Skip to main content
Log in

Highly selective and efficient photocatalytic NO removal: Charge carrier kinetics and interface molecular process

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The widespread nitrogen oxides (NOx, mainly in NO) in the atmosphere have threatened human health and ecological environment. The dilute NO (ppb) is difficult to efficiently remove via the traditional process due to its characteristics of low concentration, wide range, large total amount, etc. Photocatalysis can utilize solar energy to purify NO pollutants under mild conditions, but its application is limited due to the low selectivity of nitrate and poor activity of NO removal. The underlying reason is that the interface mechanism of NO oxidation is not clearly understood, which leads to the inability to accurately regulate the NO oxidation process. Herein, the recent advances in the photocatalytic oxidation of NO are summarized. Firstly, the common strategies to effectively regulate carrier dynamics such as morphology control, facet engineering, defect engineering, plasma coupling, heterojunction and single-atom catalysts are discussed. Secondly, the progress of enhancing the adsorption and activation of reactants such as NO and O2 during NO oxidation is described in detail, and the corresponding NO oxidation mechanisms are enumerated. Finally, the challenges and prospects of photocatalytic NO oxidation are presented in term of nanotechnology for air pollution control. This review can shed light on the interface mechanism of NO oxidation and provide illuminating information on designing novel catalysts for efficient NOx control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stemmler, K.; Ammann, M.; Donders, C.; Kleffmann, J.; George, C. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 2006, 440, 195–198.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Li, S. P.; Matthews, J.; Sinha, A. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. Science 2008, 319, 1657–1660.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Huang, R. J.; Zhang, Y. L.; Bozzetti, C.; Ho, K. F.; Cao, J. J.; Han, Y. M.; Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Guo, S.; Hu, M.; Zamora, M. L.; Peng, J. F.; Shang, D. J.; Zheng, J.; Du, Z. F.; Wu, Z. J.; Shao, M.; Zeng, L. M. et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bao, F. X.; Li, M.; Zhang, Y.; Chen, C. C.; Zhao, J. C. Photochemical aging of Beijing urban PM2.5: HONO production. Environ. Sci. Technol. 2018, 52, 6309–6316.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Liu, C.; Wang, H. H.; Ma, Q. X.; Ma, J. Z.; Wang, Z.; Liang, L. L.; Xu, W. Y.; Zhang, G.; Zhang, X. Y.; Wang, T. et al. Efficient conversion of NO to NO2 on SO2-aged MgO under atmospheric conditions. Environ. Sci. Technol. 2020, 54, 11848–11856.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhang, W. Q.; Tong, S. R.; Jia, C. H.; Wang, L. L.; Liu, B. X.; Tang, G. Q.; Ji, D. S.; Hu, B.; Liu, Z. R.; Li, W. R. et al. Different HONO sources for three layers at the urban area of Beijing. Environ. Sci. Technol. 2020, 54, 12870–12880.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wang, J. F.; Li, J. Y.; Ye, J. H.; Zhao, J.; Wu, Y. Z.; Hu, J. L.; Liu, D. T.; Nie, D. Y.; Shen, F. Z.; Huang, X. P. et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat. Commun. 2020, 11, 2844.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eeftens, M.; Tsai, M. Y.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; De Hoogh, K. et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2-results of the ESCAPE project. Atmos. Environ. 2012, 62, 303–317.

    Article  ADS  CAS  Google Scholar 

  10. Wang, N.; Lyu, X. P.; Deng, X. J.; Huang, X.; Jiang, F.; Ding, A. J. Aggravating O3 pollution due to NOx emission control in eastern China. Sci. Total Environ. 2019, 677, 732–744.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Song, C. B.; Wu, L.; Xie, Y. C.; He, J. J.; Chen, X.; Wang, T.; Lin, Y. C.; Jin, T. S.; Wang, A. X.; Liu, Y. et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347.

    Article  CAS  PubMed  Google Scholar 

  12. Zeng, Y. Y.; Cao, Y. F.; Qiao, X.; Seyler, B. C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Nguyen, V. H.; Nguyen, B. S.; Huang, C. W.; Le, T. T.; Nguyen, C. C.; Nhi Le, T. T.; Heo, D.; Ly, Q. V.; Trinh, Q. T.; Shokouhimehr, M. et al. Photocatalytic NO, abatement: Recent advances and emerging trends in the development of photocatalysts. J. Cleaner Prod. 2020, 270, 121912.

    Article  CAS  Google Scholar 

  14. Lu, Y. F.; Chen, M. J.; Jiang, L.; Cao, J. J.; Li, H. W.; Lee, S. C.; Huang, Y. Oxygen vacancy engineering of photocatalytic nanomaterials for enrichment, activation, and efficient removal of nitrogen oxides with high selectivity: A review. Environ. Chem. Lett. 2022, 20, 3905–3925.

    Article  CAS  Google Scholar 

  15. He, F.; Jeon, W.; Choi, W. Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nat. Commun. 2021, 12, 2528.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, K. L.; Wang, H.; Li, J. J.; Dong, F. Design and mechanism of photocatalytic oxidation for the removal of air pollutants: A review. Environ. Chem. Lett. 2022, 20, 2687–2708.

    Article  CAS  Google Scholar 

  17. Ma, C.; Wei, J. J.; Jiang, K. N.; Chen, J. Q.; Yang, Z. Z.; Yang, X.; Yu, G. L.; Zhang, C.; Li, X. Typical layered structure bismuth-based photocatalysts for photocatalytic nitrogen oxides oxidation. Sci. Total Environ. 2023, 855, 158644.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wang, Z. Y.; Shi, X. J.; Chen, M. J.; Cao, J. J.; Ho, W.; Lee, S.; Wang, C. Y.; Huang, Y. Polymeric carbon nitride-based photocatalysts for the removal of nitrogen oxides: A review. Environ. Chem. Lett., in press, https://doi.org/10.1007/s10311-023-01583-5.

  19. Sun, M. L.; Dong, X. A.; Lei, B.; Li, J. Y.; Chen, P.; Zhang, Y. X.; Dong, F. Graphene oxide mediated co-generation of C-doping and oxygen defects in Bi2WO6 nanosheets: A combined DRIFTS and DFT investigation. Nanoscale 2019, 11, 20562–20570.

    Article  CAS  PubMed  Google Scholar 

  20. Wu, X. F.; Cheng, J. S.; Li, X. F.; Li, Y. H.; Lv, K. L. Enhanced visible photocatalytic oxidation of NO by repeated calcination of g-C3N4. Appl. Surf. Sci. 2019, 465, 1037–1046.

    Article  ADS  CAS  Google Scholar 

  21. Zhang, R. Y.; Zhang, A. L.; Yang, Y.; Cao, Y. H.; Dong, F.; Zhou, Y. Surface modification to control the secondary pollution of photocatalytic nitric oxide removal over monolithic protonated g-C3N4/graphene oxide aerogel. J. Hazard. Mater. 2020, 397, 122822.

    Article  CAS  PubMed  Google Scholar 

  22. Xiong, M. W.; Tao, Y.; Zhao, Z. S.; Zhu, Q.; Jin, X. Q.; Zhang, S. Q.; Chen, M.; Li, G. S. Porous g-C3N4/TiO2 foam photocatalytic filter for treating NO indoor gas. Environ. Sci.: Nano 2021, 8, 1571–1579.

    CAS  Google Scholar 

  23. Li, S. J.; Shang, H.; Tao, Y.; Li, P. P.; Pan, H. H.; Wang, Q.; Zhang, S.; Jia, H. B.; Zhang, H. N.; Cao, J. Z. et al. Hydroxyl radical-mediated efficient photoelectrocatalytic NO oxidation with simultaneous nitrate storage using a flow photoanode reactor. Angew. Chem., Int. Ed. 2023, 62, e202305538.

    Article  CAS  Google Scholar 

  24. Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

    Article  Google Scholar 

  25. Zhang, P.; Wang, T.; Chang, X. X.; Gong, J. L. Effective charge carrier utilization in photocatalytic conversions. Acc. Chem. Res. 2016, 49, 911–921.

    Article  CAS  PubMed  Google Scholar 

  26. Clarke, T. M.; Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 2010, 110, 6736–6767.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, L. W.; Mohamed, H. H.; Dillert, R.; Bahnemann, D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 263–276.

    Article  CAS  Google Scholar 

  29. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

    Article  CAS  PubMed  Google Scholar 

  30. Hu, J. D.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. In situ fabrication of Bi2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation. Appl. Catal. B Environ. 2017, 217, 224–231.

    Article  CAS  Google Scholar 

  31. Yang, B.; Lv, K. L.; Li, Q.; Fan, J. J.; Li, M. Photosensitization of Bi2O2CO3 nanoplates with amorphous Bi2S3 to improve the visible photoreactivity towards NO oxidation. Appl. Surf. Sci. 2019, 495, 143561.

    Article  CAS  Google Scholar 

  32. Kakuma, Y.; Nosaka, A. Y.; Nosaka, Y. Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Phys. Chem. Chem. Phys. 2015, 17, 18691–18698.

    Article  CAS  PubMed  Google Scholar 

  33. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

    Article  CAS  PubMed  Google Scholar 

  34. He, Y. Z.; Tan, Y. W.; Song, M. Y.; Tu, Q. L.; Fu, M.; Long, L. J.; Wu, J.; Xu, M. M.; Liu, X. Y. Switching on photocatalytic NO oxidation and proton reduction of NH2-MIL-125(Ti) by convenient linker defect engineering. J. Hazard. Mater. 2022, 430, 128468.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J. L.; Li, Z.; Liu, B.; Chen, M. S.; Zhou, Y. T.; Zhu, M. S. Insights into the role of C–S–C bond in C3N5 for photocatalytic NO deep oxidation: Experimental and DFT exploration. Appl. Catal. B Environ. 2023, 328, 122522.

    Article  CAS  Google Scholar 

  36. Ma, H.; He, Y.; Li, X. F.; Sheng, J. P.; Li, J. Y.; Dong, F.; Sun, Y. J. In situ loading of MoO3 clusters on ultrathin Bi2MoO6 nanosheets for synergistically enhanced photocatalytic NO abatement. Appl. Catal. B Environ. 2021, 292, 120159.

    Article  CAS  Google Scholar 

  37. Cui, W.; Li, J. Y.; Sun, Y. J.; Wang, H.; Jiang, G. M.; Lee, S. C.; Dong, F. Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride. Appl. Catal. B Environ. 2018, 237, 938–946.

    Article  CAS  Google Scholar 

  38. Li, T. Z.; Zhang, J. J.; Zheng, K. T.; Xu, C. J. A supramolecule-based shape-controllable preparation of carbon nitride nanotubes for the visible light driven photodegradation. Surf. Interfaces 2022, 30, 101894.

    Article  CAS  Google Scholar 

  39. Malik, R.; Tomer, V. K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sust. Energy Rev. 2021, 135, 110235.

    Article  CAS  Google Scholar 

  40. Xiao, S. N.; Zhang, D. Q.; Pan, D. L.; Zhu, W.; Liu, P. J.; Cai, Y.; Li, G. S.; Li, H. X. A chloroplast structured photocatalyst enabled by microwave synthesis. Nat. Commun. 2019, 10, 1570.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

    Article  CAS  Google Scholar 

  42. Wang, H.; He, W. J.; Dong, X. A.; Jiang, G. M.; Zhang, Y. X.; Sun, Y. J.; Dong, F. In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C3N4 nanosheets. RSC Adv. 2017, 7, 19280–19287.

    Article  ADS  CAS  Google Scholar 

  43. Zhou, B. X.; Ding, S. S.; Zhang, B. J.; Xu, L.; Chen, R. S.; Luo, L.; Huang, W. Q.; Xie, Z.; Pan, A. L.; Huang, G. F. Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: From 3D to 2D and 1D nanostructures. Appl. Catal. B Environ. 2019, 254, 321–328.

    Article  CAS  Google Scholar 

  44. Wu, X. B.; Fan, H. Q.; Wang, W. J.; Lei, L.; Chang, X. Y.; Ma, L. T. Multiple ordered porous honeycombed g-C3N4 with carbon ring in-plane splicing for outstanding photocatalytic H2 production. J. Mater. Chem. A 2022, 10, 17817–17826.

    Article  CAS  Google Scholar 

  45. Chen, X. L.; Zhang, H. Q.; Zhang, D. Q.; Miao, Y. C.; Li, G. S. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation. Appl. Surf. Sci. 2018, 435, 468–475.

    Article  ADS  CAS  Google Scholar 

  46. Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.

    Article  Google Scholar 

  47. Wang, S. Y.; Ding, X.; Yang, N.; Zhan, G. M.; Zhang, X. H.; Dong, G. H.; Zhang, L. Z.; Chen, H. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Appl. Catal. B Environ. 2020, 265, 118585.

    Article  CAS  Google Scholar 

  48. Katal, R.; Masudy-Panah, S.; Tanhaei, M.; Farahani, M. H. D. A.; Hu, J. Y. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem. Eng. J. 2020, 384, 123384.

    Article  CAS  Google Scholar 

  49. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078–4083.

    Article  CAS  PubMed  Google Scholar 

  51. Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

    Article  CAS  PubMed  Google Scholar 

  52. Wan, Y. S.; Li, J. B.; Ni, J. P.; Wang, C.; Ni, C. S.; Chen, H. Crystal-facet and microstructure engineering in ZnO for photocatalytic NO oxidation. J. Hazard. Mater. 2022, 435, 129073.

    Article  CAS  PubMed  Google Scholar 

  53. Ma, H.; He, Y.; Dong, X. A.; Sheng, J. P.; Chen, S.; Dong, F.; Xie, G. X.; Sun, Y. J. Doping and facet effects synergistically mediated interfacial reaction mechanism and selectivity in photocatalytic NO abatement. J. Colloid Interface Sci. 2021, 604, 624–634.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Li, Y. H.; Gu, M. L.; Zhang, X. M.; Fan, J. J.; Lv, K. L.; Carabineiro, S. A. C.; Dong, F. 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Mater. Today 2020, 41, 270–303.

    Article  CAS  Google Scholar 

  55. Zheng, Y. M.; Luo, Y.; Ruan, Q. S.; Yu, J.; Guo, X. L.; Zhang, W. J.; Xie, H.; Zhang, Z.; Zhao, J. J.; Huang, Y. Plasma-tuned nitrogen vacancy graphitic carbon nitride sphere for efficient photocatalytic H2O2 production. J. Colloid Interface Sci. 2022, 609, 75–85.

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

    Article  CAS  Google Scholar 

  57. Di, J.; Zhu, C.; Ji, M. X.; Duan, M. L.; Long, R.; Yan, C.; Gu, K. Z.; Xiong, J.; She, Y. B.; Xia, J. X. et al. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 14847–14851.

    Article  CAS  Google Scholar 

  58. Lau, V. W. H.; Yu, V. W. Z.; Ehrat, F.; Botari, T.; Moudrakovski, I.; Simon, T.; Duppel, V.; Medina, E.; Stolarczyk, J. K.; Feldmann, J. et al. Urea-modified carbon nitrides: Enhancing photocatalytic hydrogen evolution by rational defect engineering. Adv. Energy Mater. 2017, 7, 1602251.

    Article  Google Scholar 

  59. Liu, H. J.; Chen, P.; Yuan, X. Y.; Zhang, Y. X.; Huang, H. W.; Wang, L. A.; Dong, F. Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets. Chin. J. Catal. 2019, 40, 620–630.

    Article  CAS  Google Scholar 

  60. Liu, X. M.; Zheng, J. F.; Peng, K.; Qin, G. Z.; Yang, Y. T.; Huang, Z. G. The intrinsic effects of oxygen vacancy and doped non-noble metal in TiO2(B) on photocatalytic oxidation VOCs by visible light driving. J. Environ. Chem. Eng. 2022, 10, 107390.

    Article  CAS  Google Scholar 

  61. Li, Y. H.; Ho, W. K.; Lv, K. L.; Zhu, B. C.; Lee, S. C. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 2018, 430, 380–389.

    Article  ADS  CAS  Google Scholar 

  62. Li, Y. H.; Gu, M. L.; Zhang, M.; Zhang, X. M.; Lv, K. L.; Liu, Y. Q.; Ho, W.; Dong, F. C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for efficient and stable NO photo-oxidation. Chem. Eng. J. 2020, 389, 124421.

    Article  CAS  Google Scholar 

  63. Huo, W. C.; Dong, X. A.; Li, J. Y.; Liu, M.; Liu, X. Y.; Zhang, Y. X.; Dong, F. Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chem. Eng. J. 2019, 361, 129–138.

    Article  CAS  Google Scholar 

  64. Shang, H.; Li, M. Q.; Li, H.; Huang, S.; Mao, C. L.; Ai, Z. H.; Zhang, L. Z. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ. Sci. Technol. 2019, 53, 6444–6453.

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Hu, Z.; Li, K. N.; Wu, X. F.; Wang, N.; Li, X. F.; Li, Q.; Li, L.; Lv, K. L. Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy. Appl. Catal. B Environ. 2019, 256, 117860.

    Article  CAS  Google Scholar 

  66. Liao, J. Z.; Chen, L. C.; Sun, M. L.; Lei, B.; Zeng, X. L.; Sun, Y. J.; Dong, F. Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies. Chin. J. Catal. 2018, 39, 779–789.

    Article  CAS  Google Scholar 

  67. Li, H.; Zhu, H. J.; Shi, Y. B.; Shang, H.; Zhang, L. Z.; Wang, J. Vacancy-rich and porous NiFe-layered double hydroxide ultrathin nanosheets for efficient photocatalytic NO oxidation and storage. Environ. Sci. Technol. 2022, 56, 1771–1779.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Sun, Y. J.; Wang, H.; Xing, Q.; Cui, W.; Li, J. Y.; Wu, S. J.; Sun, L. D. The pivotal effects of oxygen vacancy on Bi2MoO6: Promoted visible light photocatalytic activity and reaction mechanism. Chin. J. Catal. 2019, 40, 647–655.

    Article  CAS  Google Scholar 

  69. Liao, J. Z.; Cui, W.; Li, J. Y.; Sheng, J. P.; Wang, H.; Dong, X. A.; Chen, P.; Jiang, G. M.; Wang, Z. M.; Dong, F. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem. Eng. J. 2020, 379, 122282.

    Article  CAS  Google Scholar 

  70. Li, Y. H.; Gu, M. L.; Shi, T.; Cui, W.; Zhang, X. M.; Dong, F.; Cheng, J. S.; Fan, J. J.; Lv, K. L. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B Environ. 2020, 262, 118281.

    Article  CAS  Google Scholar 

  71. Rao, F.; Zhu, G. Q.; Zhang, W. B.; Xu, Y. H.; Cao, B. W.; Shi, X. J.; Gao, J. Z.; Huang, Y. H.; Huang, Y.; Hojamberdiev, M. Maximizing the formation of reactive oxygen species for deep oxidation of NO via manipulating the oxygen-vacancy defect position on (BiO)2CO3. ACS Catal. 2021, 11, 7735–7749.

    Article  CAS  Google Scholar 

  72. Chen, F.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 2021, 33, 2005256.

    Article  CAS  Google Scholar 

  73. Cheng, G.; Liu, X.; Song, X. J.; Chen, X.; Dai, W. X.; Yuan, R. S.; Fu, X. Z. Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies. Appl. Catal. B Environ. 2020, 277, 119196.

    Article  CAS  Google Scholar 

  74. Wang, Z. Y.; Chen, M. J.; Huang, Y.; Shi, X. J.; Zhang, Y. F.; Huang, T. T.; Cao, J. J.; Ho, W.; Lee, S. C. Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Appl. Catal. B Environ. 2018, 239, 352–361.

    Article  CAS  Google Scholar 

  75. Yuan, C. W.; Chen, R. M.; Wang, J. D.; Wu, H. Z.; Sheng, J. P.; Dong, F.; Sun, Y. J. La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression. J. Hazard. Mater. 2020, 400, 123174.

    Article  CAS  PubMed  Google Scholar 

  76. Xia, X.; Xie, C.; Xu, B. G.; Ji, X. S.; Gao, G. G.; Yang, P. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J. Ind. Eng. Chem. 2022, 105, 303–312.

    Article  CAS  Google Scholar 

  77. Zhou, M.; Dong, G. H.; Yu, F. K.; Huang, Y. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method. Appl. Catal. B Environ. 2019, 256, 117825.

    Article  CAS  Google Scholar 

  78. Dong, X. A.; Li, J. Y.; Xing, Q.; Zhou, Y.; Huang, H. W.; Dong, F. The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C3N4. Appl. Catal. B Environ. 2018, 232, 69–76.

    Article  CAS  Google Scholar 

  79. Zhou, M.; Dong, G. H.; Ma, J. L.; Dong, F.; Wang, C. Y.; Sun, J. W. Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions. Appl. Catal. B Environ. 2020, 273, 119007.

    Article  CAS  Google Scholar 

  80. Chen, X. L.; Cai, Y.; Liang, R.; Tao, Y.; Wang, W. C.; Zhao, J. J.; Chen, X. F.; Li, H. X.; Zhang, D. Q. NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis. Appl. Catal. B Environ. 2020, 267, 118687.

    Article  CAS  Google Scholar 

  81. Ding, X.; Song, X.; Li, P. N.; Ai, Z. H.; Zhang, L. Z. Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres. J. Hazard. Mater. 2011, 190, 604–612.

    Article  CAS  PubMed  Google Scholar 

  82. Lu, Z. Z.; Li, S. Q.; Xiao, J. Y. K-Ca synergetic modified g-C3N4 for efficient photocatalytic NO removal with low-NO2-emission. Catal. Lett. 2023, 153, 2558–2570.

    Article  CAS  Google Scholar 

  83. Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

    Article  CAS  Google Scholar 

  84. Ma, X. C.; Dai, Y.; Yu, L.; Huang, B. B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 2016, 5, e16017–e16017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, Z. X.; An, Y. R.; Zhang, W. B.; Zhu, L. J.; Zhu, G. Q. Au nanoparticles modified oxygen-vacancies-rich Bi4Ti3O12 heterojunction for efficient photocatalytic NO removal with high selectivity. J. Alloys Compd. 2023, 942, 169018.

    Article  CAS  Google Scholar 

  86. Chen, Z.; Yin, H. B.; Wang, R.; Peng, Y.; You, C. F.; Li, J. H. Efficient electron transfer by plasmonic silver in SrTiO3 for low-concentration photocatalytic NO oxidation. Environ. Sci. Technol. 2022, 56, 3604–3612.

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Sun, M. L.; Zhang, W. D.; Sun, Y. J.; Zhang, Y. X.; Dong, F. Synergistic integration of metallic Bi and defects on BiOI: Enhanced photocatalytic NO removal and conversion pathway. Chin. J. Catal. 2019, 40, 826–836.

    Article  CAS  Google Scholar 

  88. Wang, H.; Zhang, W. D.; Li, X. W.; Li, J. Y.; Cen, W. L.; Li, Q. Y.; Dong, F. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Appl. Catal. B Environ. 2018, 225, 218–227.

    Article  CAS  Google Scholar 

  89. Li, X. W.; Zhang, W. D.; Li, J. Y.; Jiang, G. M.; Zhou, Y.; Lee, S.; Dong, F. Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. Appl. Catal. B Environ. 2019, 241, 187–195.

    Article  CAS  Google Scholar 

  90. Wang, Z. P.; Lin, Z. P.; Shen, S. J.; Zhong, W. W.; Cao, S. W. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730.

    Article  CAS  Google Scholar 

  91. Liu, Y.; Pan, D. L.; Xiong, M. W.; Tao, Y.; Chen, X. F.; Zhang, D. Q.; Huang, Y.; Li, G. S. In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants. Chin. J. Catal. 2020, 41, 1554–1563.

    Article  CAS  Google Scholar 

  92. Yang, X. F.; Tian, L.; Zhao, X. L.; Tang, H.; Liu, Q. Q.; Li, G. S. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl. Catal. B Environ. 2019, 244, 240–249.

    Article  CAS  Google Scholar 

  93. Cai, H. R.; Wang, B.; Xiong, L. F.; Bi, J. L.; Yuan, L. Y.; Yang, G. D.; Yang, S. C. Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 256, 117853.

    Article  CAS  Google Scholar 

  94. Li, H. J.; Zhou, Y.; Tu, W. G.; Ye, J. H.; Zou, Z. G. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25, 998–1013.

    Article  CAS  Google Scholar 

  95. Zhang, J. L.; Tao, H. C.; Wu, S. S.; Yang, J. L.; Zhu, M. S. Enhanced durability of nitric oxide removal on TiO2 (P25) under visible light: Enabled by the direct Z-scheme mechanism and enhanced structure defects through coupling with C3N5. Appl. Catal. B Environ. 2021, 296, 120372.

    Article  CAS  Google Scholar 

  96. Jiang, G. M.; Cao, J. W.; Chen, M.; Zhang, X. M.; Dong, F. Photocatalytic NO oxidation on N-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway. Appl. Surf. Sci. 2018, 458, 77–85.

    Article  ADS  CAS  Google Scholar 

  97. Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide. Appl. Catal. B Environ. 2019, 243, 576–584.

    Article  CAS  Google Scholar 

  98. Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 4519–4524.

    Article  CAS  Google Scholar 

  99. Xie, B. K.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation. Chem. Eng. J. 2022, 430, 132968.

    Article  CAS  Google Scholar 

  100. Kong, X. Y.; Lee, W. Q.; Mohamed, A. R.; Chai, S. P. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chem. Eng. J. 2019, 372, 1183–1193.

    Article  CAS  Google Scholar 

  101. Nie, J. L.; Zhu, G. Q.; Zhang, W. B.; Gao, J. Z.; Zhong, P.; Xie, X. T.; Huang, Y.; Hojamberdiev, M. Oxygen vacancy defects-boosted deep oxidation of NO by β-Bi2O3/CeO2–δ p-n heterojunction photocatalyst in situ synthesized from Bi/Ce(CO3)(OH) precursor. Chem. Eng. J. 2021, 424, 130327.

    Article  CAS  Google Scholar 

  102. Geng, Q.; Xie, H. T.; He, Y.; Sun, Y. J.; Hou, X. F.; Wang, Z. M.; Dong, F. Atomic interfacial structure and charge transfer mechanism on in-situ formed BiOI/Bi2O2SO4 p-n heterojunctions with highly promoted photocatalysis. Appl. Catal. B Environ. 2021, 297, 120492.

    Article  CAS  Google Scholar 

  103. Bard, A. J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59–75.

    Article  CAS  Google Scholar 

  104. Ou, M.; Wan, S. P.; Zhong, Q.; Zhang, S. L.; Song, Y.; Guo, L. N.; Cai, W.; Xu, Y. L. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Appl. Catal. B Environ. 2018, 221, 97–107.

    Article  CAS  Google Scholar 

  105. Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.

    Article  CAS  PubMed  Google Scholar 

  106. Geng, Y. X.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Z-scheme 2D/2D a-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Appl. Catal. B Environ. 2021, 280, 119409.

    Article  CAS  Google Scholar 

  107. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  ADS  CAS  Google Scholar 

  108. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  ADS  CAS  Google Scholar 

  109. Gan, T., Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.

  110. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

    Article  ADS  CAS  Google Scholar 

  111. Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

    Article  CAS  Google Scholar 

  112. Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, e202303185.

  113. Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

    Article  CAS  Google Scholar 

  114. Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0-Coδ+ interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

    Article  CAS  Google Scholar 

  115. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-Air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    Article  CAS  Google Scholar 

  116. Feng, H.; Li, H. F.; Liu, X. Y.; Huang, Y. M.; Pan, Q.; Peng, R.; Du, R. Y.; Zheng, X. X.; Yin, Z. Y.; Li, S. Q. et al. Porphyrin-based Ti-MOFs conferred with single-atom Pt for enhanced photocatalytic hydrogen evolution and NO removal. Chem. Eng. J. 2022, 428, 132045.

    Article  CAS  Google Scholar 

  117. Hu, L. Z.; Wang, T.; Nie, Q. Q.; Liu, J. Y.; Cui, Y. P.; Zhang, K. F.; Tan, Z. C.; Yu, H. S. Single Pd atoms anchored graphitic carbon nitride for highly selective and stable photocatalysis of nitric oxide. Carbon 2022, 200, 187–198.

    Article  CAS  Google Scholar 

  118. Li, C. F.; Pan, W. G.; Zhang, Z. R.; Wu, T.; Guo, R. T. Recent progress of single-atom photocatalysts applied in energy conversion and environmental protection. Small 2023, 19, 2300460.

    Article  CAS  Google Scholar 

  119. Meng, G.; Lan, W.; Zhang, L. L.; Wang, S. B.; Zhang, T. H.; Zhang, S.; Xu, M.; Wang, Y.; Zhang, J.; Yue, F. X. et al. Synergy of single atoms and Lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. J. Am. Chem. Soc. 2023, 145, 12884–12893.

    Article  CAS  PubMed  Google Scholar 

  120. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  121. Zhang, Z. R.; Feng, C.; Liu, C. X.; Zuo, M.; Qin, L.; Yan, X. P.; Xing, Y. L.; Li, H. L.; Si, R.; Zhou, S. M. et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 2020, 11, 1215.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

    Article  CAS  Google Scholar 

  123. Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

    Article  ADS  CAS  Google Scholar 

  124. Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

    Article  ADS  CAS  Google Scholar 

  125. Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

    Article  CAS  Google Scholar 

  126. Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

    Article  CAS  Google Scholar 

  127. Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  129. Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 singlesite photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191–12196.

    Article  CAS  Google Scholar 

  130. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

    Article  Google Scholar 

  131. Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  132. Hu, Z.; Li, X. F.; Zhang, S. S.; Li, Q.; Fan, J. J.; Qu, X. L.; Lv, K. L. Fe1/TiO2 hollow microspheres: Fe and Ti dual active sites boosting the photocatalytic oxidation of NO. Small 2020, 16, 2004583.

    Article  CAS  Google Scholar 

  133. Liu, G. M.; Huang, Y.; Lv, H. Q.; Wang, H.; Zeng, Y. B.; Yuan, M. Z.; Meng, Q. G.; Wang, C. Y. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl. Catal. B Environ. 2021, 284, 119683.

    Article  CAS  Google Scholar 

  134. Zhang, R. Y.; Cao, Y. H.; Doronkin, D. E.; Ma, M. Z.; Dong, F.; Zhou, Y. Single-atom dispersed Zn-N3 active sites bridging the interlayer of g-C3N4 to tune NO oxidation pathway for the inhibition of toxic by-product generation. Chem. Eng. J. 2023, 454, 140084.

    Article  CAS  Google Scholar 

  135. Dong, F.; Wang, Z. Y.; Li, Y. H.; Ho, W. K.; Lee, S. C. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environ. Sci. Technol. 2014, 48, 10345–10353.

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Chen, R. M.; Li, J. Y.; Wang, H.; Chen, P.; Dong, X. A.; Sun, Y. J.; Zhou, Y.; Dong, F. Photocatalytic reaction mechanisms at a gassolid interface for typical air pollutant decomposition. J. Mater. Chem. A 2021, 9, 20184–20210.

    Article  CAS  Google Scholar 

  137. Mikhaylov, R. V.; Lisachenko, A. A.; Shelimov, B. N.; Kazansky, V. B.; Martra, G.; Coluccia, S. FTIR and TPD study of the room temperature interaction of a NO-oxygen mixture and of NO2 with titanium dioxide. J. Phys. Chem. C 2013, 117, 10345–10352.

    Article  CAS  Google Scholar 

  138. Huang, Y.; Liang, Y. L.; Rao, Y. F.; Zhu, D. D.; Cao, J. J.; Shen, Z. X.; Ho, W.; Lee, S. C. Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: Characterization, biocompatibility, and mechanisms for NO removal. Environ. Sci. Technol. 2017, 51, 2924–2933.

    Article  ADS  CAS  PubMed  Google Scholar 

  139. Zhang, Q.; Shi, Y. Y.; Shi, X. J.; Huang, T. T.; Lee, S.; Huang, Y.; Cao, J. J. Constructing Pd/ferroelectric Bi4Ti3O12 nanoflake interfaces for O2 activation and boosting NO photo-oxidation. Appl. Catal. B Environ. 2022, 302, 120876.

    Article  CAS  Google Scholar 

  140. Li, H.; Shang, H.; Cao, X. M.; Yang, Z. P.; Ai, Z. H.; Zhang, L. Z. Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals. Environ. Sci. Technol. 2018, 52, 8659–8665.

    Article  ADS  CAS  PubMed  Google Scholar 

  141. Huo, W. C.; Xu, W. N.; Cao, T.; Liu, X. Y.; Zhang, Y. X.; Dong, F. Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study. Appl. Catal. B Environ. 2019, 254, 206–213.

    Article  CAS  Google Scholar 

  142. Cao, J. W.; Zhang, J. Y.; Dong, X. A.; Fu, H. L.; Zhang, X. M.; Lv, X. S.; Li, Y. H.; Jiang, G. M. Defective borate-decorated polymer carbon nitride: Enhanced photocatalytic NO removal, synergy effect and reaction pathway. Appl. Catal. B Environ. 2019, 249, 266–274.

    Article  CAS  Google Scholar 

  143. Li, H.; Shang, H.; Li, Y. H.; Cao, X. M.; Yang, Z. P.; Ai, Z. H.; Zhang, L. Z. Interfacial charging-decharging strategy for efficient and selective aerobic NO oxidation on oxygen vacancy. Environ. Sci. Technol. 2019, 53, 6964–6971.

    Article  ADS  CAS  PubMed  Google Scholar 

  144. Lu, Y. F.; Huang, Y.; Zhang, Y. F.; Huang, T. T.; Li, H. W.; Cao, J. J.; Ho, W. Effects of H2O2 generation over visible light-responsive Bi/Bi2O2-xCO3 nanosheets on their photocatalytic NOx removal performance. Chem. Eng. J. 2019, 363, 374–382.

    Article  CAS  Google Scholar 

  145. Lu, Y. F.; Huang, Y.; Zhang, Y. F.; Cao, J. J.; Li, H. W.; Bian, C.; Lee, S. C. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. Appl. Catal. B Environ. 2018, 231, 357–367.

    Article  CAS  Google Scholar 

  146. Li, Q.; Zhao, J. J.; Shang, H.; Ma, Z.; Cao, H. Y.; Zhou, Y.; Li, G. S.; Zhang, D. Q.; Li, H. X. Singlet oxygen and mobile hydroxyl radicals co-operating on gas-solid catalytic reaction interfaces for deeply oxidizing NOx. Environ. Sci. Technol. 2022, 56, 5830–5839.

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Shi, Y. B.; Yang, Z. P.; Shi, L. J.; Li, H.; Liu, X. P.; Zhang, X.; Cheng, J. D.; Liang, C.; Cao, S. Y.; Guo, F. R. et al. Surface boronizing can weaken the excitonic effects of BiOBr nanosheets for efficient O2 activation and selective NO oxidation under visible light irradiation. Environ. Sci. Technol. 2022, 56, 14478–14486.

    Article  ADS  CAS  PubMed  Google Scholar 

  148. Shang, H.; Huang, S.; Li, H.; Li, M. Q.; Zhao, S. X.; Wang, J. X.; Ai, Z. H.; Zhang, L. Z. Dual-site activation enhanced photocatalytic removal of NO with Au/CeO2. Chem. Eng. J. 2020, 386, 124047.

    Article  CAS  Google Scholar 

  149. Li, J. Y.; Dong, X. A.; Sun, Y. J.; Jiang, G. M.; Chu, Y. H.; Lee, S. C.; Dong, F. Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. Appl Catal. B Environ. 2018, 239, 187–195.

    Article  CAS  Google Scholar 

  150. Song, X. J.; Qin, G. D.; Cheng, G.; Jiang, W. J.; Chen, X.; Dai, W. X.; Fu, X. Z. Oxygen defect-induced NO intermediates promoting NO deep oxidation over Ce doped SnO2 under visible light. Appl. Catal. B Environ. 2021, 284, 119761.

    Article  CAS  Google Scholar 

  151. Cui, W.; Li, J. Y.; Dong, F.; Sun, Y. J.; Jiang, G. M.; Cen, W. L.; Lee, S. C.; Wu, Z. B. Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride. Environ. Sci. Technol. 2017, 51, 10682–10690.

    Article  ADS  CAS  PubMed  Google Scholar 

  152. Maggos, T.; Bartzis, J. G.; Liakou, M.; Gobin, C. Photocatalytic degradation of NO, gases using TiO2-containing paint: A real scale study. J. Hazard. Mater. 2007, 146, 668–673.

    Article  CAS  PubMed  Google Scholar 

  153. Chen, M.; Chu, J. W. NOx photocatalytic degradation on active concrete road surface-from experiment to real-scale application. J. Cleaner Prod. 2011, 19, 1266–1272.

    Article  CAS  Google Scholar 

  154. Huang, Y.; Zhang, J.; Wang, Z. Y.; Liu, Y.; Wang, P. G.; Cao, J. J.; Ho, W. g-C3N4/TiO2 composite film in the fabrication of a photocatalytic air-purifying pavements. Sol. RRL 2020, 4, 2000170.

    Article  CAS  Google Scholar 

  155. Banerjee, S.; Dionysiou, D. D.; Pillai, S. C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 2015, 176–177, 396–428.

    Article  Google Scholar 

  156. Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibañez, P.; Di Somma, I. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B Environ. 2015, 170–171, 90–123.

    Article  Google Scholar 

  157. Bai, C. L. Ascent of nanoscience in China. Science 2005, 309, 61–63.

    Article  CAS  PubMed  Google Scholar 

  158. Chen, H. H.; Nanayakkara, C. E.; Grassian, V. H. Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 2012, 112, 5919–5948.

    Article  CAS  PubMed  Google Scholar 

  159. Xiao, S. N.; Wan, Z.; Zhou, J. C.; Li, H.; Zhang, H. Q.; Su, C. L.; Chen, W.; Li, G. S.; Zhang, D. Q.; Li, H. X. Gas-phase photoelectrocatalysis for breaking down nitric oxide. Environ. Sci. Technol. 2019, 53, 7145–7154.

    Article  ADS  CAS  PubMed  Google Scholar 

  160. Dai, W. R.; Tao, Y.; Zou, H. J.; Xiao, S. N.; Li, G. S.; Zhang, D. Q.; Li, H. X. Gas-phase photoelectrocatalytic oxidation of NO via TiO2 nanorod array/FTO photoanodes. Environ. Sci. Technol. 2020, 54, 5902–5912.

    Article  ADS  CAS  PubMed  Google Scholar 

  161. Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

    Article  CAS  Google Scholar 

  162. Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

    Article  CAS  Google Scholar 

  163. Wang, D. D.; Chen, Z. W.; Gu, K. Z.; Chen, C.; Liu, Y. Y.; Wei, X. X.; Singh, C. V.; Wang, S. Y. Hexagonal cobalt nanosheets for high-performance electrocatalytic NO reduction to NH3. J. Am. Chem. Soc. 2023, 145, 6899–6904.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22022608, 21876113, 22176127, 21261140333, 22106105 and 62071300), the Shanghai Engineering Research Center of Green Energy Chemical Engineering (No. 18DZ2254200), “111” Innovation and Talent Recruitment Base on Photochemical and Energy Materials (No. D18020), Shanghai Government (Nos. 22010503400, 18SG41 and YDZX20213100003002), Shanghai Scientific and Technological Innovation Project (No. 21DZ1206300) and Shanghai Sailing Program (No. 22YF1430400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Jia, H., Li, P. et al. Highly selective and efficient photocatalytic NO removal: Charge carrier kinetics and interface molecular process. Nano Res. 17, 1003–1026 (2024). https://doi.org/10.1007/s12274-023-6014-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6014-2

Keywords

Navigation