogels for enhancing catalytic degradation of antibiotics from biomedical wastewater. Chem. Eng. J. 2021, 409, 128203.

    CAS  Google Scholar 

  12. Xie, M. M.; Liu, X. Y.; Wang, S. G. Degradation of methylene blue through Fenton-like reaction catalyzed by MoS2-doped sodium alginate/Fe hydrogel. Colloids Surf. B: Biointerfaces 2022, 214, 112443.

    CAS  Google Scholar 

  13. Zhang, M. G.; Gai, G. Q.; Bi, F.; Wang, L. Y. Synthesis of different morphologies of ZnO via hydrothermal method for enhanced photocatalytic degradation of wastewater. J. Mater. Sci. Mater. Electron. 2022, 33, 4523–4534.

    CAS  Google Scholar 

  14. Garg, S.; Yuan, Y. T.; Mortazavi, M.; Waite, T. D. Caveats in the use of tertiary butyl alcohol as a probe for hydroxyl radical involvement in conventional ozonation and catalytic ozonation processes. ACS EST Eng. 2022, 2, 1665–1676.

    CAS  Google Scholar 

  15. Shah, B. R.; Patel, U. D. Mechanistic aspects of photocatalytic degradation of Lindane by TiO2 in the presence of Oxalic acid and EDTA as hole-scavengers. J. Environ. Chem. Eng. 2021, 9, 105458.

    CAS  Google Scholar 

  16. Liu, J. F.; Zhao, P.; Xu, Y.; Jia, X. B. Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water. Bioinorg. Chem. Appl. 2019, 2019, 5840205.

    Google Scholar 

  17. Zhang, B.; Xu, L. J.; Zhou, Y. D.; Zhang, W. J.; Wang, Y. H.; Zhu, Y. Synthesis and activity of a coumarin-based fluorescent probe for hydroxyl radical detection. Luminescence 2020, 35, 305–311.

    CAS  Google Scholar 

  18. Zhang, X. F.; Li, X. L. The photostability and fluorescence properties of diphenylisobenzofuran. J. Lumin. 2011, 131, 2263–2266.

    CAS  Google Scholar 

  19. Cui, J.; Zhang, L.; Wu, W. C.; Cheng, Z. M.; Sun, Y.; Jiang, H. B.; Li, C. Z. Zinc oxide with dominant (100) facets boosts vulcanization activity. Eur. Polym. J. 2019, 113, 148–154.

    CAS  Google Scholar 

  20. Rassu, G.; Salis, A.; Porcu, E. P.; Giunchedi, P.; Roldo, M.; Gavini, E. Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases. Carbohydr. Polym. 2016, 136, 1338–1347.

    CAS  Google Scholar 

  21. Tual, C.; Espuche, E.; Escoubes, M.; Domard, A. Transport properties of chitosan membranes: Influence of crosslinking. J. Polym. Sci. 2000, 38, 1521–1529.

    CAS  Google Scholar 

  22. Benamara, M.; Massoudi, J.; Dahman, H.; Dhahri, E.; El Mir, L.; Ly, A.; Debliquy, M.; Lahem, D. High response to sub-ppm level of NO2 with 50% RH of ZnO sensor obtained by an auto-combustion method. J. Mater. Sci. Mater. Electron. 2020, 31, 14249–14260.

    CAS  Google Scholar 

  23. Wang, X. H.; Du, Y. M.; Liu, H. Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydr. Polym. 2004, 56, 21–26.

    CAS  Google Scholar 

  24. Tang, L. G.; Hon, D. N. S. Chelation of chitosan derivatives with zinc ions. II. Association complexes of Zn2+ onto O, N-carboxymethyl chitosan. J. Appl. Polym. Sci. 2001, 79, 1476–1485.

    CAS  Google Scholar 

  25. Guan, Z. J.; Wang, P.; Li, Q. Y.; Li, Y. W.; Fu, X. L.; Yang, J. J. Remarkable enhancement in solar hydrogen generation from MoS2-RGO/ZnO composite photocatalyst by constructing a robust electron transport pathway. Chem. Eng. J. 2017, 327, 397–405.

    CAS  Google Scholar 

  26. Gun’ko, V. M.; Savina, I. N.; Mikhalovsky, S. V. Properties of water bound in hydrogels. Gels 2017, 3, 37.

    Google Scholar 

  27. Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J. 2010, 19, 375–398.

    CAS  Google Scholar 

  28. Bacha, A. U. R.; Cheng, H. Y.; Han, J.; Nabi, I.; Li, K. J.; Wang, T.; Yang, Y.; Ajmal, S.; Liu, Y. Y.; Zhang, L. W. Significantly accelerated PEC degradation of organic pollutant with addition of sulfite and mechanism study. Appl. Catal. B Environ. 2019, 248, 441–449.

    CAS  Google Scholar 

  29. Sun, S. F.; Pang, S. Y.; Jiang, J.; Ma, J.; Huang, Z. S.; Zhang, J. M.; Liu, Y. L.; Xu, C. B.; Liu, Q. L.; Yuan, Y. X. The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants. Chem. Eng. J. 2018, 333, 11–19.

    CAS  Google Scholar 

  30. Luo, T.; Yuan, Y. N.; Zhou, D. N.; Luo, L. T.; Li, J. J.; Wu, F. The catalytic role of nascent Cu(OH)2 particles in the sulfite-induced oxidation of organic contaminants. Chem. Eng. J. 2019, 363, 329–336.

    CAS  Google Scholar 

  31. Zhang, C. X.; Tang, M.; Wang, J. W.; Liao, X. P.; Wang, Y. X.; Huang, C. S. Mechanisms of bisulfite/MnO2-accelerated transformation of methyl parathion. J. Hazard. Mater. 2019, 379, 120756.

    CAS  Google Scholar 

  32. Zhu, S. R.; Yang, J. N.; Liu, Y.; Gao, W.; Yi, X. L.; Zhou, H.; Wu, M. H. Synergetic interaction of lithium cobalt oxide with sulfite to accelerate the degradation of organic aqueous pollutants. Mater. Chem. Phys. 2020, 249, 123123.

    CAS  Google Scholar 

  33. Liu, B.; Li, C. M.; Zhang, G. Q.; Yao, X. S.; Chuang, S. S. C.; Li, Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal. 2018, 8, 10446–10456.

    CAS  Google Scholar 

  34. Ning, C. P.; Gao, Y.; Zhang, H. J.; Yu, H. R.; Wang, L.; Geng, N. B.; Cao, R.; Chen, J. P. Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM2.5) from a coastal city of northeast China. Sci. Total Environ. 2019, 689, 312–321.

    CAS  Google Scholar 

  35. Oyaizu, K.; Saito, K.; Tsuchida, E. Copper-catalyzed oxidative coupling of 2, 4, 6-trimethylphenol with oxygen. Chem. lett. 2000, 29, 1318–1319.

    Google Scholar 

  36. Li, K. T.; Liu, P. Y. Oxidation of 2,4,6-trimethylphenol using iron-based catalysts. Appl. Catal. A: Gen. 2004, 272, 167–174.

    CAS  Google Scholar 

  37. Chen, Y.; Zhang, X.; Feng, S. X. Contribution of the excited triplet state of humic acid and superoxide radical anion to generation and elimination of phenoxyl radical. Environ. Sci. Technol. 2018, 52, 8283–8291.

    CAS  Google Scholar 

  38. Feng, C.; Chen, Z. Y.; Jing, J. P.; Hou, J. The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods. J. Mater. Chem. C 2020, 8, 3000–3009.

    CAS  Google Scholar 

  39. Kusiak-Nejman, E.; Wojnarowicz, J.; Morawski, A. W.; Narkiewicz, U.; Sobczak, K.; Gierlotka, S.; Lojkowski, W. Size-dependent effects of ZnO nanoparticles on the photocatalytic degradation of phenol in a water solution. Appl. Surf. Sci. 2021, 541, 148416.

    CAS  Google Scholar 

  40. Furman, O. S.; Teel, A. L.; Watts, R. J. Mechanism of base activation of persulfate. Environ. Sci. Technol. 2010, 44, 6423–6428.

    CAS  Google Scholar 

  41. Wang, Z. H.; Yuan, R. X.; Guo, Y. G.; Xu, L.; Liu, J. S. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis. J. Hazard. Mater. 2011, 190, 1083–1087.

    CAS  Google Scholar 

  42. Bennedsen, L. R.; Muff, J.; Søgaard, E. G. Influence of chloride and carbonates on the reactivity of activated persulfate. Chemosphere 2012, 86, 1092–1097.

    CAS  Google Scholar 

  43. Hu, J.; Dong, H. Y.; Qu, J. H.; Qiang, Z. M. Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and δ-MnO2). Water Res. 2017, 112, 1–8.

    CAS  Google Scholar 

  44. Wu, W. J.; Zhao, X. D.; Jing, G. H.; Zhou, Z. M. Efficient activation of sulfite autoxidation process with copper oxides for iohexol degradation under mild conditions. Sci. Total Environ. 2019, 695, 133836.

    CAS  Google Scholar 

  45. Nestle, N. F. E. I.; Kimmich, R. Concentration-dependent diffusion coefficients and sorption isotherms. Application to ion exchange processes as an example. J. Phys. Chem. 1996, 100, 12569–12573.

    CAS  Google Scholar 

  46. Shen, J. L.; Zhou, Y. M.; Li, S. S.; Gu, P. K.; Xue, G. X. Hydrogel-coated Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for degradation of phenol. J. Mater. Sci. 2019, 54, 10684–10694.

    CAS  Google Scholar 

  47. Souza, J. F.; Costa, G. P.; Luque, R.; Alves, D.; Fajardo, A. R. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: A green and versatile catalyst for the synthesis of 1, 2, 3-triazoles. Catal. Sci. Technol. 2019, 9, 136–145.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2017LB028), the Key Research and Development Program of Shandong Province (Nos. 2018GSF118032 and 2022CXGC020415), and the Fundamental Research Funds for the Central Universities in China (No. 18CX02125A). Y. X. L. is grateful for the Research Subsidy Funds of Marine Science Research Institute of Shandong Province. X. W. C. is grateful for Ministry of Science, Innovation and Universities of Spain with project reference number of PID2020-113809RB-C33 and by Junta de Andalucía (Spain) with reference number of PY18-2727.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youxun Li or Lei Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nai, J., Han, Y., Zhang, S. et al. Sulfite activation by ZnO-encapsulated hydrogels for degradation of trimethylphenol. Nano Res. 16, 12345–12356 (2023). https://doi.org/10.1007/s12274-023-6122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6122-z

Keywords

Navigation