Skip to main content
Log in

Intranasal administration nanosystems for brain-targeted drug delivery

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The existence of the blood-brain barrier (BBB) restricts the entry of drugs from the circulation into the central nervous system (CNS), which severely affects the treatment of neurological diseases, including glioblastoma, Parkinson’s disease (PD), and Alzheimer’s disease (AD). With the advantage of bypassing the BBB and avoiding systemic distribution, intranasal administration has emerged as an alternative method of delivering drugs to the brain. Drug delivery directly to the brain using intranasal nanosystems represents a new paradigm for neurological disease treatment because of its advantages in improving drug solubility and stability in vivo, enabling targeted drug delivery and controlled release, and reducing non-specific toxicity. And it has shown efficacy in animal models and clinical applications. Herein, this review describes the mechanisms of intranasal delivery of brain-targeted drugs, the properties of nanosystems for intranasal administration (e.g., liposomes, nanoemulsions, and micelles), and strategies for intranasal drug delivery to enhance brain-targeted drug delivery. Recent applications of nanosystems in intranasal drug delivery and disease treatment have been comprehensively reviewed. Although encouraging results have been reported, significant challenges still need to be overcome to translate these nanosystems into clinics. Therefore, the future prospects of intranasal drug delivery nanosystems are discussed in depth, expecting to provide useful insights and guidance for effective neurological disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Souza, A.; Dave, K. M.; Stetler, R. A.; Manickam, D. S. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv. Drug Deliv. Rev. 2021, 171, 332–351.

    Google Scholar 

  2. Sweeney, M. D.; Zhao, Z.; Montagne, A.; Nelson, A. R.; Zlokovic, B. V. Blood-brain barrier: From physiology to disease and back. Physiol. Rev. 2019, 99, 21–78.

    CAS  Google Scholar 

  3. Banks, W. A. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 2016, 15, 275–292.

    CAS  Google Scholar 

  4. Zhan, W. B.; Wang, C. H. Convection enhanced delivery of chemotherapeutic drugs into brain tumour. J. Control. Release 2018, 271, 74–87.

    CAS  Google Scholar 

  5. Bellat, V.; Alcaina, Y.; Tung, C. H.; Ting, R.; Michel, A. O.; Souweidane, M.; Law, B. A combined approach of convection-enhanced delivery of peptide nanofiber reservoir to prolong local DM1 retention for diffuse intrinsic pontine glioma treatment. Neuro Oncol. 2020, 22, 1495–1504.

    CAS  Google Scholar 

  6. Mangraviti, A.; Gullotti, D.; Tyler, B.; Brem, H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J. Control. Release 2016, 240, 443–453.

    CAS  Google Scholar 

  7. Tang, W.; Fan, W. P.; Lau, J.; Deng, L. M.; Shen, Z. Y.; Chen, X. Y. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019, 48, 2967–3014.

    CAS  Google Scholar 

  8. Correa, D.; Scheuber, M. I.; Shan, H. M.; Weinmann, O. W.; Baumgartner, Y. A.; Harten, A.; Wahl, A. S.; Skaar, K. L.; Schwab, M. E. Intranasal delivery of full-length anti-nogo-A antibody: A potential alternative route for therapeutic antibodies to central nervous system targets. Proc. Natl. Acad. Sci. USA 2023, 120, e2200057120.

    CAS  Google Scholar 

  9. Terstappen, G. C.; Meyer, A. H.; Bell, R. D.; Zhang, W. D. Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383.

    CAS  Google Scholar 

  10. Padmakumar, S.; Jones, G.; Pawar, G.; Khorkova, O.; Hsiao, J.; Kim, J.; Amiji, M. M.; Bleier, B. S. Minimally invasive nasal depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J. Control. Release 2021, 331, 176–186.

    CAS  Google Scholar 

  11. Kou, D. D.; Gao, Y.; Li, C.; Zhou, D. D.; Lu, K.; Wang, N.; Zhang, R. R.; Yang, Z.; Zhou, Y.; Chen, L. et al. Intranasal pathway for nanoparticles to enter the central nervous system. Nano Lett. 2023, 23, 5381–5390.

    CAS  Google Scholar 

  12. Chen, W. L.; Yao, S.; Wan, J.; Tian, Y.; Huang, L.; Wang, S. S.; Akter, F.; Wu, Y. Q.; Yao, Y. Z.; Zhang, X. C. BBB-crossing adeno-associated virus vector:An excellent gene delivery tool for CNS disease treatment. J. Control. Release 2021, 333, 129–138.

    CAS  Google Scholar 

  13. Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S. G.; Chougule, M. B.; Shoyele, S. A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 2018, 281, 139–177.

    CAS  Google Scholar 

  14. Meirinho, S.; Rodrigues, M.; Santos, A. O.; Falcão, A.; Alves, G. Self-emulsifying drug delivery systems: An alternative approach to improve brain bioavailability of poorly water-soluble drugs through intranasal administration. Pharmaceutics 2022, 14, 1487.

    CAS  Google Scholar 

  15. Kozlovskaya, L.; Abou-Kaoud, M.; Stepensky, D. Quantitative analysis of drug delivery to the brain via nasal route. J. Control. Release 2014, 189, 133–140.

    CAS  Google Scholar 

  16. Xie, J. B.; Shen, Z. Y.; Anraku, Y.; Kataoka, K.; Chen, X. Y. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019, 224, 119491.

    CAS  Google Scholar 

  17. Ruigrok, M. J. R.; De Lange, E. C. M. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: Towards prediction of nose-to-brain transport in humans. Aaps. J. 2015, 17, 493–505.

    CAS  Google Scholar 

  18. Costa, C. P.; Moreira, J. N.; Lobo, J. M. S.; Silva, A. C. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm. Sin. B 2021, 11, 925–940.

    CAS  Google Scholar 

  19. Battaglia, L.; Panciani, P. P.; Muntoni, E.; Capucchio, M. T.; Biasibetti, E.; De Bonis, P.; Mioletti, S.; Fontanella, M.; Swaminathan, S. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin. Drug Deliv. 2018, 15, 369–378.

    CAS  Google Scholar 

  20. Pires, P. C.; Santos, A. O. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J. Control. Release 2018, 270, 89–100.

    CAS  Google Scholar 

  21. Kumar, N. N.; Lochhead, J. J.; Pizzo, M. E.; Nehra, G.; Boroumand, S.; Greene, G.; Thorne, R. G. Delivery of immunoglobulin G antibodies to the rat nervous system following intranasal administration: Distribution, dose-response, and mechanisms of delivery. J. Control. Release 2018, 286, 467–484.

    CAS  Google Scholar 

  22. Lee, M. R.; Shnitko, T. A.; Blue, S. W.; Kaucher, A. V.; Winchell, A. J.; Erikson, D. W.; Grant, K. A.; Leggio, L. Labeled oxytocin administered via the intranasal route reaches the brain in rhesus macaques. Nat. Commun. 2020, 11, 2783.

    CAS  Google Scholar 

  23. Veronesi, M. C.; Graner, B. D.; Cheng, S. H.; Zamora, M.; Zarrinmayeh, H.; Chen, C. T.; Das, S. K.; Vannier, M. W. Aerosolized in vivo 3D localization of nose-to-brain nanocarrier delivery using multimodality neuroimaging in a rat model-protocol development. Pharmaceutics 2021, 13, 391.

    CAS  Google Scholar 

  24. Van De Bittner, G. C.; Van De Bittner, K. C.; Wey, H. Y.; Rowe, W.; Dharanipragada, R.; Ying, X. Y.; Hurst, W.; Giovanni, A.; Alving, K.; Gupta, A. et al. Positron emission tomography assessment of the intranasal delivery route for orexin a. ACS Chem. Neurosci. 2018, 9, 358–368.

    CAS  Google Scholar 

  25. Wang, K.; Kumar, U. S.; Sadeghipour, N.; Massoud, T. F.; Paulmurugan, R. A microfluidics-based scalable approach to generate extracellular vesicles with enhanced therapeutic microrna loading for intranasal delivery to mouse glioblastomas. ACS Nano 2021, 15, 18327–18346.

    CAS  Google Scholar 

  26. Grassin-Delyle, S.; Buenestado, A.; Naline, E.; Faisy, C.; Blouquit-Laye, S.; Couderc, L. J.; Le Guen, M.; Fischler, M.; Devillier, P. Intranasal drug delivery: An efficient and non-invasive route for systemic administration: Focus on opioids. Pharmacol. Ther. 2012, 134, 366–379.

    CAS  Google Scholar 

  27. Torrens, A.; Ruiz, C. M.; Martinez, M. X.; Tagne, A. M.; Roy, P.; Grimes, D.; Ahmed, F.; Lallai, V.; Inshishian, V.; Bautista, M. et al. Nasal accumulation and metabolism of Δ9-tetrahydrocannabinol following aerosol (“vaping”) administration in an adolescent rat model. Pharmacol. Res. 2023, 187, 106600.

    CAS  Google Scholar 

  28. Chatterjee, B.; Gorain, B.; Mohananaidu, K.; Sengupta, P.; Mandal, U. K.; Choudhury, H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int. J. Pharm. 2019, 565, 258–268.

    CAS  Google Scholar 

  29. Hemmat, A.; Ghassami, E.; Minaiyan, M.; Varshosaz, J. Magnetophoretic intranasal drug-loaded magnetic nano-aggregates as a platform for drug delivery in status epilepticus. Pharm. Nanotechnol. 2023, 11, 155–166.

    CAS  Google Scholar 

  30. Shringarpure, M.; Gharat, S.; Momin, M.; Omri, A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Exp. Opin. Drug Deliv. 2021, 18, 169–185.

    CAS  Google Scholar 

  31. Djupesland, P. G.; Messina, J. C.; Mahmoud, R. A. The nasal approach to delivering treatment for brain diseases: An anatomic, physiologic, and delivery technology overview. Ther. Deliv. 2014, 5, 709–733.

    CAS  Google Scholar 

  32. Pardeshi, C. V.; Belgamwar, V. S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Exp. Opin. Drug Deliv. 2013, 10, 957–972.

    CAS  Google Scholar 

  33. Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018, 10, 116.

    Google Scholar 

  34. Ogawa, K.; Uchida, M.; Yamaki, T.; Matsuzaki, H.; Kimura, M.; Okazaki, M.; Uchida, H.; Natsume, H. Delivery of acetaminophen to the central nervous system and the pharmacological effect after intranasal administration with a mucoadhesive agent and absorption enhancer. Int. J. Pharm. 2021, 594, 120046.

    CAS  Google Scholar 

  35. Jiang, Y. J.; Li, Y.; Liu, X. F. Intranasal delivery: Circumventing the iron curtain to treat neurological disorders. Exp. Opin. Drug Deliv. 2015, 12, 1717–1725.

    CAS  Google Scholar 

  36. Priester, M. I.; Ten Hagen, T. L. M. Image-guided drug delivery in nanosystem-based cancer therapies. Adv. Drug Deliv. Rev. 2023, 192, 114621.

    CAS  Google Scholar 

  37. Large, D. E.; Abdelmessih, R. G.; Fink, E. A.; Auguste, D. T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851.

    CAS  Google Scholar 

  38. Filipczak, N.; Pan, J. Y.; Yalamarty, S. S. K.; Torchilin, V. P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22.

    CAS  Google Scholar 

  39. Almeida, B.; Nag, O. K.; Rogers, K. E.; Delehanty, J. B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules 2020, 25, 5672.

    CAS  Google Scholar 

  40. Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.

    CAS  Google Scholar 

  41. Singh, Y.; Meher, J. G.; Raval, K.; Khan, F. A.; Chaurasia, M.; Jain, N. K.; Chourasia, M. K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017, 252, 28–49.

    CAS  Google Scholar 

  42. Bozzato, E.; Bastiancich, C.; Préat, V. Nanomedicine: A useful tool against glioma stem cells. Cancers (Basel) 2020, 13, 9.

    Google Scholar 

  43. Saka, R.; Chella, N.; Khan, W. Development of imatinib mesylate-loaded liposomes for nose to brain delivery: In vitro and in vivo evaluation. Aaps PharmSciTech 2021, 22, 192.

    CAS  Google Scholar 

  44. Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F. R.; Landfester, K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev. 2018, 47, 8572–8610.

    CAS  Google Scholar 

  45. Machut-Binkowski, C.; Hapiot, F.; Cecchelli, R.; Martin, P.; Monflier, E. A versatile liposome/cyclodextrin supramolecular carrier for drug delivery through the blood-brain barrier. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 567–572.

    CAS  Google Scholar 

  46. Kurano, T.; Kanazawa, T.; Ooba, A.; Masuyama, Y.; Maruhana, N.; Yamada, M.; Iioka, S.; Ibaraki, H.; Kosuge, Y.; Kondo, H. et al. Nose-to-brain/spinal cord delivery kinetics of liposomes with different surface properties. J. Control. Release 2022, 344, 225–234.

    CAS  Google Scholar 

  47. Pashirova, T. N.; Zueva, I. V.; Petrov, K. A.; Lukashenko, S. S.; Nizameev, I. R.; Kulik, N. V.; Voloshina, A. D.; Almasy, L.; Kadirov, M. K.; Masson, P. et al. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactivator 2-PAM as encapsulated drug model. Colloids Surf. Biointerf. 2018, 171, 358–367.

    CAS  Google Scholar 

  48. Dhaval, M.; Vaghela, P.; Patel, K.; Sojitra, K.; Patel, M.; Patel, S.; Dudhat, K.; Shah, S.; Manek, R.; Parmar, R. Lipid-based emulsion drug delivery systems—A comprehensive review. Drug Deliv. Transl. Res. 2022, 12, 1616–1639.

    CAS  Google Scholar 

  49. Dhaliwal, H. K.; Fan, Y. F.; Kim, J.; Amiji, M. M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol. Pharmaceutics 2020, 17, 1996–2005.

    CAS  Google Scholar 

  50. Jojo, G. M.; Kuppusamy, G.; De, A.; Karri, V. V. S. N. R. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev. Ind. Pharm. 2019, 45, 1061–1072.

    CAS  Google Scholar 

  51. Guo, X. L.; Zheng, H.; Guo, Y. T.; Wang, Y.; Anderson, G. J.; Ci, Y.; Yu, P.; Geng, L. N.; Chang, Y. Z. Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain. J. Nanobiotechnol. 2017, 15, 42.

    Google Scholar 

  52. Azambuja, J. H.; Schuh, R. S.; Michels, L. R.; Gelsleichter, N. E.; Beckenkamp, L. R.; Iser, I. C.; Lenz, G. S.; De Oliveira, F. H.; Venturin, G.; Greggio, S. et al. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: A new therapeutical approach. Mol. Neurobiol. 2020, 57, 635–649.

    CAS  Google Scholar 

  53. Kaur, A.; Nigam, K.; Srivastava, S.; Tyagi, A.; Dang, S. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease. J. Microencapsul. 2020, 37, 355–365.

    CAS  Google Scholar 

  54. Fachel, F. N. S.; Medeiros-Neves, B.; Dal Prá, M.; Schuh, R. S.; Veras, K. S.; Bassani, V. L.; Koester, L. S.; Henriques, A. T.; Braganhol, E.; Teixeira, H. F. Box-Behnken design optimization of mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid nasal delivery—In vitro studies. Carbohydr. Polym. 2018, 199, 572–582.

    CAS  Google Scholar 

  55. Sarheed, O.; Shouqair, D.; Ramesh, K. V. R. N. S.; Khaleel, T.; Amin, M.; Boateng, J.; Drechsler, M. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor. Int. J. Pharm. 2020, 576, 118952.

    CAS  Google Scholar 

  56. Kanazawa, T.; Akiyama, F.; Kakizaki, S.; Takashima, Y.; Seta, Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials 2013, 34, 9220–9226.

    CAS  Google Scholar 

  57. Nour, S. A.; Abdelmalak, N. S.; Naguib, M. J.; Rashed, H. M.; Ibrahim, A. B. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: In vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv. 2016, 23, 3681–3695.

    CAS  Google Scholar 

  58. Liu, S. S.; Yang, S. L.; Ho, P. C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci. 2018, 13, 72–81.

    Google Scholar 

  59. Ahmed, T. A.; El-Say, K. M.; Ahmed, O. A. A.; Aljaeid, B. M. Superiority of TPGS-loaded micelles in the brain delivery of vinpocetine via administration of thermosensitive intranasal gel. Int. J. Nanomed. 2019, 14, 5555–5567.

    CAS  Google Scholar 

  60. Zhang, L.; Yang, S. L.; Wong, L. R.; Xie, H.; Ho, P. C. L. In vitro and in vivo comparison of curcumin-encapsulated chitosan-coated poly(lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-β-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Mol. Pharmaceutics 2020, 17, 4256–4269.

    CAS  Google Scholar 

  61. Zameer, S.; Ali, J.; Vohora, D.; Najmi, A. K.; Akhtar, M. Development, optimisation and evaluation of chitosan nanoparticles of alendronate against Alzheimer’s disease in intracerebroventricular streptozotocin model for brain delivery. J. Drug Target. 2021, 29, 199–216.

    CAS  Google Scholar 

  62. Burilova, E. A.; Pashirova, T. N.; Zueva, I. V.; Gibadullina, E. M.; Lushchekina, S. V.; Sapunova, A. S.; Kayumova, R. M.; Rogov, A. M.; Evtjugin, V. G.; Sudakov, I. A. et al. Bi-functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer’s disease via an intranasal route. Nanoscale 2020, 12, 13757–13770.

    CAS  Google Scholar 

  63. Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V. G. S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci. 2016, 92, 224–234.

    CAS  Google Scholar 

  64. Samaridou, E.; Walgrave, H.; Salta, E.; Álvarez, D. M.; Castro-López, V.; Loza, M.; Alonso, M. J. Nose-to-brain delivery of enveloped RNA-cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials 2020, 230, 119657.

    CAS  Google Scholar 

  65. Yang, H.; Mu, W. H.; Wei, D. H.; Zhang, Y.; Duan, Y.; Gao, J. X.; Gong, X. Q.; Wang, H. J.; Wu, X. L.; Tao, H. et al. A novel targeted and high-efficiency nanosystem for combinational therapy for Alzheimer’s disease. Adv. Sci. (Weinh.) 2020, 7, 1902906.

    CAS  Google Scholar 

  66. Sukumar, U. K.; Bose, R. J. C.; Malhotra, M.; Babikir, H. A.; Afjei, R.; Robinson, E.; Zeng, Y. T.; Chang, E.; Habte, F.; Sinclair, R. et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 2019, 218, 119342.

    CAS  Google Scholar 

  67. Sousa, F.; Dhaliwal, H. K.; Gattacceca, F.; Sarmento, B.; Amiji, M. M. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J. Control. Release 2019, 309, 37–47.

    CAS  Google Scholar 

  68. Shah, B. Microemulsion as a promising carrier for nose to brain delivery: Journey since last decade. J. Pharm. Investig. 2021, 51, 611–634.

    Google Scholar 

  69. Iqbal, R.; Ahmed, S.; Jain, G. K.; Vohora, D. Design and development of letrozole nanoemulsion: A comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int. J. Pharm. 2019, 565, 20–32.

    CAS  Google Scholar 

  70. Wik, J.; Bansal, K. K.; Assmuth, T.; Rosling, A.; Rosenholm, J. M. Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs. Drug Deliv. Transl. Res. 2020, 10, 1228–1240.

    CAS  Google Scholar 

  71. Roy, A.; Nishchaya, K.; Rai, V. K. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances. Expert Opin. Drug Deliv. 2022, 19, 303–319.

    CAS  Google Scholar 

  72. Handa, M.; Tiwari, S.; Yadav, A. K.; Almalki, W. H.; Alghamdi, S.; Alharbi, K. S.; Shukla, R.; Beg, S. Therapeutic potential of nanoemulsions as feasible wagons for targeting Alzheimer’s disease. Drug Discov. Today 2021, 26, 2881–2888.

    CAS  Google Scholar 

  73. Ozogul, Y.; Karsli, G. T.; Durmuş, M.; Yazgan, H.; Oztop, H. M.; McClements, D. J.; Ozogul, F. Recent developments in industrial applications of nanoemulsions. Adv. Colloid Interface Sci. 2022, 304, 102685.

    CAS  Google Scholar 

  74. Richa, R.; Roy Choudhury, A. Exploration of polysaccharide based nanoemulsions for stabilization and entrapment of curcumin. Int. J. Biol. Macromol. 2020, 156, 1287–1296.

    CAS  Google Scholar 

  75. Cheng, L. C.; Hashemnejad, S. M.; Zarket, B.; Muthukrishnan, S.; Doyle, P. S. Thermally and pH-responsive gelation of nanoemulsions stabilized by weak acid surfactants. J. Colloid Interface Sci. 2020, 563, 229–240.

    CAS  Google Scholar 

  76. Carpenter, J.; Saharan, V. K. Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. Ultrason. Sonochem. 2017, 35, 422–430.

    CAS  Google Scholar 

  77. Manickam, S.; Sivakumar, K.; Pang, C. H. Investigations on the generation of oil-in-water (O/W) nanoemulsions through the combination of ultrasound and microchannel. Ultrason. Sonochem. 2020, 69, 105258.

    CAS  Google Scholar 

  78. Bader, H.; Ringsdorf, H.; Schmidt, B. Watersoluble polymers in medicine. Die Angew. Makromol. Chem. 1984, 123, 457–485.

    Google Scholar 

  79. Hari, S. K.; Gauba, A.; Shrivastava, N.; Tripathi, R. M.; Jain, S. K.; Pandey, A. K. Polymeric micelles and cancer therapy: An ingenious multimodal tumor-targeted drug delivery system. Drug Deliv. Transl. Res. 2023, 13, 135–163.

    Google Scholar 

  80. Van Strien, J.; Escalona-Rayo, O.; Jiskoot, W.; Slütter, B.; Kros, A. Elastin-like polypeptide-based micelles as a promising platform in nanomedicine. J. Control. Release 2023, 353, 713–726.

    CAS  Google Scholar 

  81. Pokharkar, V.; Suryawanshi, S.; Dhapte-Pawar, V. Exploring micellar-based polymeric systems for effective nose-to-brain drug delivery as potential neurotherapeutics. Drug Deliv. Transl. Res. 2020, 10, 1019–1031.

    CAS  Google Scholar 

  82. Lu, Y.; Zhang, E. S.; Yang, J. H.; Cao, Z. Q. Strategies to improve micelle stability for drug delivery. Nano Res. 2018, 11, 4985–4998.

    Google Scholar 

  83. Zhou, Q. Y.; Zhao, T. C.; Liu, M. L.; Yin, D. R.; Liu, M. C.; Elzatahry, A. A.; Zhang, F.; Zhao, D. Y.; Li, X. M. Highly stable hybrid single-micelle: A universal nanocarrier for hydrophobic bioimaging agents. Nano Res. 2022, 15, 4582–4589.

    CAS  Google Scholar 

  84. Kamegawa, R.; Naito, M.; Miyata, K. Functionalization of silica nanoparticles for nucleic acid delivery. Nano Res. 2018, 11, 5219–5239.

    CAS  Google Scholar 

  85. Yu, C. C.; Li, K.; Xu, L.; Li, B.; Li, C. H.; Guo, S.; Li, Z. Y.; Zhang, Y. Q.; Hussain, A.; Tan, H. et al. siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment. Nano Res. 2022, 15, 9160–9168.

    CAS  Google Scholar 

  86. Yi, X. Q.; Zeng, W. J.; Wang, C.; Chen, Y.; Zheng, L. Y.; Zhu, X. L.; Ke, Y. Q.; He, X. Y.; Kuang, Y.; Huang, Q. T. A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy. Nano Res. 2022, 15, 1205–1212.

    CAS  Google Scholar 

  87. Jeong, S. H.; Jang, J. H.; Cho, H. Y.; Lee, Y. B. Soft- and hard-lipid nanoparticles: A novel approach to lymphatic drug delivery. Arch. Pharm. Res. 2018, 41, 797–814.

    CAS  Google Scholar 

  88. Anderluzzi, G.; Lou, G.; Su, Y.; Perrie, Y. Scalable manufacturing processes for solid lipid nanoparticles. Pharm. Nanotechnol. 2019, 7, 444–459.

    CAS  Google Scholar 

  89. Nasirizadeh, S.; Malaekeh-Nikouei, B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol. 2020, 55, 101458.

    CAS  Google Scholar 

  90. De Oliveira Junior, E. R.; Truzzi, E.; Ferraro, L.; Fogagnolo, M.; Pavan, B.; Beggiato, S.; Rustichelli, C.; Maretti, E.; Lima, E. M.; Leo, E. et al. Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: Towards a new approach for the management of Parkinson’s disease. J. Control. Release 2020, 321, 540–552.

    Google Scholar 

  91. Hasan, N.; Imran, M.; Kesharwani, P.; Khanna, K.; Karwasra, R.; Sharma, N.; Rawat, S.; Sharma, D.; Ahmad, F. J.; Jain, G. K. et al. Intranasal delivery of naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int. J. Pharm. 2021, 599, 120428.

    CAS  Google Scholar 

  92. Uppuluri, C. T.; Ravi, P. R.; Dalvi, A. V. Design, optimization and pharmacokinetic evaluation of piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease. Int. J. Pharm. 2021, 606, 120881.

    CAS  Google Scholar 

  93. Akel, H.; Ismail, R.; Csóka, I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2020, 148, 38–53.

    CAS  Google Scholar 

  94. Correia, A. C.; Monteiro, A. R.; Silva, R.; Moreira, J. N.; Lobo, J. M. S.; Silva, A. C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv. Drug Deliv. Rev. 2022, 189, 114485.

    CAS  Google Scholar 

  95. Costa, C.; Moreira, J. N.; Amaral, M. H.; Lobo, J. M. S.; Silva, A. C. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J. Control. Release 2019, 295, 187–200.

    CAS  Google Scholar 

  96. Keck, C. M.; Specht, D.; Brüßler, J. Influence of lipid matrix composition on biopharmaceutical properties of lipid nanoparticles. J. Control. Release 2021, 338, 149–163.

    CAS  Google Scholar 

  97. Kovačević, A. B.; Müller, R. H.; Keck, C. M. Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC). Int. J. Pharm. 2020, 576, 118918.

    Google Scholar 

  98. Dana, P.; Yostawonkul, J.; Chonniyom, W.; Unger, O.; Sakulwech, S.; Sathornsumetee, S.; Saengkrit, N. Nanostructured lipid base carrier for specific delivery of garlic oil through blood brain barrier against aggressiveness of glioma. J. Drug Deliv. Sci. Technol. 2021, 64, 102651.

    CAS  Google Scholar 

  99. Agbo, C. P.; Ugwuanyi, T. C.; Ugwuoke, W. I.; McConville, C.; Attama, A. A.; Ofokansi, K. C. Intranasal artesunate-loaded nanostructured lipid carriers: A convenient alternative to parenteral formulations for the treatment of severe and cerebral malaria. J. Control. Release 2021, 334, 224–236.

    CAS  Google Scholar 

  100. Nguyen, T. T. L.; Maeng, H. J. Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery. Pharmaceutics 2022, 14, 572.

    CAS  Google Scholar 

  101. Hong, S. S.; Oh, K. T.; Choi, H. G.; Lim, S. J. Liposomal formulations for nose-to-brain delivery: Recent advances and future perspectives. Pharmaceutics 2019, 11, 540.

    CAS  Google Scholar 

  102. Ahmad, E.; Feng, Y. H.; Qi, J. P.; Fan, W. F.; Ma, Y. H.; He, H. S.; Xia, F.; Dong, X. C.; Zhao, W. L.; Lu, Y. et al. Evidence of nose-to-brain delivery of nanoemulsions: Cargoes but not vehicles. Nanoscale 2017, 9, 1174–1183.

    CAS  Google Scholar 

  103. Le, M. Q.; Carpentier, R.; Lantier, I.; Ducournau, C.; Dimier-Poisson, I.; Betbeder, D. Residence time and uptake of porous and cationic maltodextrin-based nanoparticles in the nasal mucosa: Comparison with anionic and cationic nanoparticles. Int. J. Pharm. 2018, 550, 316–324.

    CAS  Google Scholar 

  104. Guo, T. W.; Guo, Y. Y.; Gong, Y. H.; Ji, J. G.; Hao, S. L.; Deng, J.; Wang, B. C. An enhanced charge-driven intranasal delivery of nicardipine attenuates brain injury after intracerebral hemorrhage. Int. J. Pharm. 2019, 566, 46–56.

    CAS  Google Scholar 

  105. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    CAS  Google Scholar 

  106. Chaudhury, S. S.; Nandi, M.; Kumar, K.; Ruidas, B.; Sur, T. K.; Prasad, P.; Chakrabarti, S.; De, P.; Sil, J.; Das Mukhopadhyay, C. Rodent model preclinical assessment of PEGylated block copolymer targeting cognition and oxidative stress insults of Alzheimer’s disease. Mol. Neurobiol. 2023, 60, 2036–2050.

    Google Scholar 

  107. Goel, H.; Kalra, V.; Verma, S. K.; Dubey, S. K.; Tiwary, A. K. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J. Control. Release 2022, 341, 782–811.

    CAS  Google Scholar 

  108. Schlachet, I.; Sosnik, A. Mixed mucoadhesive amphiphilic polymeric nanoparticles cross a model of nasal septum epithelium in vitro. ACS Appl. Mater. Interfaces 2019, 11, 21360–21371.

    CAS  Google Scholar 

  109. Guimaraes, M. E. N.; Lopez-Blanco, R.; Correa, J.; Fernandez-Villamarin, M.; Bistué, M. B.; Martino-Adami, P.; Morelli, L.; Kumar, V.; Wempe, M. F.; Cuello, A. C. et al. Liver X receptor activation with an intranasal polymer therapeutic prevents cognitive decline without altering lipid levels. ACS Nano 2021, 15, 4678–4687.

    Google Scholar 

  110. Law, L. H.; Huang, J. P.; Xiao, P.; Liu, Y.; Chen, Z. L.; Lai, J. H. C.; Han, X. Q.; Cheng, G. W. Y.; Tse, K. H.; Chan, K. W. Y. Multiple CEST contrast imaging of nose-to-brain drug delivery using Iohexol liposomes at 3T MRI. J. Control. Release 2023, 354, 208–220.

    CAS  Google Scholar 

  111. Teo, S. L. Y.; Rennick, J. J.; Yuen, D.; Al-Wassiti, H.; Johnston, A. P. R.; Pouton, C. W. Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay. Nat. Commun. 2021, 12, 3721.

    CAS  Google Scholar 

  112. Zorko, M.; Jones, S.; Langel, Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv. Drug Deliv. Rev. 2022, 180, 114044.

    CAS  Google Scholar 

  113. Tian, Y.; Zhou, S. B. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery. WIREs Nanomed. Nanobiotechnol. 2021, 13, e1668.

    CAS  Google Scholar 

  114. Xu, J. K.; Khan, A. R.; Fu, M. F.; Wang, R. J.; Ji, J. B.; Zhai, G. X. Cell-penetrating peptide: A means of breaking through the physiological barriers of different tissues and organs. J. Control. Release 2019, 309, 106–124.

    CAS  Google Scholar 

  115. Yoo, D. Y.; Barros, S. A.; Brown, G. C.; Rabot, C.; Bar-Sagi, D.; Arora, P. S. Macropinocytosis as a key determinant of peptidomimetic uptake in cancer cells. J. Am. Chem. Soc. 2020, 142, 14461–14471.

    CAS  Google Scholar 

  116. Patel, S. G.; Sayers, E. J.; He, L.; Narayan, R.; Williams, T. L.; Mills, E. M.; Allemann, R. K.; Luk, L. Y. P.; Jones, A. T.; Tsai, Y. H. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep. 2019, 9, 6298.

    Google Scholar 

  117. Liu, Y. K.; Zhao, Z. H.; Li, M. Overcoming the cellular barriers and beyond: Recent progress on cell penetrating peptide modified nanomedicine in combating physiological and pathological barriers. Asian J. Pharm. Sci. 2022, 17, 523–543.

    Google Scholar 

  118. Akita, T.; Oda, Y.; Kimura, R.; Nagai, M.; Tezuka, A.; Shimamura, M.; Washizu, K.; Oka, J. I.; Yamashita, C. Involvement of trigeminal axons in nose-to-brain delivery of glucagon-like peptide-2 derivative. J. Control. Release 2022, 351, 573–580.

    CAS  Google Scholar 

  119. Akita, T.; Kimura, R.; Akaguma, S.; Nagai, M.; Nakao, Y.; Tsugane, M.; Suzuki, H.; Oka, J. I.; Yamashita, C. Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. J. Control. Release 2021, 335, 575–583.

    CAS  Google Scholar 

  120. Lin, T. T.; Liu, E. G.; He, H. N.; Shin, M. C.; Moon, C.; Yang, V. C.; Huang, Y. Z. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm. Sin. B 2016, 6, 352–358.

    Google Scholar 

  121. Hou, Q. H.; Wang, L. L.; Xiao, F.; Wang, L.; Liu, X. Y.; Zhu, L. N.; Lu, Y.; Zheng, W. F.; Jiang, X. Y. Dual targeting nanoparticles for epilepsy therapy. Chem. Sci. 2022, 13, 12913–12920.

    CAS  Google Scholar 

  122. Copolovici, D. M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano 2014, 8, 1972–1994.

    CAS  Google Scholar 

  123. Chen, K. Y.; Pei, D. H. Engineering cell-permeable proteins through insertion of cell-penetrating motifs into surface loops. ACS Chem. Biol. 2020, 15, 2568–2576.

    CAS  Google Scholar 

  124. Kanazawa, T.; Taki, H.; Okada, H. Nose-to-brain drug delivery system with ligand/cell-penetrating peptide-modified polymeric nano-micelles for intracerebral gliomas. Eur. J. Pharm. Biopharm. 2020, 152, 85–94.

    CAS  Google Scholar 

  125. Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228.

    CAS  Google Scholar 

  126. Wu, J.; Ma, L.; Sun, D. N.; Zhang, X. R.; Cui, J. W.; Du, Y. J.; Guo, Y. M.; Wang, X.; Di, L. Q.; Wang, R. N. Bioengineering extracellular vesicles as novel nanocarriers towards brain disorders. Nano Res. 2023, 16, 2635–2659.

    CAS  Google Scholar 

  127. Maeki, M.; Kimura, N.; Sato, Y.; Harashima, H.; Tokeshi, M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv. Drug Deliv. Rev. 2018, 128, 84–100.

    CAS  Google Scholar 

  128. Ke, W. N.; Afonin, K. A. Exosomes as natural delivery carriers for programmable therapeutic nucleic acid nanoparticles (NANPs). Adv. Drug Deliv. Rev. 2021, 176, 113835.

    CAS  Google Scholar 

  129. Jiang, X. C.; Zhang, T. Y.; Gao, J. Q. The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Adv. Drug Deliv. Rev. 2022, 187, 114324.

    CAS  Google Scholar 

  130. Li, Y. S.; Wu, H. H.; Jiang, X. C.; Dong, Y. F.; Zheng, J. J.; Gao, J. Q. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: Combining with intranasal delivery. Acta Pharm. Sin. B 2022, 12, 3215–3232.

    CAS  Google Scholar 

  131. Herman, S.; Fishel, I.; Offen, D. Intranasal delivery of mesenchymal stem cells-derived extracellular vesicles for the treatment of neurological diseases. Stem Cells 2021, 39, 1589–1600.

    Google Scholar 

  132. Liu, B.; Kong, Y. F.; Shi, W.; Kuss, M.; Liao, K.; Hu, G. K.; Xiao, P.; Sankarasubramanian, J.; Guda, C.; Wang, X. L. et al. Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioact. Mater. 2022, 14, 61–75.

    Google Scholar 

  133. Labusek, N.; Mouloud, Y.; Köster, C.; Diesterbeck, E.; Tertel, T.; Wiek, C.; Hanenberg, H.; Horn, P. A.; Felderhoff-Müser, U.; Bendix, I. et al. Extracellular vesicles from immortalized mesenchymal stromal cells protect against neonatal hypoxic-ischemic brain injury. Inflamm. Regen. 2023, 43, 24.

    CAS  Google Scholar 

  134. Peng, H.; Li, Y.; Ji, W. H.; Zhao, R. C.; Lu, Z. G.; Shen, J.; Wu, Y. Y.; Wang, J. Z.; Hao, Q. L.; Wang, J. W. et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson’s disease. ACS Nano 2022, 16, 869–884.

    CAS  Google Scholar 

  135. Raguraman, R.; Bhavsar, D.; Kim, D.; Ren, X. Y.; Sikavitsas, V.; Munshi, A.; Ramesh, R. Tumor-targeted exosomes for delivery of anticancer drugs. Cancer Lett. 2023, 558, 216093.

    CAS  Google Scholar 

  136. Dasgupta, A.; Sun, T.; Palomba, R.; Rama, E.; Zhang, Y. Z.; Power, C.; Moeckel, D.; Liu, M. J.; Sarode, A.; Weiler, M. et al. Nonspherical ultrasound microbubbles. Proc. Natl. Acad. Sci. USA 2023, 120, e2218847120.

    CAS  Google Scholar 

  137. Gorick, C. M.; Breza, V. R.; Nowak, K. M.; Cheng, V. W. T.; Fisher, D. G.; Debski, A. C.; Hoch, M. R.; Demir, Z. E. F.; Tran, N. M.; Schwartz, M. R. et al. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv. Drug Deliv. Rev. 2022, 191, 114583.

    CAS  Google Scholar 

  138. Ye, D. Z.; Luan, J. Y.; Pang, H.; Yang, Y. H.; Nazeri, A.; Rubin, J. B.; Chen, H. Characterization of focused ultrasound-mediated brainstem delivery of intranasally administered agents. J. Control. Release 2020, 328, 276–285.

    CAS  Google Scholar 

  139. Chen, H.; Chen, C. C.; Acosta, C.; Wu, S. Y.; Sun, T.; Konofagou, E. E. A new brain drug delivery strategy: Focused ultrasound-enhanced intranasal drug delivery. PLoS One 2014, 9, e108880.

    Google Scholar 

  140. Ye, D. Z.; Zhang, X. H.; Yue, Y. M.; Raliya, R.; Biswas, P.; Taylor, S.; Tai, Y. C.; Rubin, J. B.; Liu, Y. J.; Chen, H. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J. Control. Release 2018, 286, 145–153.

    CAS  Google Scholar 

  141. Ye, D. Z.; Yuan, J. Y.; Yang, Y. H.; Yue, Y. M.; Hu, Z. T.; Fadera, S.; Chen, H. Incisionless targeted adeno-associated viral vector delivery to the brain by focused ultrasound-mediated intranasal administration. eBioMedicine 2022, 84, 104277.

    CAS  Google Scholar 

  142. Ye, D. Z.; Sultan, D.; Zhang, X. H.; Yue, Y. M.; Heo, G. S.; Kothapalli, S. V. V. N.; Luehmann, H.; Tai, Y. C.; Rubin, J. B.; Liu, Y. et al. Focused ultrasound-enabled delivery of radiolabeled nanoclusters to the pons. J. Control. Release 2018, 283, 143–150.

    CAS  Google Scholar 

  143. Dimatteo, R.; Darling, N. J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 2018, 127, 167–184.

    CAS  Google Scholar 

  144. Shah, S.; Rangaraj, N.; Laxmikeshav, K.; Sampathi, S. “Nanogels as drug carriers—Introduction, chemical aspects, release mechanisms and potential applications”. Int. J. Pharm. 2020, 581, 119268.

    CAS  Google Scholar 

  145. Ayoubi-Joshaghani, M. H.; Seidi, K.; Azizi, M.; Jaymand, M.; Javaheri, T.; Jahanban-Esfahlan, R.; Hamblin, M. R. Potential applications of advanced nano/hydrogels in biomedicine: Static, dynamic, multi-stage, and bioinspired. Adv. Funct. Mater. 2020, 30, 2004098.

    CAS  Google Scholar 

  146. Kandil, R.; Merkel, O. M. Recent progress of polymeric nanogels for gene delivery. Curr. Opin. Colloid Interface Sci. 2019, 39, 11–23.

    CAS  Google Scholar 

  147. Salatin, S.; Barar, J.; Barzegar-Jalali, M.; Adibkia, K.; Milani, M. A.; Jelvehgari, M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch. Pharm. Res. 2016, 39, 1181–1192.

    CAS  Google Scholar 

  148. Kim, Y. S.; Sung, D. K.; Kim, H.; Kong, W. H.; Kim, Y. E.; Hahn, S. K. Nose-to-brain delivery of hyaluronate—FG loop peptide conjugate for non-invasive hypoxic-ischemic encephalopathy therapy. J. Control. Release 2019, 307, 76–89.

    CAS  Google Scholar 

  149. Majcher, M. J.; Babar, A.; Lofts, A.; Leung, A.; Li, X. Y.; Abu-Hijleh, F.; Smeets, N. M. B.; Mishra, R. K.; Hoare, T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J. Control. Release 2021, 330, 738–752.

    CAS  Google Scholar 

  150. Li, X. M.; Tsibouklis, J.; Weng, T. T.; Zhang, B. N.; Yin, G. Q.; Feng, G. Z.; Cui, Y. D.; Savina, I. N.; Mikhalovska, L. I.; Sandeman, S. R. et al. Nano carriers for drug transport across the blood-brain barrier. J. Drug Target. 2017, 25, 17–28.

    Google Scholar 

  151. Khatri, D. K.; Preeti, K.; Tonape, S.; Bhattacharjee, S.; Patel, M.; Shah, S.; Singh, P. K.; Srivastava, S.; Gugulothu, D.; Vora, L. et al. Nanotechnological advances for nose to brain delivery of therapeutics to improve the Parkinson therapy. Curr. Neuropharmacol. 2023, 21, 493–516.

    CAS  Google Scholar 

  152. Kumar, A.; Pandey, A. N.; Jain, S. K. Nasal-nanotechnology: Revolution for efficient therapeutics delivery. Drug Deliv. 2016, 23, 671–683.

    CAS  Google Scholar 

  153. Hu, Y.; Jiang, K.; Wang, D. L.; Yao, S. Y.; Lu, L. W.; Wang, H.; Song, J.; Zhou, J. F.; Fan, X. Y.; Wang, Y. et al. Core–shell lipoplexes inducing active macropinocytosis promote intranasal delivery of c-Myc siRNA for treatment of glioblastoma. Acta Biomater. 2022, 138, 478–490.

    CAS  Google Scholar 

  154. Tian, Y.; Zheng, Z. Y.; Wang, X.; Liu, S. Z.; Gu, L. W.; Mu, J.; Zheng, X. J.; Li, Y. J.; Shen, S. Establishment and evaluation of glucose-modified nanocomposite liposomes for the treatment of cerebral malaria. J. Nanobiotechnol. 2022, 20, 318.

    CAS  Google Scholar 

  155. Gadhave, D.; Tupe, S.; Tagalpallewar, A.; Gorain, B.; Choudhury, H.; Kokare, C. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies. Int. J. Pharm. 2021, 607, 121050.

    CAS  Google Scholar 

  156. Shen, X.; Cui, Z. X.; Wei, Y. D.; Huo, Y. N.; Yu, D.; Zhang, X.; Mao, S. R. Exploring the potential to enhance drug distribution in the brain subregion via intranasal delivery of nanoemulsion in combination with borneol as a guider. Asian J. Pharm. Sci., in press, https://doi.org/10.1016/j.ajps.2023.100778.

  157. Lee, Y.; Ha, J.; Kim, M.; Kang, S. B.; Kang, M. J.; Lee, M. Antisense-oligonucleotide co-micelles with tumor targeting peptides elicit therapeutic effects by inhibiting microRNA-21 in the glioblastoma animal models. J. Adv. Res., in press, https://doi.org/10.1016/J.JARE.2023.01.005.

  158. Saini, S.; Sharma, T.; Jain, A.; Kaur, H.; Katare, O. P.; Singh, B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B: Biointerf. 2021, 205, 111838.

    CAS  Google Scholar 

  159. Zhou, C.; Sun, P.; Xu, Y.; Chen, Y. A.; Huang, Y. X.; Hamblin, M. H.; Foley, L.; Hitchens, T. K.; Li, S.; Yin, K. J. Genetic deficiency of microRNA-15a/16-1 confers resistance to neuropathologicaldamage and cognitive dysfunction in experimental vascular cognitive impairment and dementia. Adv. Sci. (Weinh.) 2022, 9, 2104986.

    CAS  Google Scholar 

  160. Zhuang, X. Y.; Teng, Y.; Samykutty, A.; Mu, J. Y.; Deng, Z. B.; Zhang, L. F.; Cao, P. X.; Rong, Y.; Yan, J.; Miller, D. et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol. Ther. 2016, 24, 96–105.

    CAS  Google Scholar 

  161. Khan, A.; Aqil, M.; Imam, S. S.; Ahad, A.; Sultana, Y.; Ali, A.; Khan, K. Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: Characterization, nasal absorption, histopathology and cell line study. Int. J. Biol. Macromol. 2018, 116, 1260–1267.

    CAS  Google Scholar 

  162. Guo, S. W.; Perets, N.; Betzer, O.; Ben-Shaul, S.; Sheinin, A.; Michaelevski, I.; Popovtzer, R.; Offen, D.; Levenberg, S. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog sirna repairs complete spinal cord injury. ACS Nano 2019, 13, 10015–10028.

    CAS  Google Scholar 

  163. Abdelmonem, R.; El-Enin, H. A. A.; Abdelkader, G.; Abdel-Hakeem, M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv. 2023, 30, 2163321.

    Google Scholar 

  164. Singh, S. K.; Hidau, M. K.; Gautam, S.; Gupta, K.; Singh, K. P.; Singh, S. K.; Singh, S. Glycol chitosan functionalized asenapine nanostructured lipid carriers for targeted brain delivery: Pharmacokinetic and teratogenic assessment. Int. J. Biol. Macromol. 2018, 108, 1092–1100.

    CAS  Google Scholar 

  165. Zafar, A.; Alsaidan, O. A.; Alruwaili, N. K.; Imam, S. S.; Yasir, M.; Alharbi, K. S.; Singh, L.; Ahmed, M. M. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation. Int. J. Pharm. 2022, 627, 122232.

    CAS  Google Scholar 

  166. Noorulla, K. M.; Yasir, M.; Muzaffar, F.; Roshan, S.; Ghoneim, M. M.; Almurshedi, A. S.; Tura, A. J.; Alshehri, S.; Gebissa, T.; Mekit, S. et al. Intranasal delivery of chitosan decorated nanostructured lipid carriers of Buspirone for brain targeting: Formulation development, optimization and in-vivo preclinical evaluation. J. Drug Deliv. Sci. Technol. 2022, 67, 102939.

    CAS  Google Scholar 

  167. See, G. L.; Arce, F.; Dahlizar, S.; Okada, A.; Fadli, M. F. B. M.; Hijikuro, I.; Itakura, S.; Katakura, M.; Todo, H.; Sugibayashi, K. Enhanced nose-to-brain delivery of tranilast using liquid crystal formulations. J. Control. Release 2020, 325, 1–9.

    CAS  Google Scholar 

  168. García-Pardo, J.; Novio, F.; Nador, F.; Cavaliere, I.; Suárez-García, S.; Lope-Piedrafita, S.; Candiota, A. P.; Romero-Gimenez, J.; Rodríguez-Galván, B.; Bové, J. et al. Bioinspired theranostic coordination polymer nanoparticles for intranasal dopamine replacement in Parkinson’s disease. ACS Nano 2021, 15, 8592–8609.

    Google Scholar 

  169. Gadhave, D.; Rasal, N.; Sonawane, R.; Sekar, M.; Kokare, C. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies. Int. J. Biol. Macromol. 2021, 167, 906–920.

    CAS  Google Scholar 

  170. Gieszinger, P.; Csaba, N. S.; Garcia-Fuentes, M.; Prasanna, M.; Gáspár, R.; Sztojkov-Ivanov, A.; Ducza, E.; Márki, Á.; Janáky, T.; Kecskeméti, G. et al. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur. J. Pharm. Biopharm. 2020, 153, 177–186.

    CAS  Google Scholar 

  171. Bhattamisra, S. K.; Shak, A. T.; Xi, L. W.; Safian, N. H.; Choudhury, H.; Lim, W. M.; Shahzad, N.; Alhakamy, N. A.; Anwer, M. K.; Radhakrishnan, A. K. et al. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm. 2020, 579, 119148.

    CAS  Google Scholar 

  172. Nakao, Y.; Horiguchi, M.; Nakamura, R.; Sasaki-Hamada, S.; Ozawa, C.; Funane, T.; Ozawa, R.; Oka, J. I.; Yamashita, C. LARETH-25 and β-CD improve central transitivity and central pharmacological effect of the GLP-2 peptide. Int. J. Pharm. 2016, 515, 37–45.

    CAS  Google Scholar 

  173. Al-Suhaimi, E. A.; Nawaz, M.; Khan, F. A.; Aljafary, M. A.; Baykal, A.; Homeida, A. M. Emerging trends in the delivery of nanoformulated oxytocin across blood-brain barrier. Int. J. Pharm. 2021, 609, 121141.

    CAS  Google Scholar 

  174. Borrajo, M. L.; Alonso, M. J. Using nanotechnology to deliver biomolecules from nose to brain—peptides, proteins, monoclonal antibodies and RNA. Drug Deliv. Transl. Res. 2022, 12, 862–880.

    CAS  Google Scholar 

  175. Sharma, M.; Waghela, S.; Mhatre, R.; Saraogi, G. K. A recent update on intranasal delivery of high molecular weight proteins, peptides, and hormones. Curr. Pharm. Des. 2021, 27, 4279–4299.

    CAS  Google Scholar 

  176. González, L. F.; Acuña, E.; Arellano, G.; Morales, P.; Sotomayor, P.; Oyarzun-Ampuero, F.; Naves, R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J. Control. Release 2021, 331, 443–459.

    Google Scholar 

  177. Zhao, Y. Z.; Lin, M.; Lin, Q.; Yang, W.; Yu, X. C.; Tian, F. R.; Mao, K. L.; Yang, J. J.; Lu, C. T.; Wong, H. L. Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J. Control. Release 2016, 224, 165–175.

    CAS  Google Scholar 

  178. Zhou, X.; Deng, X. H.; Liu, M. F.; He, M. T.; Long, W. H.; Xu, Z. B.; Zhang, K.; Liu, T.; So, K. F.; Fu, Q. L. et al. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy. J. Control. Release 2023, 357, 1–19.

    CAS  Google Scholar 

  179. Bernocchi, B.; Carpentier, R.; Lantier, I.; Ducournau, C.; Dimier-Poisson, I.; Betbeder, D. Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles. J. Control. Release 2016, 232, 42–50.

    CAS  Google Scholar 

  180. Henninger, N.; Mayasi, Y. Nucleic acid therapies for ischemic stroke. Neurotherapeutics 2019, 16, 299–313.

    CAS  Google Scholar 

  181. Shah, P.; Lalan, M.; Barve, K. Intranasal delivery: An attractive route for the administration of nucleic acid based therapeutics for CNS disorders. Front Pharmacol. 2022, 13, 974666.

    CAS  Google Scholar 

  182. Rupaimoole, R.; Slack, F. J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222.

    CAS  Google Scholar 

  183. Zheng, T.; Wang, W. T.; Mohammadniaei, M.; Ashley, J.; Zhang, M.; Zhou, N. L.; Shen, J.; Sun, Y. Anti-microRNA-21 oligonucleotide loaded spermine-modified acetalated dextran nanoparticles for B1 receptor-targeted gene therapy and antiangiogenesis therapy. Adv. Sci. (Weinh.) 2022, 9, 2103812.

    CAS  Google Scholar 

  184. Lee, Y.; Kim, M.; Ha, J.; Lee, M. Brain-targeted exosome-mimetic cell membrane nanovesicles with therapeutic oligonucleotides elicit anti-tumor effects in glioblastoma animal models. Bioeng. Transl. Med. 2022, 8, e10426.

    Google Scholar 

  185. Ha, J.; Kim, M.; Lee, Y.; Lee, M. Intranasal delivery of self-assembled nanoparticles of therapeutic peptides and antagomirs elicits anti-tumor effects in an intracranial glioblastoma model. Nanoscale 2021, 13, 14745–14759.

    CAS  Google Scholar 

  186. Kim, M.; Lee, Y.; Lee, M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model. Nanoscale 2021, 13, 14166–14178.

    CAS  Google Scholar 

  187. Dong, Y. Z.; Siegwart, D. J.; Anderson, D. G. Strategies, design, and chemistry in siRNA delivery systems. Adv. Drug Deliv. Rev. 2019, 144, 133–147.

    CAS  Google Scholar 

  188. Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

    CAS  Google Scholar 

  189. Tang, L.; Zhang, R.; Wang, Y. S.; Zhang, X. Y.; Yang, Y. L.; Zhao, B. Y.; Yang, L. A simple self-assembly nanomicelle based on brain tumor-targeting peptide-mediated siRNA delivery for glioma immunotherapy via intranasal administration. Acta Biomater. 2023, 155, 521–537.

    CAS  Google Scholar 

  190. Yang, Y. L.; Zhang, X. Y.; Wu, S. W.; Zhang, R.; Zhou, B. L.; Zhang, X. Y.; Tang, L.; Tian, Y. M.; Men, K.; Yang, L. Enhanced nose-to-brain delivery of siRNA using hyaluronan-enveloped nanomicelles for glioma therapy. J. Control. Release 2022, 342, 66–80.

    CAS  Google Scholar 

  191. Yang, X. T.; Yang, W. Q.; Xia, X.; Lei, T.; Yang, Z. H.; Jia, W. F.; Zhou, Y.; Cheng, G.; Gao, H. L. Intranasal delivery of BACE1 siRNA and rapamycin by dual targets modified nanoparticles for Alzheimer’s disease therapy. Small 2022, 18, 2203182.

    CAS  Google Scholar 

  192. Aly, A. E. E.; Harmon, B. T.; Padegimas, L.; Sesenoglu-Laird, O.; Cooper, M. J.; Waszczak, B. L. Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol. Neurobiol. 2019, 56, 688–701.

    CAS  Google Scholar 

  193. Aly, A. E. E.; Harmon, B.; Padegimas, L.; Sesenoglu-Laird, O.; Cooper, M. J.; Yurek, D. M.; Waszczak, B. L. Intranasal delivery of hGDNF plasmid DNA nanoparticles results in long-term and widespread transfection of perivascular cells in rat brain. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 20–33.

    CAS  Google Scholar 

  194. Shin, H.; Park, S. J.; Yim, Y.; Kim, J.; Choi, C.; Won, C.; Min, D. H. Recent advances in RNA therapeutics and RNA delivery systems based on nanoparticles. Adv. Therap. 2018, 1, 1800065.

    Google Scholar 

  195. Xiao, X. R.; Li, H.; Zhao, L. J.; Zhang, Y. F.; Liu, Z. C. Oligonucleotide aptamers: Recent advances in their screening, molecular conformation and therapeutic applications. Biomed. Pharmacother. 2021, 143, 112232.

    CAS  Google Scholar 

  196. Bukari, B.; Samarasinghe, R. M.; Noibanchong, J.; Shigdar, S. L. Non-invasive delivery of therapeutics into the brain: The potential of aptamers for targeted delivery. Biomedicines 2020, 8, 120.

    CAS  Google Scholar 

  197. Elnaggar, Y. S. R.; Etman, S. M.; Abdelmonsif, D. A.; Abdallah, O. Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci. 2015, 104, 3544–3556.

    CAS  Google Scholar 

  198. Don, T. M.; Chang, W. J.; Jheng, P. R.; Huang, Y. C.; Chuang, E. Y. Curcumin-laden dual-targeting fucoidan/chitosan nanocarriers for inhibiting brain inflammation via intranasal delivery. Int. J. Biol. Macromol. 2021, 181, 835–846.

    CAS  Google Scholar 

  199. Tang, S. N.; Wang, A. P.; Yan, X. J.; Chu, L. X.; Yang, X. C.; Song, Y. N.; Sun, K. X.; Yu, X.; Liu, R. X.; Wu, Z. M. et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv. 2019, 26, 700–707.

    CAS  Google Scholar 

  200. Rassu, G.; Porcu, E. P.; Fancello, S.; Obinu, A.; Senes, N.; Galleri, G.; Migheli, R.; Gavini, E.; Giunchedi, P. Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics 2018, 11, 8.

    Google Scholar 

  201. Fonseca-Santos, B.; Chorilli, M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int. J. Pharm. 2020, 589, 119832.

    CAS  Google Scholar 

  202. Wang, H.; Zheng, Y.; Sun, Q.; Zhang, Z.; Zhao, M. N.; Peng, C.; Shi, S. J. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J. Nanobiotechnol. 2021, 19, 322.

    CAS  Google Scholar 

  203. Karthika, C.; Appu, A. P.; Akter, R.; Rahman, M. H.; Tagde, P.; Ashraf, G. M.; Abdel-Daim, M. M.; Ul Hassan, S. S.; Abid, A.; Bungau, S. Potential innovation against Alzheimer’s disorder: A tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery. Environ. Sci. Pollut. Res. 2022, 29, 10950–10965.

    CAS  Google Scholar 

  204. Bandiwadekar, A.; Jose, J.; Khayatkashani, M.; Habtemariam, S.; Kashani, H. R. K.; Nabavi, S. M. Emerging novel approaches for the enhanced delivery of natural products for the management of neurodegenerative diseases. J. Mol. Neurosci. 2022, 72, 653–676.

    CAS  Google Scholar 

  205. Xu, D.; Lu, Y. R.; Kou, N.; Hu, M. J.; Wang, Q. S.; Cui, Y. L. Intranasal delivery of icariin via a nanogel-thermoresponsive hydrogel compound system to improve its antidepressant-like activity. Int. J. Pharm. 2020, 586, 119550.

    CAS  Google Scholar 

  206. Xu, D.; Qiao, T.; Wang, Y.; Wang, Q. S.; Cui, Y. L. Alginate nanogels-based thermosensitive hydrogel to improve antidepressant-like effects of albiflorin via intranasal delivery. Drug Deliv. 2021, 28, 2137–2149.

    CAS  Google Scholar 

  207. Qizilbash, F. F.; Ashhar, M. U.; Zafar, A.; Qamar, Z.; Annu; Ali, J.; Baboota, S.; Ghoneim, M. M.; Alshehri, S.; Ali, A. Thymoquinone-enriched naringenin-loaded nanostructured lipid carrier for brain delivery via nasal route: In vitro prospect and in vivo therapeutic efficacy for the treatment of depression. Pharmaceutics 2022, 14, 656.

    CAS  Google Scholar 

  208. Dou, Y.; Zhao, D. J.; Yang, F.; Tang, Y. Q.; Chang, J. Natural phyto-antioxidant albumin nanoagents to treat advanced Alzheimer’s disease. ACS Appl. Mater. Interfaces 2021, 13, 30373–30382.

    CAS  Google Scholar 

  209. Wang, L. T.; Xu, L.; Du, J. F.; Zhao, X.; Liu, M.; Feng, J. F.; Hu, K. L. Nose-to-brain delivery of borneol modified tanshinone IIA nanoparticles in prevention of cerebral ischemia/reperfusion injury. Drug Deliv. 2021, 28, 1363–1375.

    CAS  Google Scholar 

  210. Ali, J.; Ali, M.; Baboota, S.; Sahni, J. K.; Ramassamy, C.; Dao, L.; Bhavna. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr. Pharm. Des. 2010, 16, 1644–1653.

    CAS  Google Scholar 

  211. Shahi, S. R.; Pardeshi, C. V. Chapter 21—A technology overview on advanced drug administration devices for effective nose-to-brain delivery. In Direct Nose-to-Brain Drug Delivery. Pardeshi, C. V.; Souto, E. B., Eds.; Academic Press, 2021; pp 417–427.

Download references

Acknowledgements

This work was financially supported by the STI 2030-Major Projects (No. 2021ZD0201602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Yu or Hai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Pan, X., Yu, T. et al. Intranasal administration nanosystems for brain-targeted drug delivery. Nano Res. 16, 13077–13099 (2023). https://doi.org/10.1007/s12274-023-6026-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6026-y

Keywords

Navigation