Skip to main content
Log in

Nanophotonic catalytic combustion enlightens mid-infrared light source

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge. Nano-localized catalytic combustion facilitates access to customizable infrared light sources. Here, we report on fabricating platinum-alumina bilayer nano-cylinder arrays for methanol catalytic combustion, which enables them to act as an array of infrared point light sources, with wavelength tunable by controlling the flow rate of methanol/air mixture. We then propose a technique of integrating nanophotonic structures with catalytic combustion to engineer infrared light emission. We demonstrate a prototype of a topological photonic crystal catalyst array in which infrared emission can be enhanced significantly with highly vertical emission. This work establishes a framework of nanophotonic catalytic combustion for infrared light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaida, C.; Gebhardt, M.; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schülzgen, A.; Amezcua-Correa, R.; Tünnermann, A.; Pupeza, I. et al. Watt-scale super-octave midinfrared intrapulse difference frequency generation. Light Sci. Appl. 2018, 7, 94.

    Article  Google Scholar 

  2. Inoue, T.; Zoysa, M. D.; Asano, T.; Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 2014, 13, 928–931.

    Article  CAS  Google Scholar 

  3. Baranov, D. G.; Xiao, Y. Z.; Nechepurenko, I. A.; Krasnok, A.; Alù, A.; Kats, M. A. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 2019, 18, 920–930.

    Article  CAS  Google Scholar 

  4. Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D. Next-generation mid-infrared sources. J. Opt. 2017, 19, 123001.

    Article  Google Scholar 

  5. Stanley, R. Plasmonics in the mid-infrared. Nat. Photonics 2012, 6, 409–411.

    Article  CAS  Google Scholar 

  6. Greffet, J. J.; Carminati, R.; Joulain, K.; Mulet, J. P.; Mainguy, S.; Chen, Y. Coherent emission of light by thermal sources. Nature 2002, 416, 61–64.

    Article  CAS  Google Scholar 

  7. Park, J.; Kang, J. H.; Liu, X. G.; Maddox, S. J.; Tang, K. C.; McIntyre, P. C.; Bank, S. R.; Brongersma, M. L. Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Sci. Adv. 2018, 4, eaat3163.

    Article  CAS  Google Scholar 

  8. Wei, J. X.; Ren, Z. H.; Lee, C. Metamaterial technologies for miniaturized infrared spectroscopy: Light sources, sensors, filters, detectors, and integration. J. Appl. Phys. 2020, 128, 240901.

    Article  CAS  Google Scholar 

  9. Baffou, G.; Berto, P.; Urena, E. B.; Quidant, R.; Monneret, S.; Polleux, J.; Rigneault, H. Photoinduced heating of nanoparticle arrays. ACS Nano 2013, 7, 6478–6488.

    Article  CAS  Google Scholar 

  10. Baffou, G. Gold nanoparticles as nanosources of heat. Photoniques 2018, 42–47.

  11. Vaskin, A.; Kolkowski, R.; Koenderink, A. F.; Staude, I. Light-emitting metasurfaces. Nanophotonics 2019, 8, 1151–1198.

    Article  Google Scholar 

  12. Bullock, R. M.; Chen, J. G.; Gagliardi, L.; Chirik, P. J.; Farha, O. K.; Hendon, C. H.; Jones, C. W.; Keith, J. A.; Klosin, J.; Minteer, S. D. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 2020, 369, eabc3183.

    Article  CAS  Google Scholar 

  13. Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231–237.

    Article  CAS  Google Scholar 

  14. Antolini, E. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Appl. Catal. B Environ. 2018, 237, 491–503.

    Article  CAS  Google Scholar 

  15. Yang, J.; Liu, Y. X.; Deng, J. G.; Xie, S. H.; Hou, Z. Q.; Zhao, X. T.; Zhang, K. F.; Han, Z.; Dai, H. X. Pt,Co/meso-MnOy: Highly efficient catalysts for low-temperature methanol combustion. Catal. Today 2019, 332, 168–176.

    Article  CAS  Google Scholar 

  16. Yu, W. T.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817.

    Article  CAS  Google Scholar 

  17. Mitchell, S.; Qin, R. X.; Zheng, N. F.; Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 2021, 16, 129–139.

    Article  CAS  Google Scholar 

  18. He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

    Article  CAS  Google Scholar 

  19. Jacobs, P. W.; Ribeiro, F. H.; Somorjai, G. A.; Wind, S. J. New model catalysts: Uniform platinum cluster arrays produced by electron beam lithography. Catal. Lett. 1996, 37, 131–136.

    Article  CAS  Google Scholar 

  20. Zhu, J.; Somorjai, G. A. Formation of platinum silicide on a platinum nanoparticle array model catalyst deposited on silica during chemical reaction. Nano Lett. 2001, 1, 8–13.

    Article  CAS  Google Scholar 

  21. Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface. J. Phys. Chem. B 2002, 106, 11463–11468.

    Article  CAS  Google Scholar 

  22. Hu, Z. Y.; Boiadjiev, V.; Thundat, T. Nanocatalytic spontaneous ignition and self-supporting room-temperature combustion. Energy Fuels 2005, 19, 855–858.

    Article  CAS  Google Scholar 

  23. Hu, Z. Y.; Thundat, T. Nanoscale energy conversion by using Nano-catalytic particles. In Proceeding of the ASME 2006 Power Conference, Atlanta, Georgia, USA, 2006, pp 545–550.

  24. Luo, X.; Zeng, Z. G.; Wang, X. H.; Xiao, J. H.; Gan, Z. X.; Wu, H.; Hu, Z. Y. Preparing two-dimensional Nano-catalytic combustion patterns using direct inkjet printing. J. Power Sources 2014, 271, 174–179.

    Article  CAS  Google Scholar 

  25. Yang, G.; Wu, Z. M.; Wang, W.; Zhang, Z. Y.; Hu, Z. Y. Creating 20 nm thin patternable flat fire. Nano Energy 2017, 42, 195–204.

    Article  CAS  Google Scholar 

  26. Wu, Z. H.; Zhang, S.; Liu, Z. K.; Mu, E. Z.; Hu, Z. Y. Thermoelectric converter: Strategies from materials to device application. Nano Energy 2022, 91, 106692.

    Article  CAS  Google Scholar 

  27. Xiao, J. H.; Wang, X. H.; Luo, X.; Hu, Z. Y. In situ preparation of catalytic combustion films used as micro heat source by inkjet printing method. Appl. Surf. Sci. 2015, 327, 400–405.

    Article  CAS  Google Scholar 

  28. Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.

    Article  CAS  Google Scholar 

  29. Lin, D. M.; Fan, P. Y.; Hasman, E.; Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298–302.

    Article  CAS  Google Scholar 

  30. Yu, N. F.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337.

    Article  CAS  Google Scholar 

  31. Palik, E. D. Handbook of Optical Constants of Solids; Elsevier: Amsterdam, 1997.

    Google Scholar 

  32. Dyachenko, P. N.; Molesky, S.; Petrov, A. Y.; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 2016, 7, 11809.

    Article  CAS  Google Scholar 

  33. Zhang, W. B.; Wang, B. X.; Zhao, C. Y. Selective thermophotovoltaic emitter with aperiodic multilayer structures designed by machine learning. ACS Appl. Energy Mater. 2021, 4, 2004–2013.

    Article  CAS  Google Scholar 

  34. Rahm, J. M.; Tiburski, C.; Rossi, T. P.; Nugroho, F. A. A.; Nilsson, S.; Langhammer, C.; Erhart, P. A library of late transition metal alloy dielectric functions for nanophotonic applications. Adv. Funct. Mater. 2020, 30, 2002122.

    Article  CAS  Google Scholar 

  35. Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.

    Article  CAS  Google Scholar 

  36. Shaik, S.; Danovich, D.; Joy, J.; Wang, Z. F.; Stuyver, T. Electric-field mediated chemistry: Uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142, 12551–12562.

    Article  CAS  Google Scholar 

  37. Rupprechter, G.; Eppler, A. S.; Avoyan, A.; Somorjai, G. A. Nanoparticle arrays as model catalysts: Microstructure, thermal stability and reactivity of Pt/SiO2 and Ag/Al2O3 fabricated by electron beam lithography. Stud. Surf. Sci. Catal. 2000, 130, 215–220.

    Article  Google Scholar 

  38. Lu, L.; Joannopoulos, J. D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 821–829.

    Article  CAS  Google Scholar 

  39. Ozawa, T.; Price, H. M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M. C.; Schuster, D.; Simon, J.; Zilberberg, O. et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006.

    Article  CAS  Google Scholar 

  40. Qu, Y. R.; Pan, M. Y.; Qiu, M. Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources. Phys. Rev. Appl. 2020, 13, 064052.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Shanghai Science and Technology Committee (Nos. 10520710400, 10PJ1403800, and 11DZ1111200), Sichuan Science and Technology Program (Nos. 2021JDRC0022 and 2022YFSY0023). The authors acknowledge the National Natural Science Foundation of China (No. 62201345), the startup fund of Shanghai Jiao Tong University, and the start-up funding of the University of Electronic Science and Technology of China. The authors would like to thank the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University and Instrumental Analysis Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhang or Zhiyu Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wu, Z., Lv, H. et al. Nanophotonic catalytic combustion enlightens mid-infrared light source. Nano Res. 16, 11564–11570 (2023). https://doi.org/10.1007/s12274-023-6097-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6097-9

Keywords

Navigation