Skip to main content
Log in

Dimension-dependent mechanical features of Au-nanocrystalline nanofilms

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For metal nanofilms composed of nanocrystals, the multiple deformation mechanisms will coexist and bring unique and complex elastic-plastic and fracture mechanical properties. By successfully fabricating large quantities of uniform doubly-clamped suspended gold (Au) nanobeams with different thicknesses and nanograin sizes, we obtain full-spectrum mechanical features with statistical significance by combining atomic force microscopy (AFM) nanoindentation experiments, nonlinear theoretical model, and numerical simulations. The yield and breaking strengths of the Au nanobeams have a huge increase by nearly an order of magnitude compared with bulk Au and exhibit strong nonlinear effects, and the corresponding strong-yield ratio is up to 4, demonstrating extremely high strength reserve and vibration resistance. The strong-yield ratio gradually decreases with decreasing thickness, identifying a conversion of the failure type from ductile to brittle. Interestingly, the Hall–Petch relationship has been identified to be still valid at the nanoscale, and K in the equation reaches 4.8 Gpa·nm1/2, nearly twice of bulk nanocrystalline Au, which is ascribed to the coupling effect of nanocrystals and nanoscale thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall, E. O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. B 1951, 64, 747–753.

    Google Scholar 

  2. Petch, N. J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28.

    CAS  Google Scholar 

  3. Li, X. Y.; Jin, Z. H.; Zhou, X.; Lu, K. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains. Science 2020, 370, 831–836.

    CAS  Google Scholar 

  4. Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296.

    CAS  Google Scholar 

  5. Sun, L. G.; Wu, G.; Wang, Q.; Lu, J. Nanostructural metallic materials: Structures and mechanical properties. Mater. Today 2020, 38, 114–135.

    CAS  Google Scholar 

  6. Zhu, Y. T.; Liao, X. Z.; Wu, X. L. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 2012, 57, 1–62.

    CAS  Google Scholar 

  7. Greer, J. R.; De Hosson, J. T. M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 2011, 56, 654–724.

    CAS  Google Scholar 

  8. Pineau, A.; Amine Benzerga, A.; Pardoen, T. Failure of metals III: Fracture and fatigue of nanostructured metallic materials. Acta Mater. 2016, 107, 508–544.

    CAS  Google Scholar 

  9. Feruz, Y.; Mordehai, D. Towards a universal size-dependent strength of face-centered cubic nanoparticles. Acta Mater. 2016, 103, 433–441.

    CAS  Google Scholar 

  10. Kondo, M.; Shishido, N.; Kamiya, S.; Kubo, A.; Umeno, Y.; Ishikawa, Y.; Koshizaki, N. High-strength sub-micrometer spherical particles fabricated by pulsed laser melting in liquid. Part. Part. Syst. Charact. 2018, 35, 1800061.

    Google Scholar 

  11. Wu, B.; Heidelberg, A.; Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 2005, 4, 525–529.

    CAS  Google Scholar 

  12. Calahorra, Y.; Shtempluck, O.; Kotchetkov, V.; Yaish, Y. E. Young’s modulus, residual stress, and crystal orientation of doubly clamped silicon nanowire beams. Nano Lett. 2015, 15, 2945–2950.

    CAS  Google Scholar 

  13. Gao, Y.; Sun, Y. J.; Zhang, T. Y. Highly reliable and efficient atomic force microscopy based bending test for assessing Young’s modulus of one-dimensional nanomaterials. Appl. Phys. Lett. 2016, 108, 123104.

    Google Scholar 

  14. Fang, Z.; Geng, Y. Q.; Wang, J. Q.; Yan, Y. D.; Zhang, G. X. Mechanical properties of gold nanowires prepared by nanoskiving approach. Nanoscale 2020, 12, 8194–8199.

    CAS  Google Scholar 

  15. Wang, X.; Zheng, S. X.; Shinzato, S.; Fang, Z. W.; He, Y.; Zhong, L.; Wang, C. M.; Ogata, S.; Mao, S. X. Atomistic processes of surface-diffusion-induced abnormal softening in nanoscale metallic crystals. Nat. Commun. 2021, 12, 5237.

    CAS  Google Scholar 

  16. Ramachandramoorthy, R.; Gao, W.; Bernal, R.; Espinosa, H. High strain rate tensile testing of silver nanowires: Rate-dependent brittle-to-ductile transition. Nano Lett. 2016, 16, 255–263.

    CAS  Google Scholar 

  17. Fu, L. B.; Kong, D. L.; Yang, C. P.; Teng, J.; Lu, Y.; Guo, Y. Z.; Yang, G.; Yan, X.; Liu, P.; Chen, M. W. et al. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire. J. Mater. Sci. Technol. 2022, 101, 95–106.

    CAS  Google Scholar 

  18. Liebig, J. P.; Mačković, M.; Spiecker, E.; Göken, M.; Merle, B. Grain boundary mediated plasticity: A blessing for the ductility of metallic thin films. Acta Mater. 2021, 215, 117079.

    CAS  Google Scholar 

  19. Yan, Y. K.; Zhao, Y.; Liu, Y. Q. Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 2022, 60, 311–327.

    CAS  Google Scholar 

  20. Deal, W.; Mei, X. B.; Leong, K. M. K. H.; Radisic, V.; Sarkozy, S.; Lai, R. THz monolithic integrated circuits using InP high electron mobility transistors. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 25–32.

    CAS  Google Scholar 

  21. Guo, S. Q.; Wu, K. J.; Li, C. P.; Wang, H.; Sun, Z.; Xi, D. W.; Zhang, S.; Ding, W. P.; Zaghloul, M. E.; Wang, C. N. et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021, 4, 969–985.

    CAS  Google Scholar 

  22. Gao, L.; Wang, J. F.; Zhao, Y.; Li, H. B.; Liu, M. C.; Ding, J. F.; Tian, H. H.; Guan, S. L.; Fang, Y. Free-standing nanofilm electrode arrays for long-term stable neural interfacings. Adv. Mater. 2022, 34, 2107343.

    CAS  Google Scholar 

  23. Wang, Y.; Liu, Q. H.; Zhang, J. M.; Hong, T. Z.; Sun, W. T.; Tang, L.; Arnold, E.; Suo, Z. G.; Hong, W.; Ren, Z. F. et al. Giant poisson’ s effect for wrinkle-free stretchable transparent electrodes. Adv. Mater. 2019, 31, 1902955.

    Google Scholar 

  24. Li, P.; Zhang, Y. K.; Zheng, Z. J. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv. Mater. 2019, 31, 1902987.

    Google Scholar 

  25. Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

    Google Scholar 

  26. Erdogan, R. T.; Alkhaled, M.; Kaynak, B. E.; Alhmoud, H.; Pisheh, H. S.; Kelleci, M.; Karakurt, I.; Yanik, C.; Şen, Z. B.; Sari, B. et al. Atmospheric pressure mass spectrometry of single viruses and nanoparticles by nanoelectromechanical systems. ACS Nano 2022, 16, 3821–3833.

    CAS  Google Scholar 

  27. Xu, B.; Zhang, P. C.; Zhu, J. K.; Liu, Z. H.; Eichler, A.; Zheng, X. Q.; Lee, J.; Dash, A.; More, S.; Wu, S. et al. Nanomechanical resonators: Toward atomic scale. ACS Nano 2022, 16, 15545–15585.

    CAS  Google Scholar 

  28. Luo, J. X.; Liu, S.; Chen, P. J.; Chen, Y. P.; Zhong, J. L.; Wang, Y. P. Highly sensitive hydrogen sensor based on an optical driven nanofilm resonator. ACS Appl. Mater. Interfaces 2022, 14, 29357–29365.

    CAS  Google Scholar 

  29. Eom, K.; Park, H. S.; Yoon, D. S.; Kwon, T. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Phys. Rep. 2011, 503, 115–163.

    CAS  Google Scholar 

  30. Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1–29.

    CAS  Google Scholar 

  31. Meyers, M. A.; Mishra, A.; Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556.

    CAS  Google Scholar 

  32. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    CAS  Google Scholar 

  33. Lee, G. H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Pétrone, N.; Hammerberg, A. G.; Lee, C.; Crawford, B.; Oliver, W. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 2013, 340, 1073–1076.

    CAS  Google Scholar 

  34. Sun, Y. F.; Wang, Y. J.; Wang, E. Z.; Wang, B. L.; Zhao, H. Y.; Zeng, Y. P.; Zhang, Q. H.; Wu, Y. H.; Gu, L.; Li, X. Y. et al. Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation. Nat. Commun. 2022, 13, 3898.

    CAS  Google Scholar 

  35. Patterson, A. L. The scherrer formula for X-Ray particle size determination. Phys. Rev. 1939, 56, 978–982.

    CAS  Google Scholar 

  36. Zhang, R.; Cheung, R. Mechanical properties and applications of two-dimensional materials. In Two-dimensional Materials-Synthesis, Characterization and Potential Applications. Nayak, P. K., Ed.; IntechOpen: Rijeka, 2016.

  37. Li, P.; You, Z.; Haugstad, G.; Cui, T. H. Graphene fixed-end beam arrays based on mechanical exfoliation. Appl. Phys. Lett. 2011, 98, 253105.

    Google Scholar 

  38. Dang, C. Q.; Chou, J. P.; Dai, B.; Chou, C. T.; Yang, Y.; Fan, R.; Lin, W. T.; Meng, F. L.; Hu, A.; Zhu, J. Q. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 2021, 371, 76–78.

    CAS  Google Scholar 

  39. Banerjee, A.; Bernoulli, D.; Zhang, H. T.; Yuen, M. F.; Liu, J. B.; Dong, J. C.; Ding, F.; Lu, J.; Dao, M.; Zhang, W. J. et al. Ultralarge elastic deformation of nanoscale diamond. Science 2018, 360, 300–302.

    CAS  Google Scholar 

  40. Yu, Q.; Zhang, J. Y.; Li, J.; Wang, T. Y.; Park, M.; He, Q. F.; Zhang, Z. B.; Liang, T.; Ding, X.; Li, Y. Y. et al. Strong, ductile, and tough nanocrystal-assembled freestanding gold nanosheets. Nano Lett. 2022, 22, 822–829.

    CAS  Google Scholar 

  41. Espinosa, H. D.; Prorok, B. C.; Peng, B. Plasticity size effects in freestanding submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 2004, 52, 667–689.

    CAS  Google Scholar 

  42. Naik, S. N.; Walley, S. M. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2020, 55, 2661–2681.

    CAS  Google Scholar 

  43. Cordero, Z. C.; Knight, B. E.; Schuh, C. A. Six decades of the Hall–Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 2016, 61, 495–512.

    CAS  Google Scholar 

  44. Carlton, C. E.; Ferreira, P. J. What is behind the inverse Hall–Petch effect in nanocrystalline materials. Acta Mater. 2007, 55, 3749–3756.

    CAS  Google Scholar 

  45. Hahn, E. N.; Meyers, M. A. Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng. A 2015, 646, 101–134.

    CAS  Google Scholar 

  46. Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969.

    CAS  Google Scholar 

  47. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  48. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 51971070), the National Key Research and Development Program of China (No. 2016YFA0200403), Eu-FP7 Project (No. 247644), and CAS Strategy Pilot Program (No. XRA 09020300). We also appreciate the support in computation experiments from High Performance Computing Center of National Center for Nanoscience and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shifeng Xue, Hanxing Zhu or Qian Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Du, L., Wang, S. et al. Dimension-dependent mechanical features of Au-nanocrystalline nanofilms. Nano Res. 16, 13400–13408 (2023). https://doi.org/10.1007/s12274-023-6091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6091-2

Keywords

Navigation