Skip to main content
Log in

Nanoforming of transferred metal contacts for enhanced two-dimensional field effect transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional transition metal chalcogenides (2D-TMDs) have attracted much attention because of their unique layered structure and physical properties for transistor applications. Mechanically transferred metal contacts on these low-dimensional materials or their homogeneous and heterogeneous multilayers have generated huge interest to avoid deposition damages. In this paper, we show that there are large physical gaps at both the edge contact and surface contact between the transferred electrodes and the 2D materials. A method called laser shock induced superplastic deformation (LSISD) is proposed to tackle this issue and enhance the performance of the transistors. The enhancement mechanism was investigated by molecular dynamics (MD) simulations of the nanoforming process, atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) characterizations of the interfaces, and density functional theory (DFT) modeling. The force effect of laser shock can reduce the contact gap between metals and semiconductors. The electrical performances of the transistors before and after LSISD, along with MD simulations, are used to find the optimal process parameters. In addition, this paper applies the LSISD method to the short-channel MoS2/graphene vertical transistors to show potential improvement in interface contact and electrical properties. This paper demonstrates the first report on using mechanical force induced by laser shock to enhance metal–semiconductor interfaces and transistor performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388–6409.

    Article  CAS  PubMed  Google Scholar 

  2. Li, M. Y.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

    Article  ADS  Google Scholar 

  4. Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 2014, 8, 2880–2888.

    Article  CAS  PubMed  Google Scholar 

  6. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Tung, R. T. Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078–6081.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588–1596.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Kim, C.; Lee, K. Y.; Moon, I.; Issarapanacheewin, S.; Yoo, W. J. Metallic contact induced van der Waals gap in a MoS2 FET. Nanoscale 2019, 11, 18246–18254.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

    Article  CAS  PubMed  Google Scholar 

  12. Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Seo, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781–4786.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Chen, J. R.; Odenthal, P. M.; Swartz, A. G.; Floyd, G. C.; Wen, H.; Luo, K. Y.; Kawakami, R. K. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 2013, 13, 3106–3110.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Liu, L. T.; Kong, L. G.; Li, Q. Y.; He, C. L.; Ren, L. W.; Tao, Q. Y.; Yang, X. D.; Lin, J.; Zhao, B.; Li, Z. W. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 2021, 4, 342–347.

    Article  CAS  Google Scholar 

  16. Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896–1902.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Schauble, K.; Zakhidov, D.; Yalon, E.; Deshmukh, S.; Grady, R. W.; Cooley, K. A.; McClellan, C. J.; Vaziri, S.; Passarello, D.; Mohney, S. E. et al. Uncovering the effects of metal contacts on monolayer MoS2. ACS Nano 2020, 14, 14798–14808.

    Article  CAS  PubMed  Google Scholar 

  19. Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

    CAS  Google Scholar 

  20. Ahmed, F.; Choi, M. S.; Liu, X. C.; Yoo, W. J. Carrier transport at the metal-MoS2 interface. Nanoscale 2015, 7, 9222–9228.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Kwon, J.; Lee, J. Y.; Yu, Y. J.; Lee, C. H.; Cui, X.; Hone, J.; Lee, G. H. Thickness-dependent Schottky barrier height of MoS2 field-effect transistors. Nanoscale 2017, 9, 6151–6157.

    Article  CAS  PubMed  Google Scholar 

  22. Min, K. A.; Park, J.; Wallace, R. M.; Cho, K.; Hong, S. Reduction of Fermi level pinning at Au-MoS2 interfaces by atomic passivation on Au surface. 2D Mater. 2017, 4, 015019.

    Article  Google Scholar 

  23. Tsai, M. Y.; Tarasov, A.; Hesabi, Z. R.; Taghinejad, H.; Campbell, P. M.; Joiner, C. A.; Adibi, A.; Vogel, E. M. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces 2015, 7, 12850–12855.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, Y. W.; Lee, S.; Kumar, P.; Nian, Q.; Wang, W. Q.; Irudayaraj, J.; Cheng, G. J. Water flattens graphene wrinkles: Laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays. Nanoscale 2015, 7, 19885–19893.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Huang, Z.; Lu, N.; Wang, Z. F.; Xu, S. H.; Guan, J.; Hu, Y. W. Large-scale ultrafast strain engineering of CVD-grown two-dimensional materials on strain self-limited deformable nanostructures toward enhanced field-effect transistors. Nano Lett. 2022, 22, 7734–7741.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Kumar, P.; Liu, J.; Motlag, M.; Tong, L.; Hu, Y. W.; Huang, X. Y.; Bandopadhyay, A.; Pati, S. K.; Ye, L.; Irudayaraj, J. et al. Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moiré superlattices. Nano Lett. 2019, 19, 283–291.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Hu, Y. W.; Li, J.; Tian, J. F.; Xuan, Y.; Deng, B. W.; McNear, K. L.; Lim, D. G.; Chen, Y.; Yang, C.; Cheng, G. J. Parallel nanoshaping of brittle semiconductor nanowires for strained electronics. Nano Lett. 2016, 16, 7536–7544.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Namgung, S. D.; Yang, S.; Park, K.; Cho, A. J.; Kim, H.; Kwon, J. Y. Influence of post-annealing on the off current of MoS2 field-effect transistors. Nanoscale Res. Lett. 2015, 10, 62.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Hu, Y. W.; Zhang, F.; Titze, M.; Deng, B. W.; Li, H. B.; Cheng, G. J. Straining effects in MoS2 monolayer on nanostructured substrates: Temperature-dependent photoluminescence and exciton dynamics. Nanoscale 2018, 10, 5717–5724.

    Article  CAS  PubMed  Google Scholar 

  30. Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, C. P.; Kim, S. Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137–1145.

    Article  CAS  Google Scholar 

  31. Liu, C.; Li, G. T.; Di Pietro, R.; Huang, J.; Noh, Y. Y.; Liu, X. Y.; Minari, T. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 2017, 8, 034020.

    Article  ADS  Google Scholar 

  32. Di Felice, D.; Dappe, Y. J. 2D vertical field-effect transistor. Nanotechnology 2018, 29, 505708.

    Article  PubMed  Google Scholar 

  33. Yu, W. J.; Li, Z.; Zhou, H. L.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246–252.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Liu, Y.; Zhang, Q.; Zhang, W. D.; Zhang, R. G.; Wang, B. J.; Ji, C.; Pei, Z.; Sang, S. B. Tuning Schottky barrier and contact type of metal-semiconductor in Ti3C2T2/MoS2 (T = F, O, OH) by strain: A first-principles study. J. Phys. Chem. C 2021, 125, 16200–16210.

    Article  CAS  Google Scholar 

  35. Pan, Y. Y.; Wang, Y. Y.; Ye, M.; Quhe, R. G.; Zhong, H. X.; Song, Z. G.; Peng, X. Y.; Yu, D. P.; Yang, J. B.; Shi, J. J. et al. Monolayer phosphorene-metal contacts. Chem. Mater. 2016, 28, 2100–2109.

    Article  CAS  Google Scholar 

  36. Wang, Q.; Deng, B.; Shi, X. Q. A new insight for ohmic contacts to MoS2: By tuning MoS2 affinity energies but not metal work-functions. Phys. Chem. Chem. Phys. 2017, 19, 26151–26157.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, B.; Wu, L. J.; Zhao, Y. Q.; Wang, L. Z.; Cai, M. Q. Tuning the Schottky barrier height of the Pd-MoS2 contact by different strains. Phys. Chem. Chem. Phys. 2015, 17, 27088–27093.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, L.; Cui, X. D.; Zhang, J. Y.; Wang, K.; Shen, M.; Zeng, S. S.; Dayeh, S. A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Liu, W.; Kang, J. H.; Cao, W.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance. In 2013 IEEE International Electron Devices Meeting, Washington, USA, 2013, pp 19.4.1–19.4.4.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51901162). The authors thank the support of the Chinese National Talent Program. We thank the Core Facility of Wuhan University for access to analytical equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowu Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Huang, Z., Guan, J. et al. Nanoforming of transferred metal contacts for enhanced two-dimensional field effect transistors. Nano Res. 17, 3210–3216 (2024). https://doi.org/10.1007/s12274-023-6040-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6040-0

Keywords

Navigation