Skip to main content
Log in

Preparation of carbon nanotube films towards mechanical and electrochemical energy storage

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to unique and excellent properties, carbon nanotubes (CNTs) are expected to become the next-generation critical engineering mechanical and energy storage materials, which will play a key role as building blocks in aerospace, military equipment, communication sensing, and other cutting-edge fields. For practical application, the assembled macrostructures from individual CNTs are the common paradigms such as fibers or films. As the main representative, CNT films can not only retain the unique properties of their CNTs components, but also are more likely for mass-production than other macrostructures. Therefore, in this review, we focus on preparation of CNT films and discuss their emerging applications in the field of mechanical and electrochemical energy storage/conversion. Firstly, different preparation processes are systematically summarized. Then we introduce some typical strategies to improve their mechanical performances besides strengthening mechanism. Based on the progress of mass-production and performance optimization, we further discuss their potential utilization in mechanical and electrochemical energy storage/conversion devices. Finally, future perspectives for the development of CNT films in both production and application are proposed. We hope that this review will shed light on the preparation/assembly of CNT films and integrated application of excellent properties from individual to macroscopic dimensions. Moreover, the preparation and crossscale application paradigms of CNT films also offer a good model for other macroscopic ordered assemblies of one-dimensional nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, L. Q.; Ma, W. J.; Zhang, Z. Macroscopic carbon nanotube assemblies: Preparation, properties, and potential applications. Small 2011, 7, 1504–1520.

    CAS  Google Scholar 

  2. Xu, M.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from -196 to 1000 C. Science 2010, 330, 1364–1368.

    CAS  Google Scholar 

  3. Bogdanova, A. R.; Krasnikov, D. V.; Khabushev, E. M.; Ramirez, B. J. A.; Nasibulin, A. G. Bithiophene as a sulfur-based promotor for the synthesis of carbon nanotubes and carbon-carbon composites. Int. J. Mol. Sci. 2023, 24, 6686.

    CAS  Google Scholar 

  4. Kothandam, G.; Singh, G.; Guan, X. W.; Lee, J. M.; Ramadass, K.; Joseph, S.; Benzigar, M.; Karakoti, A.; Yi, J. B.; Kumar, P. et al. Recent advances in carbon-based electrodes for energy storage and conversion. Adv. Sci. (Weinh.) 2023, 10, e2301045.

    Google Scholar 

  5. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

    CAS  Google Scholar 

  6. Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

    CAS  Google Scholar 

  7. Lee, S. C.; Jeong, J.; Park, H. G.; Min, B. C.; Jun, S. C.; Chung, K. Y. Binder-assisted electrostatic spray deposition of LiCoO2 and graphite films on coplanar interdigitated electrodes for flexible/wearable lithium-ion batteries. J. Power Sources 2020, 472, 228573.

    CAS  Google Scholar 

  8. Liu, R. P.; Shen, C.; Dong, Y.; Qin, J. L.; Wang, Q.; Iocozzia, J.; Zhao, S. Q.; Yuan, K. J.; Han, C. P.; Li, B. H. et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 14797–14804.

    CAS  Google Scholar 

  9. Wang, D. H.; Chen, Y.; Wang, H. Q.; Zhao, P. H.; Liu, W.; Wang, Y. Z.; Yang, J. L. N-doped porous carbon anchoring on carbon nanotubes derived from ZIF-8/polypyrrole nanotubes for superior supercapacitor electrodes. Appl. Surf. Sci. 2018, 457, 1018–1024.

    CAS  Google Scholar 

  10. Wu, K. J.; Niu, Y. T.; Zhang, Y. Y.; Yong, Z. Z.; Li, Q. W. Continuous growth of carbon nanotube films: From controllable synthesis to real applications. Compos. Part A: Appl. Sci. Manuf. 2021, 144, 106359.

    CAS  Google Scholar 

  11. Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

    CAS  Google Scholar 

  12. Qu, S. X.; Dai, Y. G.; Zhang, D. X.; Li, Q. W.; Chou, T. W.; Lyu, W. Carbon nanotube film based multifunctional composite materials: An overview. Funct. Compos. Struct. 2020, 2, 022002.

    CAS  Google Scholar 

  13. Yu, B.; Xu, X. D.; Cong, H. L.; Peng, Q. H.; Yang, Z.; Yang, S. J. The fabrication and application of carbon nanotube films. Curr. Org. Chem. 2016, 20, 984–993.

    CAS  Google Scholar 

  14. Yoon, S.; Lee, S.; Kim, S.; Park, K. W.; Cho, D.; Jeong, Y. Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 2015, 279, 495–501.

    CAS  Google Scholar 

  15. Deng, L. J.; Gu, Y. Z.; Gao, Y. H.; Ma, Z. Y.; Fan, G. Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors. J. Colloid Interface Sci. 2017, 494, 355–362.

    CAS  Google Scholar 

  16. Bibi, S.; Price, G. J.; Yasin, T.; Nawaz, M. Eco-friendly synthesis and catalytic application of chitosan/gold/carbon nanotube nanocomposite films. RSC Adv. 2016, 6, 60180–60186.

    CAS  Google Scholar 

  17. Sampaio, M. J.; Silva, C. G.; Marques, R. R. N.; Silva, A. M. T.; Faria, J. L. Carbon nanotube-TiO2 thin films for photocatalytic applications. Catal. Today 2011, 161, 91–96.

    CAS  Google Scholar 

  18. Zhang, J.; Su, D. S.; Zhang, A. H.; Wang, D.; Schlögl, R.; Hébert, C. Nanocarbon as robust catalyst: Mechanistic insight into carbon-mediated catalysis. Angew. Chem., Int. Ed. 2007, 46, 7319–7323.

    CAS  Google Scholar 

  19. Zhu, Z. X.; Cui, C. J.; Bai, Y. X.; Gao, J.; Jiang, Y. X.; Li, B. F.; Wang, Y.; Zhang, Q.; Qian, W. Z.; Wei, F. Advances in precise structure control and assembly toward the carbon nanotube industry. Adv. Funct. Mater. 2022, 32, 2109401.

    CAS  Google Scholar 

  20. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B. et al. Fullerene pipes. Science 1998, 280, 1253–1256.

    CAS  Google Scholar 

  21. He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned singlewalled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.

    CAS  Google Scholar 

  22. Jia, Y.; Li, P. X.; Wei, J. Q.; Cao, A. Y.; Wang, K. L.; Li, C. L.; Zhuang, D. M.; Zhu, H. W.; Wu, D. H. Carbon nanotube films by filtration for nanotube-silicon heterojunction solar cells. Mater. Res. Bull. 2010, 45, 1401–1405.

    CAS  Google Scholar 

  23. Xu, G. H.; Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Zhou, W. P.; Wei, F. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films. Langmuir 2010, 26, 2798–2804.

    CAS  Google Scholar 

  24. Liang, Z.; Wang, B.; Zhang, C.; Ugarte, J. T.; Lin, C.; Thagard, J. Continuous production of network of nanotubes or nanoscale fibers involves filtering suspension of nanoscale fibers dispersed in liquid, by moving filter membrane through suspension to form continuous membrane of fibers on filter membrane. US2006207931-A1, US7459121-B2, September 21, 2006.

    Google Scholar 

  25. Fan, Z. J.; Wei, T.; Luo, G. H.; Wei, F. Fabrication and characterization of multi-walled carbon nanotubes-based ink. J. Mater. Sci. 2005, 40, 5075–5077.

    CAS  Google Scholar 

  26. Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Grüner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757–760.

    CAS  Google Scholar 

  27. Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

    CAS  Google Scholar 

  28. Lee, Y. D.; Lee, K. S.; Lee, Y. H.; Ju, B. K. Field emission properties of carbon nanotube film using a spray method. Appl. Surf. Sci. 2007, 254, 513–516.

    CAS  Google Scholar 

  29. Preston, C.; Song, D.; Dai, J. Q.; Tsinas, Z.; Bavier, J.; Cumings, J.; Ballarotto, V.; Hu, L. B. Scalable nanomanufacturing of surfactantfree carbon nanotube inks for spray coatings with high conductivity. Nano Res. 2015, 8, 2242–2250.

    CAS  Google Scholar 

  30. Yu, W.; Zhou, H.; Li, B. Q.; Ding, S. J. 3D printing of carbon nanotubes-based microsupercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 4597–4604.

    CAS  Google Scholar 

  31. Goh, G. L.; Agarwala, S.; Yeong, W. Y. Directed and on-demand alignment of carbon nanotube: A review toward 3D printing of electronics. Adv. Mater. Interfaces 2019, 6, 1801318.

    Google Scholar 

  32. Zhao, B. H.; Sivasankar, V. S.; Subudhi, S. K.; Sinha, S.; Dasgupta, A.; Das, S. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks. Nanoscale 2022, 14, 14858–14894.

    CAS  Google Scholar 

  33. Zeng, Z. H.; Wang, G.; Wolan, B. F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Yue, S. Y.; Li, B.; He, W. D.; Liu, J. R. et al. Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 2022, 14, 179.

    CAS  Google Scholar 

  34. Trottier, C. M.; Glatkowski, P.; Wallis, P.; Luo, J. Properties and characterization of carbon-nanotube-based transparent conductive coating. J. Soc. Inf. Disp. 2005, 13, 759–763.

    CAS  Google Scholar 

  35. Contreras, M. A.; Barnes, T.; Van De Lagemaat, J.; Rumbles, G.; Coutts, T. J.; Weeks, C.; Glatkowski, P.; Levitsky, I.; Peltola, J.; Britz, D. A. Replacement of transparent conductive oxides by single-wall carbon nanotubes in Cu(In, Ga)Se2-based solar cells. J. Phys. Chem. C 2007, 111, 14045–14048.

    CAS  Google Scholar 

  36. De Andrade, M. J.; Lima, M. D.; Skákalová, V.; Bergmann, C. P.; Roth, S. Electrical properties of transparent carbon nanotube networks prepared through different techniques. Phys. Status Solidi (RRL) Rap. Res. Lett. 2007, 1, 178–180.

    Google Scholar 

  37. Ng, M. H. A.; Hartadi, L. T.; Tan, H. W.; Poa, C. H. P. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates. Nanotechnology 2008, 19, 205703.

    Google Scholar 

  38. Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M. High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 2012, 6, 9737–9744.

    CAS  Google Scholar 

  39. Zhang, J. Z.; Yang, L. H.; Xu, H.; Zhou, J.; Sang, Y. X.; Cui, Z. Z.; Liu, C. L.; Liu, J. J.; Guo, T. L.; Wang, X. J. et al. Dip-coating selfassembly fabrication and polarization sensitive photoresponse of aligned single-walled carbon nanotube film. Sensors 2022, 22, 490.

    CAS  Google Scholar 

  40. Meitl, M. A.; Zhou, Y. X.; Gaur, A.; Jeon, S.; Usrey, M. L.; Strano, M. S.; Rogers, J. A. Solution casting and transfer printing singlewalled carbon nanotube films. Nano Lett. 2004, 4, 1643–1647.

    CAS  Google Scholar 

  41. Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382–5388.

    CAS  Google Scholar 

  42. Huang, J.; Somu, S.; Busnaina, A. Spin coating fabrication of thin film transistors using enriched semiconducting SWNT solution. Electron. Mater. Lett. 2013, 9, 505–507.

    CAS  Google Scholar 

  43. Krstic, V.; Duesberg, G. S.; Muster, J.; Burghard, M.; Roth, S. Langmuir-blodgett films of matrix-diluted single-walled carbon nanotubes. Chem. Mater. 1998, 10, 2338–2340.

    CAS  Google Scholar 

  44. Guo, Y. Z.; Wu, J. S.; Zhang, Y. F. Manipulation of single-wall carbon nanotubes into aligned molecular layers. Chem. Phys. Lett. 2002, 362, 314–318.

    CAS  Google Scholar 

  45. Kim, Y.; Minami, N.; Zhu, W.; Kazaoui, S.; Azumi, R.; Matsumoto, M. Homogeneous and structurally controlled thin films of single-wall carbon nanotubes by the Langmuir-Blodgett technique. Synth. Met. 2003, 135-136, 747–748.

    CAS  Google Scholar 

  46. Armitage, N. P.; Gabriel, J. C. P.; Grüner, G. Quasi- Langmuir-Blodgett thin film deposition of carbon nanotubes. J. Appl. Phys. 2004, 95, 3228–3230.

    CAS  Google Scholar 

  47. Sadovoy, A.; Dubovik, Y.; Nazvanov, V. Carbon nanotubes aligning by Langmuir Quasi-Langmuir-Blodgett thin film deposition of carbon nanotubes Blodgett technique and visualizing by nematic liquid crystals. In Proceedings of SPIE 6536, Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII, Saratov, Russia Federation, 2006.

    Google Scholar 

  48. Jia, L.; Zhang, Y. F.; Li, J. Y.; You, C.; Xie, E. Q. Aligned singlewalled carbon nanotubes by Langmuir Quasi-Langmuir-Blodgett thin film deposition of carbon nanotubes Blodgett technique. J. Appl. Phys. 2008, 104, 074318.

    Google Scholar 

  49. Zheng, Q. B.; Zhang, B.; Lin, X. Y.; Shen, X.; Yousefi, N.; Huang, Z. D.; Li, Z. G.; Kim, J. K. Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir Quasi-Langmuir-Blodgett thin film deposition of carbon nanotubes Blodgett assembly. J. Mater. Chem. 2012, 22, 25072–25082.

    CAS  Google Scholar 

  50. Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.

    CAS  Google Scholar 

  51. Ariga, K.; Ito, M.; Mori, T.; Watanabe, S.; Takeya, J. Atom/molecular nanoarchitectonics for devices and related applications. Nano Today 2019, 28, 100762.

    Google Scholar 

  52. Poonia, M.; Manjuladevi, V.; Gupta, R. K. Ultrathin films of functionalised single-walled carbon nanotubes: A potential biosensing platform. Liq. Cryst. 2020, 47, 1204–1213.

    CAS  Google Scholar 

  53. Zhang, J. L.; Wang, M.; Yang, Z. H.; Zhang, X. H. Highly flexible and stretchable strain sensors based on conductive whisker carbon nanotube films. Carbon 2021, 176, 139–147.

    CAS  Google Scholar 

  54. Kim, M. S.; Ma, L.; Choudhury, S.; Moganty, S. S.; Wei, S.; Archer, L. A. Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir-Blodgett process: Application in lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 14709–14719.

    CAS  Google Scholar 

  55. Chen, Z.; Yang, Y. L.; Wu, Z. Y.; Luo, G.; Xie, L. M.; Liu, Z. F.; Ma, S. J.; Guo, W. L. Electric-field-enhanced assembly of singlewalled carbon nanotubes on a solid surface. J. Phys. Chem. B 2005, 109, 5473–5477.

    CAS  Google Scholar 

  56. Pei, S. F.; Du, J. H.; Zeng, Y.; Liu, C.; Cheng, H. M. The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer. Nanotechnology 2009, 20, 235707.

    Google Scholar 

  57. An, Q.; Rider, A. N.; Thostenson, E. T. Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers. ACS Appl. Mater. Interfaces 2013, 5, 2022–2032.

    CAS  Google Scholar 

  58. Cha, J. E.; Kim, S. Y.; Lee, S. H. Effect of continuous multi-walled carbon nanotubes on thermal and mechanical properties of flexible composite film. Nanomaterials (Basel) 2016, 6, 182.

    Google Scholar 

  59. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

    CAS  Google Scholar 

  60. Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.

    CAS  Google Scholar 

  61. Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4- inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    CAS  Google Scholar 

  62. Liu, K.; Sun, Y. H.; Liu, P.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Periodically striped films produced from super-aligned carbon nanotube arrays. Nanotechnology 2009, 20, 335705.

    Google Scholar 

  63. Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

    CAS  Google Scholar 

  64. Dai, H. J.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 260, 471–475.

    CAS  Google Scholar 

  65. Hafner, J. H.; Bronikowski, M. J.; Azamian, B. R.; Nikolaev, P.; Rinzler, A. G.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 1998, 296, 195–202.

    CAS  Google Scholar 

  66. Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H. J. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 1999, 103, 6484–6492.

    CAS  Google Scholar 

  67. Huang, S. M.; Maynor, B.; Cai, X. Y.; Liu, J. Ultralong, wellaligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 2003, 15, 1651–1655.

    CAS  Google Scholar 

  68. Cheng, H. M.; Li, F.; Su, G.; Pan, H. Y.; He, L. L.; Sun, X.; Dresselhaus, M. S. Large-scale and low-cost synthesis of singlewalled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 1998, 72, 3282–3284.

    CAS  Google Scholar 

  69. Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–886.

    CAS  Google Scholar 

  70. Song, L. Y.; Ci, L. J.; Lv, L.; Zhou, Z. P.; Yan, X. Q.; Liu, D. F.; Yuan, H. J.; Gao, Y. N.; Wang, J. X.; Liu, L. F. et al. Direct synthesis of a macroscale single-walled carbon nanotube nonwoven material. Adv. Mater. 2004, 16, 1529–1534.

    CAS  Google Scholar 

  71. Ma, W. J.; Song, L.; Yang, R.; Zhang, T. H.; Zhao, Y. C.; Sun, L. F.; Ren, Y.; Liu, D. F.; Liu, L.; Shen, J. et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007, 7, 2307–2311.

    CAS  Google Scholar 

  72. Liao, Y. P.; Jiang, H.; Wei, N.; Laiho, P.; Zhang, Q.; Khan, S. A.; Kauppinen, E. I. Direct synthesis of colorful single-walled carbon nanotube thin films. J. Am. Chem. Soc. 2018, 140, 9797–9800.

    CAS  Google Scholar 

  73. Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Cai, L.; Li, K. W.; Gu, X. G.; Yang, F.; Zhang, N.; Wang, Y. C.; Liu, H. P. et al. Highperformance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat. Commun. 2017, 8, 14886.

    CAS  Google Scholar 

  74. Niu, Z. Q.; Zhou, W. Y.; Chen, J.; Feng, G. X.; Li, H.; Hu, Y. S.; Ma, W. J.; Dong, H. B.; Li, J. Z.; Xie, S. S. A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors. Small 2013, 9, 518–524.

    CAS  Google Scholar 

  75. Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Li, K. W.; Cai, L.; Gu, X. G.; Yang, F.; Zhang, N.; Xiao, Z. J.; Chen, H. L. et al. Ultrahigh-powerfactor carbon nanotubes and an ingenious strategy for thermoelectric performance evaluation. Small 2016, 12, 3407–3414.

    CAS  Google Scholar 

  76. Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 2014, 5, 3848.

    CAS  Google Scholar 

  77. Wang, B. W.; Jiang, S.; Zhu, Q. B.; Sun, Y.; Luan, J.; Hou, P. X.; Qiu, S.; Li, Q. W.; Liu, C.; Sun, D. M. et al. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits. Adv. Mater. 2018, 30, 1802057.

    Google Scholar 

  78. Zhang, Z. C.; Gu, Y. Z.; Wang, S. K.; Li, Q. W.; Li, M.; Zhang, Z. G. Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon 2016, 107, 405–414.

    CAS  Google Scholar 

  79. Zhou, T.; Niu, Y. T.; Li, Z.; Li, H. F.; Yong, Z. Z.; Wu, K. J.; Zhang, Y. Y.; Li, Q. W. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers. Mater. Des. 2021, 203, 109557.

    CAS  Google Scholar 

  80. Di, J. T.; Zhang, X. H.; Yong, Z. Z.; Zhang, Y. Y.; Li, D.; Li, R.; Li, Q. W. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2016, 28, 10529–10538.

    CAS  Google Scholar 

  81. Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 2012, 6, 5457–5464.

    CAS  Google Scholar 

  82. Liu, Q. L.; Li, M.; Gu, Y. Z.; Zhang, Y. Y.; Wang, S. K.; Li, Q. W.; Zhang, Z. G. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale 2014, 6, 4338–4344.

    CAS  Google Scholar 

  83. Wu, Y. Z.; Zhao, X. W.; Shang, Y. Y.; Chang, S. L.; Dai, L. X.; Cao, A. Y. Application-driven carbon nanotube functional materials. ACS Nano 2021, 15, 7946–7974.

    CAS  Google Scholar 

  84. Rdest, M.; Janas, D. Carbon nanotube films for energy applications. Energies 2021, 14, 1890.

    CAS  Google Scholar 

  85. Li, S.; Park, J. G.; Liang, Z. Y.; Siegrist, T.; Liu, T.; Zhang, M.; Cheng, Q. F.; Wang, B.; Zhang, C. In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching. Carbon 2012, 50, 3859–3867.

    CAS  Google Scholar 

  86. Cheng, Q. F.; Bao, J. W.; Park, J.; Liang, Z. Y.; Zhang, C.; Wang, B. High mechanical performance composite conductor: Multiwalled carbon nanotube sheet/bismaleimide nanocomposites. Adv. Funct. Mater. 2009, 19, 3219–3225.

    CAS  Google Scholar 

  87. Wang, Y. J.; Li, M.; Gu, Y. Z.; Zhang, X. H.; Wang, S. K.; Li, Q. W.; Zhang, Z. G. Tuning carbon nanotube assembly for flexible, strong and conductive films. Nanoscale 2015, 7, 3060–3066.

    CAS  Google Scholar 

  88. Wen, Y. Y.; Jian, M. Q.; Huang, J. K.; Luo, J. J.; Qian, L.; Zhang, J. Carbonene fibers: Toward next-generation fiber materials. Nano Lett. 2022, 22, 6035–6047.

    CAS  Google Scholar 

  89. Wu, K. J.; Zhang, Y. Y.; Yong, Z. Z.; Li, Q. W. Continuous preparation and performance enhancement techniques of carbon nanotube fibers. Acta Phys. Chim. Sin. 2022, 38, 2106034.

    Google Scholar 

  90. Tran, T. Q.; Fan, Z.; Liu, P.; Myint, S. M.; Duong, H. M. Superstrong and highly conductive carbon nanotube ribbons from posttreatment methods. Carbon 2016, 99, 407–415.

    CAS  Google Scholar 

  91. Shang, Y. Y.; Wang, Y.; Li, S. H.; Hua, C. F.; Zou, M. C.; Cao, A. Y. High-strength carbon nanotube fibers by twist-induced selfstrengthening. Carbon 2017, 119, 47–55.

    CAS  Google Scholar 

  92. Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

    CAS  Google Scholar 

  93. Vilatela, J. J.; Elliott, J. A.; Windle, A. H. A model for the strength of yarn-like carbon nanotube fibers. ACS Nano 2011, 5, 1921–1927.

    CAS  Google Scholar 

  94. Tersoff, J.; Ruoff, R. S. Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 1994, 73, 676–679.

    CAS  Google Scholar 

  95. Oh, J. Y.; Jung, Y.; Cho, Y. S.; Choi, J.; Youk, J. H.; Fechler, N.; Yang, S. J.; Park, C. R. Metal-phenolic carbon nanocomposites for robust and flexible energy-storage devices. ChemSusChem 2017, 10, 1675–1682.

    CAS  Google Scholar 

  96. Zhang, X. F.; Liu, T.; Sreekumar, T. V.; Kumar, S.; Moore, V. C.; Hauge, R. H.; Smalley, R. E. Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 2003, 3, 1285–1288.

    CAS  Google Scholar 

  97. Zhang, L. W.; Wang, X.; Li, R.; Li, Q. W.; Bradford, P. D.; Zhu, Y. T. Microcombing enables high-performance carbon nanotube composites. Compos. Sci. Technol. 2016, 123, 92–98.

    CAS  Google Scholar 

  98. Long, J. C.; Zhan, H.; Wu, G.; Zhang, Y.; Wang, J. N. Highstrength carbon nanotube/epoxy resin composite film from a controllable cross-linking reaction. Compos. Part A: Appl. Sci. Manuf. 2021, 146, 106409.

    CAS  Google Scholar 

  99. Shi, Q. Q.; Zhan, H.; Mo, R. W.; Wang, J. N. High-strength and toughness carbon nanotube fiber/resin composites by controllable wet-stretching and stepped pressing. Carbon 2022, 189, 1–9.

    CAS  Google Scholar 

  100. Tan, W.; Stallard, J. C.; Smail, F. R.; Boies, A. M.; Fleck, N. A. The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon 2019, 150, 489–504.

    CAS  Google Scholar 

  101. Guo, H. N.; Minus, M. L.; Jagannathan, S.; Kumar, S. Polyacrylonitrile/carbon nanotube composite films. ACS Appl. Mater. Interfaces 2010, 2, 1331–1342.

    CAS  Google Scholar 

  102. Guo, H. N.; Sreekumar, T. V.; Liu, T.; Minus, M.; Kumar, S. Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 2005, 46, 3001–3005.

    CAS  Google Scholar 

  103. Hao, L. D.; Hurlock, M. J.; Ding, G. D.; Zhang, Q. Metal-organic frameworks towards desulfurization of fuels. Top. Curr. Chem. 2020, 378, 17.

    CAS  Google Scholar 

  104. Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

    CAS  Google Scholar 

  105. Wang, X.; Jiang, Q.; Xu, W. Z.; Cai, W.; Inoue, Y.; Zhu, Y. T. Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites. Carbon 2013, 53, 145–152.

    CAS  Google Scholar 

  106. Kim, J. W.; Sauti, G.; Siochi, E. J.; Smith, J. G.; Wincheski, R. A.; Cano, R. J.; Connell, J. W.; Wise, K. E. Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure. ACS Appl. Mater. Interfaces 2014, 6, 18832–18843.

    CAS  Google Scholar 

  107. Cheng, Q. F.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Bioinspired layered composites based on flattened double-walled carbon nanotubes. Adv. Mater. 2012, 24, 1838–1843.

    CAS  Google Scholar 

  108. Han, Y.; Zhang, X. H.; Yu, X. P.; Zhao, J. N.; Li, S.; Liu, F.; Gao, P.; Zhang, Y. Y.; Zhao, T.; Li, Q. W. Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites. Sci. Rep. 2015, 5, 11533.

    CAS  Google Scholar 

  109. Zhan, H.; Lin, J. H.; Shi, H. L.; Wang, J. N. Construction of carbon nanotubes/bismaleimide composite films with superior tensile strength and toughness. Compos. Sci. Technol. 2021, 214, 108975.

    CAS  Google Scholar 

  110. Song, Y. H.; Di, J. T.; Zhang, C.; Zhao, J. N.; Zhang, Y. Y.; Hu, D. M.; Li, M.; Zhang, Z. G.; Wei, H. Z.; Li, Q. W. Millisecond tensionannealing for enhancing carbon nanotube fibers. Nanoscale 2019, 11, 13909–13916.

    CAS  Google Scholar 

  111. Filleter, T.; Bernal, R.; Li, S.; Espinosa, H. D. Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 2011, 23, 2855–2860.

    CAS  Google Scholar 

  112. Chen, C. X.; Lin, Y.; Zhou, W.; Gong, M.; He, Z. Y.; Shi, F. Y.; Li, X. Y.; Wu, J. Z.; Lam, K. T.; Wang, J. N. et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 2021, 4, 653–663.

    CAS  Google Scholar 

  113. Lee, D.; Kim, S. G.; Hong, S.; Madrona, C.; Oh, Y.; Park, M.; Komatsu, N.; Taylor, L. W.; Chung, B.; Kim, J. et al. Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence. Sci. Adv. 2022, 8, eabn0939.

    CAS  Google Scholar 

  114. Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Superdurable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

    CAS  Google Scholar 

  115. Falvo, M. R.; Clary, G. J.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582–584.

    CAS  Google Scholar 

  116. Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

    Google Scholar 

  117. Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310.

    CAS  Google Scholar 

  118. Suhr, J.; Victor, P.; Ci, L.; Sreekala, S.; Zhang, X.; Nalamasu, O.; Ajayan, P. M. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2007, 2, 417–421.

    CAS  Google Scholar 

  119. Li, H. F.; Zhang, X. H.; Zhu, Y. Q.; Li, R.; Chen, H. Y.; Gao, P.; Zhang, Y. Y.; Li, T. T.; Liu, Y. N.; Li, Q. W. Hydrothermal deposition of a zinc oxide nanorod array on a carbon nanotube film as a piezoelectric generator. RSC Adv. 2014, 4, 43772–43777.

    CAS  Google Scholar 

  120. Wu, C. M.; Chou, M. H.; Zeng, W. Y. Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials (Basel) 2018, 8, 420.

    Google Scholar 

  121. Chen, S. C.; Luo, J. L.; Wang, X. L.; Li, Q. Y.; Zhou, L. C.; Liu, C.; Feng, C. Fabrication and piezoresistive/piezoelectric sensing characteristics of carbon nanotube/PVA/nano-ZnO flexible composite. Sci. Rep. 2020, 10, 8895.

    CAS  Google Scholar 

  122. Al-Furjan, M. S. H.; Farrokhian, A.; Keshtegar, B.; Kolahchi, R.; Trung, N. T. Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory. Euro. J. Mechan. A/Solids 2021, 86, 104169.

    Google Scholar 

  123. Moradi-Dastjerdi, R.; Behdinan, K. Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Appl. Math. Modell. 2021, 96, 66–79.

    Google Scholar 

  124. Mirvakili, S. M.; Hunter, I. W. Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 2018, 30, 1704407.

    Google Scholar 

  125. Duduta, M.; Hajiesmaili, E.; Zhao, H. C.; Wood, R. J.; Clarke, D. R. Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl. Acad. Sci. USA 2019, 116, 2476–2481.

    CAS  Google Scholar 

  126. Chu, H. T.; Hu, X. H.; Wang, Z.; Mu, J. K.; Li, N.; Zhou, X. S.; Fang, S. L.; Haines, C. S.; Park, J. W.; Qin, S. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 2021, 371, 494–498.

    CAS  Google Scholar 

  127. Lima, M. D.; Li, N.; De Andrade, M. J.; Fang, S. L.; Oh, J.; Spinks, G. M.; Kozlov, M. E.; Haines, C. S.; Suh, D.; Foroughi, J. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 2012, 338, 928–932.

    CAS  Google Scholar 

  128. Liu, Z. F.; Fang, S.; Moura, F. A.; Ding, J. N.; Jiang, N.; Di, J.; Zhang, M.; Lepró, X.; Galvão, D. S.; Haines, C. S. et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 2015, 349, 400–404.

    CAS  Google Scholar 

  129. Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575–1578.

    CAS  Google Scholar 

  130. Baughman, R. H.; Cui, C. X.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G. et al. Carbon nanotube actuators. Science 1999, 284, 1340–1344.

    CAS  Google Scholar 

  131. Ning, W.; Wang, Z. H.; Liu, P.; Zhou, D. L.; Yang, S. Y.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon 2018, 139, 1136–1143.

    CAS  Google Scholar 

  132. Hebner, R.; Beno, J.; Walls, A. Flywheel batteries come around again. IEEE Spectr. 2002, 39, 46–51.

    Google Scholar 

  133. Sebastián, R.; Alzola, R. P. Flywheel energy storage systems: Review and simulation for an isolated wind power system. Renew. Sustainable Energy Rev. 2012, 16, 6803–6813.

    Google Scholar 

  134. Aanstoos, T. A.; Kajs, J. P.; Brinkman, W. G.; Liu, H. P.; Ouroua, A.; Hayes, R. J.; Hearn, C.; Sarjeant, J.; Gill, H. High voltage stator for a flywheel energy storage system. IEEE Trans. Magn. 2001, 37, 242–247.

    Google Scholar 

  135. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

    CAS  Google Scholar 

  136. Wei, Y. B.; Cheng, W. H.; Huang, Y. D.; Liu, Z. J.; Sheng, R.; Wang, X. C.; Jia, D. Z.; Tang, X. C. P-doped cotton stalk carbon for high-performance lithium-ion batteries and lithium-sulfur batteries. Langmuir 2022, 38, 11610–11620.

    CAS  Google Scholar 

  137. Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

    CAS  Google Scholar 

  138. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863.

    CAS  Google Scholar 

  139. Wang, D. K.; Zhang, J. P.; Li, X. T.; Liu, L. T.; Yuan, M.; Cao, B.; Li, A.; Chen, X. H.; Yang, R.; Song, H. H. Woven microsphere architected by carbon nanotubes as high-performance potassium ion batteries anodes. Chem. Eng. J. 2022, 429, 132272.

    CAS  Google Scholar 

  140. Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Znion batteries. Adv. Mater. 2019, 31, e1903675.

    Google Scholar 

  141. Zhang, S. P.; Wang, G.; Wang, B. B.; Wang, J. M.; Bai, J. T.; Wang, H. 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 2020, 30, 2001592.

    CAS  Google Scholar 

  142. De Las Casas, C.; Li, W. Z. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74–85.

    CAS  Google Scholar 

  143. Wang, B.; Hu, C. G.; Dai, L. M. Functionalized carbon nanotubes and graphene-based materials for energy storage. Chem. Commun. 2016, 52, 14350–14360.

    CAS  Google Scholar 

  144. Zhang, Y.; Jiao, Y. D.; Liao, M.; Wang, B. J.; Peng, H. S. Carbon nanomaterials for flexible lithium ion batteries. Carbon 2017, 124, 79–88.

    CAS  Google Scholar 

  145. Zhu, S.; Sheng, J.; Chen, Y.; Ni, J. F.; Li, Y. Carbon nanotubes for flexible batteries: Recent progress and future perspective. Natl. Sci. Rev. 2021, 8, nwaa261.

    CAS  Google Scholar 

  146. He, Z. Y.; Xiao, Z. X.; Yue, H. J.; Jiang, Y. X.; Zhao, M. Y.; Zhu, Y. K.; Yu, C. H.; Zhu, Z. X.; Lu, F.; Jiang, H. R. et al. Singlewalled carbon nanotube film as an efficient conductive network for Si-based anodes. Adv. Funct. Mater. 2023, 33, 2300094.

    CAS  Google Scholar 

  147. Kuznetsov, O. A.; Mohanty, S.; Pigos, E.; Chen, G. G.; Cai, W.; Harutyunyan, A. R. High energy density flexible and ecofriendly lithium-ion smart battery. Energy Storage Mater. 2023, 54, 266–275.

    Google Scholar 

  148. Wang, X. W.; Wang, L. Q.; Zhang, B.; Feng, J. M.; Zhang, J. F.; Ou, X.; Hou, F.; Liang, J. A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries. J. Energy Chem. 2021, 59, 126–133.

    CAS  Google Scholar 

  149. Guo, W. L.; Yan, X.; Hou, F.; Wen, L.; Dai, Y. J.; Yang, D. M.; Jiang, X. T.; Liu, J.; Liang, J.; Dou, S. X. Flexible and freestanding SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 2019, 152, 888–897.

    CAS  Google Scholar 

  150. Sun, Y.; Yang, Y. L.; Shi, X. L.; Suo, G. Q.; Chen, H. J.; Hou, X. J.; Lu, S. Y.; Chen, Z. G. Self-standing film assembled using SnS-Sn/multiwalled carbon nanotubes encapsulated carbon fibers: A potential large-scale production material for ultra-stable sodium-ion battery anodes. ACS Appl. Mater. Interfaces 2021, 13, 28359–28368.

    CAS  Google Scholar 

  151. Husmann, S.; Zarbin, A. J. G.; Dryfe, R. A. W. High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochim. Acta 2020, 349, 136243.

    CAS  Google Scholar 

  152. Liu, S. L.; Wang, P. P.; Liu, C.; Deng, Y. D.; Dou, S. M.; Liu, Y. J.; Xu, J.; Wang, Y. L.; Liu, W. D.; Hu, W. B. et al. Nanomanufacturing of RGO-CNT hybrid film for flexible aqueous Al-ion batteries. Small 2020, 16, 2002856.

    CAS  Google Scholar 

  153. Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.

    CAS  Google Scholar 

  154. Samdhyan, K.; Chand, P.; Anand, H.; Saini, S. Development of carbon-based copper sulfide nanocomposites for high energy supercapacitor applications: A comprehensive review. J. Energy Storage 2022, 46, 103886.

    Google Scholar 

  155. Sharma, S.; Chand, P. Supercapacitor and electrochemical techniques: A brief review. Results Chem. 2023, 5, 100885.

    CAS  Google Scholar 

  156. Shi, Z. Q.; Wu, Z. S.; Niu, Z. Q.; Liu, J. P.; Yang, X. W.; Lv, W. Supercapacitors. Chin. Chem. Lett. 2018, 29, 551–552.

    CAS  Google Scholar 

  157. Hou, L. Q.; Yang, W.; Jiang, B.; Wang, P.; Yan, L.; Zhang, C. X.; Huang, G. Y.; Yang, F.; Li, Y. F. Intrinsic defect-rich porous carbon nanosheets synthesized from potassium citrate toward advanced supercapacitors and microwave absorption. Carbon 2021, 183, 176–186.

    CAS  Google Scholar 

  158. Kim, T.; Subedi, S.; Dahal, B.; Chhetri, K.; Mukhiya, T.; Muthurasu, A.; Gautam, J.; Lohani, P. C.; Acharya, D.; Pathak, I. et al. Homogeneous elongation of N-doped CNTs over nanofibrillated hollow-carbon-nanofiber: Mass and charge balance in asymmetric supercapacitors is no longer problematic. Adv. Sci. 2022, 9, e2200650.

    Google Scholar 

  159. Rey-Raap, N.; Enterría, M.; Martins, J. I.; Pereira, M. F. R.; Figueiredo, J. L. Influence of multiwalled carbon nanotubes as additives in biomass-derived carbons for supercapacitor applications. ACS Appl. Mater. Interfaces 2019, 11, 6066–6077.

    CAS  Google Scholar 

  160. Han, Y.; Ha, H.; Choi, C.; Yoon, H.; Matteini, P.; Cheong, J. Y.; Hwang, B. Review of flexible supercapacitors using carbon nanotube-based electrodes. Appl. Sci. (Basel) 2023, 13, 3290.

    CAS  Google Scholar 

  161. Kim, M. G.; Lee, B.; Li, M. C.; Noda, S.; Kim, C.; Kim, J.; Song, W. J.; Lee, S. W.; Brand, O. All-soft supercapacitors based on liquid metal electrodes with integrated functionalized carbon nanotubes. ACS Nano 2020, 14, 5659–5667.

    CAS  Google Scholar 

  162. Yu, C. Y.; An, J. N.; Zhou, R. C.; Xu, H.; Zhou, J. Y.; Chen, Q.;Sun, G. Z.; Huang, W. Microstructure design of carbonaceous fibers: A promising strategy toward high-performance weaveable/wearable supercapacitors. Small 2020, 16, 2000653.

    CAS  Google Scholar 

  163. Zhong, M. Z.; Zhang, M.; Li, X. F. Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 2022, 4, 950–985.

    CAS  Google Scholar 

  164. Niu, H. T.; Liu, Y.; Mao, B. D.; Xin, N.; Jia, H.; Shi, W. D. In-situ embedding MOFs-derived copper sulfide polyhedrons in carbon nanotube networks for hybrid supercapacitor with superior energy density. Electrochim. Acta 2020, 329, 135130.

    CAS  Google Scholar 

  165. Tiwari, P.; Janas, D.; Chandra, R. Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application. Carbon 2021, 177, 291–303.

    CAS  Google Scholar 

  166. Yang, X. Y.; Li, J. H.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Skeleton-structure WS2@CNT thin-film hybrid electrodes for high-performance quasi-solid-state flexible supercapacitors. Front. Chem. 2020, 8, 442.

    CAS  Google Scholar 

  167. Gao, X.; Du, X.; Mathis, T. S.; Zhang, M. M.; Wang, X. H.; Shui, J. L.; Gogotsi, Y.; Xu, M. Maximizing ion accessibility in MXeneknotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 2020, 11, 6160.

    CAS  Google Scholar 

  168. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    CAS  Google Scholar 

  169. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

    CAS  Google Scholar 

  170. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    CAS  Google Scholar 

  171. Jin, Q. Y.; Ren, B. W.; Cui, H.; Wang, C. X. Nitrogen and cobalt codoped carbon nanotube films as binder-free trifunctional electrode for flexible zinc-air battery and self-powered overall water splitting. Appl. Catal. B: Environ. 2021, 283, 119643.

    CAS  Google Scholar 

  172. Shah, K. A.; Tali, B. A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 2016, 41, 67–82.

    CAS  Google Scholar 

  173. Yan, Y. B.; Miao, J. W.; Yang, Z. H.; Xiao, F. X.; Yang, H. B.; Liu, B.; Yang, Y. H. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–346.

    CAS  Google Scholar 

  174. Harmon, N. J.; Rooney, C. L.; Tao, Z. X.; Shang, B.; Raychaudhuri, N.; Choi, C.; Li, H. P.; Wang, H. L. Intrinsic catalytic activity of carbon nanotubes for electrochemical nitrate reduction. ACS Catal. 2022, 12, 9135–9142.

    CAS  Google Scholar 

  175. Lin, Y. Z.; Zhu, W. J.; Li, Y. H. Hierarchical monolithic carbon with high transfer performance for hydrogen evolution reaction. J. Energy Chem. 2022, 73, 41–48.

    CAS  Google Scholar 

  176. Elias, M.; Uddin, M. N.; Hossain, M. A.; Saha, J. K.; Siddiquey, I. A.; Sarker, D. R.; Diba, Z. R.; Uddin, J.; Rashid Choudhury, M. H.; Firoz, S. H. An experimental and theoretical study of the effect of Ce doping in ZnO/CNT composite thin film with enhanced visible light photo-catalysis. Int. J. Hydrogen Energy 2019, 44, 20068–20078.

    CAS  Google Scholar 

  177. Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobaltembedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

    Google Scholar 

  178. Xiong, C. Y.; Li, M. R.; Zhao, W.; Duan, C.; Ni, Y. H. Flexible Ndoped reduced graphene oxide/carbon nanotube-MnO2 film as a multifunctional material for high-performance supercapacitors, catalysts and sensors. J. Materiomics 2020, 6, 523–531.

    Google Scholar 

  179. Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast selfheating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22108155, LY23B060003, and T2350004) and the Ministry of Science and Technology of China (No. 2022YFA1203301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenxing Zhu or Fei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wei, Y., Zhu, Z. et al. Preparation of carbon nanotube films towards mechanical and electrochemical energy storage. Nano Res. 16, 12411–12429 (2023). https://doi.org/10.1007/s12274-023-6099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6099-7

Keywords

Navigation