Skip to main content
Log in

Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the context of advocating a green and low-carbon era, ocean energy, as a renewable strategic resource, is an important part of planning and building a new energy system. Triboelectric nanogenerator (TENG) arrays provide feasible and efficient routes for large-scale harvesting of ocean energy. In previous work, a spherical rolling-structured TENG with three-dimensional (3D) electrodes based on rolling motion of dielectric pellets was designed and fabricated for effectively harvesting low-frequency water wave energy. In this work, the external shape of the scalable rolling-structured TENG (SR-TENG) and internal filling amount of pellets were mainly optimized, achieving an average power density of 10.08 W·m−3 under regular triggering. In actual water waves, the SR-TENG can deliver a maximum peak power density of 80.29 W·m−3 and an average power density of 6.02 W·m−3, which are much greater than those of most water wave-driven TENGs. Finally, through a power management, an SR-TENG array with eight units was demonstrated to successfully power portable electronic devices for monitoring the marine environment. The SR-TENGs could promote the development and utilization of ocean blue energy, providing a new paradigm for realizing the carbon neutrality goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, D. H.; Shi, J. W.; Si, Y. L.; Li, T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 2019, 61, 132–140.

    Article  CAS  Google Scholar 

  2. Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

    Article  CAS  Google Scholar 

  3. Liu, S. J.; Liang, X.; Chen, P. F.; Long, H. R.; Jiang, T.; Wang, Z. L. Multilayered helical spherical triboelectric nanogenerator with charge shuttling for water wave energy harvesting. Small Methods 2023, 7, 2201392.

    Article  CAS  Google Scholar 

  4. Salter, S. H. Wave power. Nature 1974, 249, 720–724.

    Article  Google Scholar 

  5. Scruggs, J.; Jacob, P. Harvesting ocean wave energy. Science 2009, 323, 1176–1178.

    Article  CAS  Google Scholar 

  6. Henderson, R. Design, simulation, and testing of a novel hydraulic power take-off system for the pelamis wave energy converter. Renewable Energy 2006, 31, 271–283.

    Article  Google Scholar 

  7. Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

    Article  CAS  Google Scholar 

  8. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  9. Han, J. J.; Liu, Y.; Feng, Y. W.; Jiang, T.; Wang, Z. L. Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 2023, 13, 2203219.

    Article  CAS  Google Scholar 

  10. Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

    Article  CAS  Google Scholar 

  11. An, J.; Wang, Z. M.; Jiang, T.; Liang, X.; Wang, Z. L. Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1904867.

    Article  Google Scholar 

  12. Cao, B.; Wang, P. H.; Rui, P. S.; Wei, X. X.; Wang, Z. X.; Yang, Y. W.; Tu, X. B.; Chen, C.; Wang, Z. Z.; Yang, Z. Q. et al. Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 2022, 12, 2202627.

    Article  CAS  Google Scholar 

  13. Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.

    Article  CAS  Google Scholar 

  14. Lin, Z. M.; Zhang, B. B.; Xie, Y. Y.; Wu, Z. Y.; Yang, J.; Wang, Z. L. Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 2021, 31, 2105237.

    Article  CAS  Google Scholar 

  15. Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.

    Article  CAS  Google Scholar 

  16. Yuan, W.; Zhang, B. F.; Zhang, C. G.; Yang, O.; Liu, Y. B.; He, L. X.; Zhou, L. L.; Zhao, Z. H.; Wang, J.; Wang, Z. L. Anaconda-shaped spiral multi-layered triboelectric nanogenerators with ultrahigh space efficiency for wave energy harvesting. One Earth 2022, 5, 1055–1063.

    Article  Google Scholar 

  17. Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.

    Article  CAS  Google Scholar 

  18. Jing, Z. X.; Zhang, J. C.; Wang, J. L.; Zhu, M. K.; Wang, X. X.; Cheng, T. H.; Zhu, J. Y.; Wang, Z. L. 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy. Nano Res. 2022, 15, 5098–5104.

    Article  CAS  Google Scholar 

  19. Wang, H.; Zhu, C. Q.; Wang, W. C.; Xu, R. J.; Chen, P. F.; Du, T. L.; Xue, T. X.; Wang, Z. Y.; Xu, M. Y. A stackable triboelectric nanogenerator for wave-driven marine buoys. Nanomaterials 2022, 12, 594.

    Article  CAS  Google Scholar 

  20. Xiao, X.; Zhang, X. Q.; Wang, S. Y.; Ouyang, H.; Chen, P. F.; Song, L. G.; Yuan, H. C.; Ji, Y. L.; Wang, P. H.; Li, Z. et al. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 2019, 9, 1902460.

    Article  CAS  Google Scholar 

  21. Xu, M. Y.; Zhao, T. C.; Wang, C.; Zhang, S. L.; Li, Z.; Pan, X. X.; Wang, Z. L. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 2019, 13, 1932–1939.

    CAS  Google Scholar 

  22. Zhang, S. L.; Xu, M. Y.; Zhang, C. L.; Wang, Y. C.; Zou, H. Y.; He, X.; Wang, Z. J.; Wang, Z. L. Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy 2018, 48, 421–429.

    Article  CAS  Google Scholar 

  23. Zhang, Z. Y.; Hu, Z. Y.; Wang, Y.; Wang, Y. W.; Zhang, Q. Q.; Liu, D. H.; Wang, H.; Xu, M. Y. Multi-tunnel triboelectric nanogenerator for scavenging mechanical energy in marine floating bodies. J. Mar. Sci. Eng. 2022, 10, 455.

    Article  Google Scholar 

  24. Xu, S. X.; Liu, G. L.; Wang, J. B.; Wen, H. G.; Cao, S.; Yao, H. L.; Wan, L. Y.; Wang, Z. L. Interaction between water wave and geometrical structures of floating triboelectric nanogenerators. Adv. Energy Mater. 2022, 12, 2103408.

    Article  CAS  Google Scholar 

  25. Harmon, W.; Bamgboje, D.; Guo, H. Y.; Hu, T. S.; Wang, Z. L. Self-driven power management system for triboelectric nanogenerators. Nano Energy 2020, 71, 104642.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Key R&D program of China (Nos. 2021YFA1201604 and 2021YFA1201601), the Beijing Nova Program (No. 20220484036), the Innovation Project of Ocean Science and Technology (No. 22-3-3-hygg-18-hy), and the Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Xu, Tao Jiang or Zhong Lin Wang.

Electronic Supplementary Material

12274_2023_6035_MOESM1_ESM.pdf

Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring

Supplementary material, approximately 6.35 MB.

Supplementary material, approximately 7.76 MB.

Supplementary material, approximately 9.21 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Xu, H., Liu, S. et al. Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring. Nano Res. 16, 11646–11652 (2023). https://doi.org/10.1007/s12274-023-6035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6035-x

Keywords

Navigation