Skip to main content
Log in

Sequential reactant water management by complementary multisite catalysts for surpassing platinum hydrogen evolution activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Alkaline hydrogen evolution reaction (HER) offers a near-zero-emission approach to advance hydrogen energy. However, the activity limited by the multiple reaction steps involving H2O molecules transfer, absorption, and activation still unqualified the thresholds of economic viability. Herein, we proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process. The Isotopic labeled in situ Raman spectroscopy describes 4-coordinated hydrogen bonded H2O to be free H2O passing the inner Helmholtz plane in the vicinity of the catalysts under the action of hydrophilic Mo sites. Furthermore, potential-dependent electrochemical impedance spectroscopy (EIS) reveals that electrophilic V sites with abundant 3d empty orbitals could activate the lone-pair electrons in the free H2O molecules to produce more protic hydrogen, and dimerize into H2 at the Ni sites. By the sequential management of reactive H2O molecules, NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity (49 mV@10 mA·cm−2 over 140 h). Profoundly, this study provides a tangible model to deepen the comprehension of the catalyst–electrolyte interface and create efficient catalysts for diverse reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  PubMed  Google Scholar 

  2. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

    Article  CAS  Google Scholar 

  4. Qian, G. F.; Chen, W.; Chen, J. L.; Gan, L. Y.; Yu, T. Q.; Pan, M. J.; Zhuo, X. Y.; Yin, S. B. Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation. Green Energy & Environment, in press, https://doi.org/10.1016/j.gee.2022.04.006.

  5. Lin, Y.; Fang, J. K.; Wang, W. B.; Wen, Q. L.; Huang, D. J.; Ding, D. F.; Li, Z.; Liu, Y. W.; Shen, Y.; Zhai, T. Y. Operando reconstructed molecule fence to stabilize NiFe-based oxygen evolution catalysts. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202300604.

  6. Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S. N.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-Universal H2 evolution. Adv. Funct. Mater. 2022, 32, 2107597.

    Article  CAS  Google Scholar 

  9. Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

    Article  PubMed  ADS  Google Scholar 

  10. Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Liao, P. L.; Sun, Y. J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 2018, 9, 4531.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  11. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, Z. J.; Yin, H. J.; He, C. T.; Al-Mamun, M.; Liu, P. R.; Jiang, L. X.; Zhao, Y.; Wang, Y.; Yang, H. G.; Tang, Z. Y. et al. Ultrathin transition metal dichalcogenide/3D metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. 2018, 30, 1801171.

    Article  Google Scholar 

  13. Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

    Article  Google Scholar 

  14. Jiang, B.; Guo, Y. N.; Kim, J.; Whitten, A. E.; Wood, K.; Kani, K.; Rowan, A. E.; Henzie, J.; Yamauchi, Y. Mesoporous metallic iridium nanosheets. J. Am. Chem. Soc. 2018, 140, 12434–12441.

    Article  CAS  PubMed  Google Scholar 

  15. Pi, Y. C.; Zhang, N.; Guo, S. J.; Guo, J.; Huang, X. Q. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett. 2016, 16, 4424–4430.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Luo, W. H.; Wang, Y.; Luo, L. X.; Gong, S.; Wei, M. N.; Li, Y. X.; Gan, X. P.; Zhao, Y. Y.; Zhu, Z. H.; Li, Z. Single-atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 2022, 12, 1167–1179.

    Article  CAS  Google Scholar 

  17. Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anionsintercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

    Article  Google Scholar 

  18. He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

    Article  CAS  Google Scholar 

  20. Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031.

    Article  Google Scholar 

  21. Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

    Article  CAS  Google Scholar 

  22. Chen, Q. C.; Fite, S.; Fridman, N.; Tumanskii, B.; Mahammed, A.; Gross, Z. Hydrogen evolution catalyzed by corrole-chelated nickel complexes, characterized in all catalysis-relevant oxidation states. ACS Catal. 2022, 12, 4310–4317.

    Article  CAS  Google Scholar 

  23. Yan, Y. T.; Lin, J. H.; Xu, T. X.; Liu, B. S.; Huang, K. K.; Qiao, L.; Liu, S. D.; Cao, J.; Jun, S. C.; Yamauchi, Y. et al. Atomic-level platinum filling into Ni-vacancies of dual-deficient NiO for boosting electrocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2200434.

    Article  CAS  Google Scholar 

  24. Zhou, M.; Cheng, C. Q.; Dong, C. K.; Xiao, L. Y.; Zhao, Y.; Liu, Z. W.; Zhao, X. R.; Sasaki, K.; Cheng, H.; Du, X. W. et al. Dislocation network-boosted PtNi nanocatalysts welded on nickel foam for efficient and durable hydrogen evolution at ultrahigh current densities. Adv. Energy Mater. 2023, 13, 2202595.

    Article  CAS  Google Scholar 

  25. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

    Article  CAS  Google Scholar 

  26. Jiang, S. H.; Zhang, R. Y.; Liu, H. X.; Rao, Y.; Yu, Y. N.; Chen, S.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 6461–6466.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Marković, N. M. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2010, 2, 880–885.

    Article  CAS  PubMed  Google Scholar 

  29. Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031.

    Article  CAS  ADS  Google Scholar 

  30. Symes, D.; Taylor-Cox, C.; Holyfield, L.; Al-Duri, B.; Dhir, A. Feasibility of an oxygen-getter with nickel electrodes in alkaline electrolysers. Mater. Renew. Sustain. Energy 2014, 3, 27.

    Article  Google Scholar 

  31. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Gong, Y. N.; Cao, C. Y.; Shi, W. J.; Zhang, J. H.; Deng, J. H.; Lu, T. B.; Zhong, D. C. Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202215187.

    Article  CAS  Google Scholar 

  33. Zeng, Z. P.; Gan, L. Y.; Yang, H. B.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Wang, W. B.; Wang, Z. T.; Yang, R. O.; Duan, J. Y.; Liu, Y. W.; Nie, A. M.; Li, H. Q.; Xia, B. Y.; Zhai, T. Y. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem., Int. Ed. 2021, 60, 22940–22947.

    Article  CAS  Google Scholar 

  35. Ling, Y. F.; Ma, Q. L.; Yu, Y. F.; Zhang, B. Optimization strategies for selective CO2 electroreduction to fuels. Trans. Tianjin Univ. 2021, 27, 180–200.

    Article  CAS  Google Scholar 

  36. Li, S.; Guan, A. X.; Yang, C.; Peng, C.; Lv, X. M.; Ji, Y. L.; Quan, Y. L.; Wang, Q. H.; Zhang, L. J.; Zheng, G. F. Dual-atomic Cu sites for electrocatalytic CO reduction to C2+ products. ACS Mater. Lett. 2021, 3, 1729–1737.

    Article  CAS  Google Scholar 

  37. Zhang, K.; He, Y. C.; Guo, R. Y.; Wang, W. C.; Zhan, Q.; Li, R.; He, T. A. N.; Wu, C.; Jin, M. S. Interstitial carbon-doped PdMo bimetallene for high-performance oxygen reduction reaction. ACS Energy Lett. 2022, 7, 3329–3336.

    Article  CAS  Google Scholar 

  38. Ma, M.; Li, G.; Yan, W.; Wu, Z. Z.; Zheng, Z. P.; Zhang, X. B.; Wang, Q. X.; Du, G. F.; Liu, D. Y.; Xie, Z. X. et al. Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 2022, 14, 2103336.

    Article  Google Scholar 

  39. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickelmolybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  41. Jin, H. Y.; Wang, X. S.; Tang, C.; Vasileff, A.; Li, L. Q.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.

    Article  CAS  Google Scholar 

  42. Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 2011, 23, 4988–5000.

    Article  CAS  Google Scholar 

  43. Wen, Q. L.; Lin, Y.; Yang, Y.; Gao, R. J.; Ouyang, N. Q.; Ding, D. F.; Liu, Y. W.; Zhai, T. Y. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation. ACS Nano 2022, 16, 9572–9582.

    Article  CAS  PubMed  Google Scholar 

  44. Luo, H.; Wang, K.; Lin, F. X.; Lv, F.; Zhou, J. H.; Zhang, W. Y.; Wang, D. W.; Zhang, W. S.; Zhang, Q. H.; Gu, L. et al. Amorphous MoOx with high oxophilicity interfaced with PtMo alloy nanoparticles boosts anti-CO hydrogen electrocatalysis. Adv. Mater., in press, https://doi.org/10.1002/ADMA.202211854.

  45. Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

    Article  Google Scholar 

  46. Qian, G. F.; Chen, J. L.; Yu, T. Q.; Liu, J. C.; Luo, L.; Yin, S. B. Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 2022, 14, 20.

    Article  CAS  ADS  Google Scholar 

  47. Sari, F. N. I.; Chen, H. S.; Anbalagan, A. K.; Huang, Y. J.; Haw, S. C.; Chen, J. M.; Lee, C. H.; Su, Y. H.; Ting, J. M. V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction. Chem. Eng. J. 2022, 438, 135515.

    Article  CAS  Google Scholar 

  48. Bolar, S.; Shit, S.; Kumar, J. S.; Murmu, N. C.; Ganesh, R. S.; Inokawa, H.; Kuila, T. Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Appl. Catal. B Environ. 2019, 254, 432–442.

    Article  CAS  Google Scholar 

  49. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.

    Article  CAS  Google Scholar 

  50. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  CAS  PubMed  Google Scholar 

  51. Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C-N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

    Article  CAS  Google Scholar 

  52. He, J. L.; Hu, B. B.; Zhao, Y. Superaerophobic electrode with metal@metal-oxide powder catalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 5998–6004.

    Article  CAS  Google Scholar 

  53. Wang, J. Z.; Wang, S. N.; Olayiwola, A.; Yang, N.; Liu, B.; Weigand, J. J.; Wenzel, M.; Du, H. Recovering valuable metals from spent hydrodesulfurization catalyst via blank roasting and alkaline leaching. J. Hazard. Mater. 2021, 416, 125849.

    Article  CAS  PubMed  Google Scholar 

  54. Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

    Article  CAS  Google Scholar 

  55. Zhao, Y. X.; Wen, Q. L.; Huang, D. J.; Jiao, C.; Liu, Y. W.; Liu, Y.; Fang, J. K.; Sun, M.; Yu, L. Operando reconstruction toward dual-cation-defects Co-containing NiFe oxyhydroxide for ultralow energy consumption industrial water splitting electrolyzer. Adv. Energy Mater. 2023, 13, 2203595.

    Article  CAS  Google Scholar 

  56. Su, H.; Lou, H. M.; Zhao, Z. P.; Zhou, L.; Pang, Y. X.; Xie, H. J.; Rao, C.; Yang, D. J.; Qiu, X. Q. In-situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo-S bonds to enhance photocatalytic HER. Chem. Eng. J. 2022, 430, 132770.

    Article  CAS  Google Scholar 

  57. Liu, G. J.; Bai, H. P.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Lin, H. P.; Zheng, L. R.; Li, Y. Y.; Zhang, B.; Peng, H. S. A highly efficient alkaline HER Co-Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state. J. Mater. Chem. A 2019, 7, 12434–12439.

    Article  CAS  Google Scholar 

  58. Yu, T. Q.; Xu, Q. L.; Chen, J. L.; Qian, G. F.; Zhuo, X. Y.; Yang, H. F.; Yin, S. B. Boosting urea-assisted water splitting by constructing sphere-flower-like NiSe2-NiMoO4 heterostructure. Chem. Eng. J. 2022, 449, 137791.

    Article  CAS  Google Scholar 

  59. Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  60. Liu, X.; Meng, J. S.; Ni, K.; Guo, R. T.; Xia, F. J.; Xie, J. J.; Li, X.; Wen, B.; Wu, P. J.; Li, M. et al. Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep. Phys. Sci. 2020, 1, 100241.

    Article  Google Scholar 

  61. Pandey, R.; Usui, K.; Livingstone, R. A.; Fischer, S. A.; Pfaendtner, J.; Backus, E. H. G.; Nagata, Y.; Fröhlich-Nowoisky, J.; Schmüser, L.; Mauri, S. et al. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv. 2016, 2, e1501630.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  62. Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.

    Article  CAS  Google Scholar 

  63. Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huangfu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

    Article  CAS  Google Scholar 

  64. Tong, X. P.; Zhao, Y.; Zhuo, Z. W.; Yang, Z. H.; Wang, S. Z.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Dual-regulation of defect sites and vertical conduction by spiral domain for electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202112953.

    Article  CAS  ADS  Google Scholar 

  65. Liu, D.; Liu, J. C.; Cai, W. Z.; Ma, J.; Yang, H. B.; Xiao, H.; Li, J.; Xiong, Y. J.; Huang, Y. Q.; Liu, B. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 2019, 10, 1779.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  66. Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.

    Article  CAS  Google Scholar 

  67. Yang, H.; Zhao, Y. H.; Wen, Q. L.; Mi, Y.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Res. 2021, 14, 4814–4821.

    Article  CAS  ADS  Google Scholar 

  68. Choquette, Y.; Brossard, L.; Lasia, A.; Ménard, H. Investigation of hydrogen evolution on Raney–Nickel composite-coated electrodes. Electrochim. Acta 1990, 35, 1251–1256.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge technical support from the Analytical and Testing Center at Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youwen Liu or Yi Shen.

Electronic Supplementary Material

12274_2023_6011_MOESM1_ESM.pdf

Sequential reactant water management by complementary multisite catalysts for surpassing platinum hydrogen evolution activity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Ding, D., Zhu, S. et al. Sequential reactant water management by complementary multisite catalysts for surpassing platinum hydrogen evolution activity. Nano Res. 17, 1232–1241 (2024). https://doi.org/10.1007/s12274-023-6011-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6011-5

Keywords

Navigation