Skip to main content
Log in

Modulating the alloying mode in the doping-induced synthesis of Au-Pd nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterogeneous doping is one effective strategy for synthesizing metal alloy nanowires. Herein, the heterogeneous doping processes of Pd on the ultrathin Au nanowires were systematically modulated and investigated. Au-Pd alloy nanowires with various morphologies and lattice structures can be obtained by adjusting the morphology of the precursor Au nanowires and the kinetics of the heterogeneous doping processes. The effects of the rate of Pd reduction and the concentration of the ligand oleylamine (OAm) on the Pd deposition and alloying mode were articulated. Generally, as the Pd deposition rate decreases, the Pd deposition and alloying mode switches from the island-forming Stransky–Krastanov (SK) mode to the epitaxial Frank-van der Merwe (FM) mode, and eventually to an unconventional twisting alloying mode, where the interdiffusion of Pd and Au causes drastic rearrangement of the lattice structure and formation of helical structures. The kinetics-related variation of alloying mode could also be observed in the Au-Ag nanowires, demonstrating a general design principle for the synthesis of alloy nanostructures. In addition, the electrocatalytic performance of various Au-Pd nanowires was evaluated, and the alloy nanowire formed via the SK mode was found to be an excellent electrocatalyst for oxygen reduction and ethanol oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S. M.; Jin, H.; Wang, Y. W. Recent progress on the synthesis of metal alloy nanowires as electrocatalysts. Nanoscale 2023, 15, 2488–2515.

    Article  CAS  PubMed  Google Scholar 

  2. Qu, C. M.; Yu, X.; Xu, Y.; Zhang, S. C.; Liu, H. Y.; Zhang, Y. L.; Huang, K.; Lv, L. F. A sensing and display system on wearable fabric based on patterned silver nanowires. Nano Energy 2022, 104, 107965.

    Article  CAS  Google Scholar 

  3. Zhuang, X. J.; Ning, C. Z.; Pan, A. L. Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 2012, 24, 13–33.

    Article  CAS  PubMed  Google Scholar 

  4. Tang, B.; Hu, Y. J.; Lu, J.; Dong, H. X.; Mou, N. L.; Gao, X. Y.; Wang, H.; Jiang, X. W.; Zhang, L. Energy transfer and wavelength tunable lasing of single perovskite alloy nanowire. Nano Energy 2020, 71, 104641.

    Article  CAS  Google Scholar 

  5. Chu, X. X.; Wang, K.; Qian, W. Y.; Xu, H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord. Chem. Rev. 2023, 477, 214952.

    Article  CAS  Google Scholar 

  6. Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

    Article  CAS  Google Scholar 

  7. Li, D. Y.; Podlaha, E. J. Template-assisted electrodeposition of porous Fe-Ni-Co nanowires with vigorous hydrogen evolution. Nano Lett. 2019, 19, 3569–3574.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. You, H. M.; Gao, F.; Wang, C.; Li, J.; Zhang, K. W.; Zhang, Y. P.; Du, Y. K. Rich grain boundaries endow networked PdSn nanowires with superior catalytic properties for alcohol oxidation. Nanoscale 2021, 13, 17939–17944.

    Article  CAS  PubMed  Google Scholar 

  9. Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.

    Article  CAS  PubMed  Google Scholar 

  10. Jin, Z. Y.; Lyu, J.; Zhao, Y. L.; Li, H. L.; Lin, X.; Xie, G. Q.; Liu, X. J.; Kai, J. J.; Qiu, H. J. Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn-Air batteries. ACS Mater. Lett. 2020, 2, 1698–1706.

    Article  CAS  Google Scholar 

  11. Chen, C. Y.; Xu, H.; Shang, H. Y.; Jin, L. J.; Song, T. X.; Wang, C.; Gao, F.; Zhang, Y. P.; Du, Y. K. Ultrafine PtCuRh nanowire catalysts with alleviated poisoning effect for efficient ethanol oxidation. Nanoscale 2019, 11, 20090–20095.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, N.; Zhang, L.; Zhou, Y. J.; Yu, S. W.; Chen, L. Y.; Jiang, H. B.; Li, C. Z. A general carbon monoxide-assisted strategy for synthesizing one-nanometer-thick Pt-based nanowires as effective electrocatalysts. J. Colloid Interface Sci. 2020, 572, 170–178.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.

    Article  CAS  Google Scholar 

  14. Niu, Z. Q.; Chen, S. P.; Yu, Y.; Lei, T.; Dehestani, A.; SchierleArndt, K.; Yang, P. D. Morphology-controlled transformation of Cu@Au core–shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Res. 2020, 13, 2564–2569.

    Article  CAS  Google Scholar 

  15. Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

    Article  CAS  PubMed  Google Scholar 

  16. Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.

    Article  CAS  Google Scholar 

  17. Tan, C. L.; Chen, J. Z.; Wu, X. J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 2018, 3, 17089.

    Article  ADS  CAS  Google Scholar 

  18. Wu, Z. P.; Shan, S. Y.; Zang, S. Q.; Zhong, C. J. Dynamic core–shell and alloy structures of multimetallic nanomaterials and their catalytic synergies. Acc. Chem. Res. 2020, 53, 2913–2924.

    Article  CAS  PubMed  Google Scholar 

  19. Sperling, R. A.; Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383.

    Article  ADS  CAS  Google Scholar 

  20. Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.

    Article  CAS  Google Scholar 

  21. Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.

    Article  CAS  PubMed  Google Scholar 

  22. Feng, H. J.; Yang, Y. M.; You, Y. M.; Li, G. P.; Guo, J.; Yu, T.; Shen, Z. X.; Wu, T.; Xing, B. G. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem. Commun. (Camb.) 2009, 2009, 1984–1986.

    Article  Google Scholar 

  23. Lu, Y.; Cheng, X. J.; Li, H. Y.; Zhao, J. L.; Wang, W. Y.; Wang, Y. W.; Chen, H. Y. Braiding ultrathin Au nanowires into ropes. J. Am. Chem. Soc. 2020, 142, 10629–10633.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y.; Wang, Y. W.; Peng, J.; Xu, Q. C.; Weng, J.; Xu, J. Assembly of ultrathin gold nanowires: From polymer analogue to colloidal block. ACS Nano 2017, 11, 2756–2763.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y.; Wang, Q. X.; Sun, H.; Zhang, W. Q.; Chen, G.; Wang, Y. W.; Shen, X. S.; Han, Y.; Lu, X. M.; Chen, H. Y. Chiral transformation: From single nanowire to double helix. J. Am. Chem. Soc. 2011, 133, 20060–20063.

    Article  CAS  PubMed  Google Scholar 

  26. Velázquez-Salazar, J. J.; Esparza, R.; Mejía-Rosales, S. J.; Estrada-Salas, R.; Ponce, A.; Deepak, F. L.; Castro-Guerrero, C.; José-Yacamán, M. Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures. ACS Nano 2011, 5, 6272–6278.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feng, Y. H.; He, J. T.; Wang, H.; Tay, Y. Y.; Sun, H.; Zhu, L. F.; Chen, H. Y. An unconventional role of ligand in continuously tuning of metal–metal interfacial strain. J. Am. Chem. Soc. 2012, 134, 2004–2007.

    Article  CAS  PubMed  Google Scholar 

  28. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J. C.; Qiu, X. Y.; Su, K. Y.; Wang, S. Y.; Li, J. T.; Tang, Y. W. Breaking the lattice match of Pd on Au (111) nanowires: Manipulating the island and epitaxial growth pathways to boost the oxygen reduction reactivity. J. Mater. Chem. A 2020, 8, 19300–19308.

    Article  CAS  Google Scholar 

  31. He, G. Y.; Wang, R. X.; Fan, J.; Liu, S.; Chen, H. Y. In silico investigation on the twisting of gold nanowires. Mater. Today Commun. 2022, 33, 104319.

    Article  CAS  Google Scholar 

  32. Xu, J.; Wang, Y. W.; Qi, X. Y.; Liu, C. C.; He, J. T.; Zhang, H.; Chen, H. Y. Preservation of lattice orientation in coalescing imperfectly aligned gold nanowires by a zipper mechanism. Angew. Chem., Int. Ed. 2013, 52, 6019–6023.

    Article  CAS  Google Scholar 

  33. Yang, G. X.; Namin, L. M.; Deskins, N. A.; Teng, X. W. Influence of OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol. J. Catal. 2017, 353, 335–348.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21703104 and 91956109), Zhejiang Provincial Natural Science Foundation of China (No. 2022XHSJJ002), Hangzhou Municipal Funding (No. TD2022004), Nanjing Tech University (No. 39837131), and SICAM Fellowship from Jiangsu National Synergetic Innovation Centre for Advanced Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawen Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Wei, X., Zhao, L. et al. Modulating the alloying mode in the doping-induced synthesis of Au-Pd nanowires. Nano Res. 17, 3334–3343 (2024). https://doi.org/10.1007/s12274-023-6095-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6095-y

Keywords

Navigation