Skip to main content
Log in

Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

All-inorganic perovskites, adopting cesium (Cs+) cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites, have attracted much attention owing to the excellent thermal stability. However, all-inorganic iodine-based perovskites generally exhibit poor phase stability in ambient conditions. Herein, we propose an efficient strategy to introduce antimony (Sb3+) into the crystalline lattices of CsPbI2Br perovskite, which can effectively regulate the growth of perovskite crystals to obtain a more stable perovskite phase. Due to the much smaller ionic radius and lower electronegativity of trivalent Sb3+ than those of Pb2+, the Sb3+ doping can decrease surface defects and suppress charge recombination, resulting in longer carrier lifetime and negligible hysteresis. As a result, the all-inorganic perovskite solar cells (PSCs) based on 0.25% Sb3+ doped CsPbI2Br light absorber and screen-printable nanocarbon counter electrode achieved a power conversion efficiency of 11.06%, which is 16% higher than that of the control devices without Sb3+ doping. Moreover, the Sb3+ doped all-inorganic PSCs also exhibited greatly improved endurance against heat and moisture. Due to the use of low-cost and easy-to-process nanocarbon counter electrodes, the manufacturing process of the all-inorganic PSCs is very convenient and highly repeatable, and the manufacturing cost can be greatly reduced. This work offers a promising approach to constructing high-stability all-inorganic PSCs by introducing appropriate lattice doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

    Article  CAS  PubMed  Google Scholar 

  5. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  CAS  PubMed  Google Scholar 

  6. Park, J.; Kim, J.; Yun, H. S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. NREL.BestResearch-CellEfficiencyChart [Online], https://www.nrel.gov/pv/cell-efficiency.html (accessed Apr 25, 2023).

  8. Kim, N. K.; Min, Y. H.; Noh, S.; Cho, E.; Jeong, G.; Joo, M.; Ahn, S. W.; Lee, J. S.; Kim, S.; Ihm, K. et al. Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis. Sci. Rep. 2017, 7, 4645.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Wang, Z.; Shi, Z. J.; Li, T. T.; Chen, Y. H.; Huang, W. Stability of perovskite solar cells: A prospective on the substitution of the A cation and X anion. Angew. Chem., Int. Ed. 2017, 56, 1190–1212.

    Article  CAS  Google Scholar 

  11. Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.

    Article  CAS  ADS  Google Scholar 

  12. Liang, J.; Wang, C. X.; Wang, Y. R.; Xu, Z. R.; Lu, Z. P.; Ma, Y.; Zhu, H. F.; Hu, Y.; Xiao, C. C.; Yi, X. et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829–15832.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, G.; Wu, J. H.; Zhao, Y. H.; Li, Y. M.; Shi, J. J.; Li, Y. S.; Wu, H. J.; Li, D. M.; Luo, Y. H.; Meng, Q. B. Application of cesium on the restriction of precursor crystallization for highly reproducible perovskite solar cells exceeding 20% efficiency. ACS Appl. Mater. Interfaces 2018, 10, 9503–9513.

    Article  CAS  PubMed  Google Scholar 

  14. Ding, L. M.; Cheng, Y. B.; Tang, J. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells exhibit improved efficiency and stability. Acta Phys. Chim. Sin. 2018, 34, 449–450.

    Article  CAS  Google Scholar 

  15. Lin, J.; Lai, M. L.; Dou, L. T.; Kley, C. S.; Chen, H.; Peng, F.; Sun, J. L.; Lu, D.; Hawks, S. A.; Xie, C. L. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 2018, 17, 261–267.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Nam, J. K.; Chun, D. H.; Rhee, R. J. K.; Lee, J. H.; Park, J. H. Methodologies toward efficient and stable cesium lead halide perovskite-based solar cells. Adv. Sci. 2018, 5, 1800509.

    Article  Google Scholar 

  17. Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y. L.; Luo, L.; Hua, J. C.; Wang, C.; Huang, F. Z.; Zhong, J.; Peng, Y.; Ku, Z. L.; Cheng, Y. B. Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method. Mater. Sci. Semicond. Process. 2019, 98, 39–43.

    Article  CAS  Google Scholar 

  19. Frolova, L. A.; Anokhin, D. V.; Piryazev, A. A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. J.; Troshin, P. A. Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 2017, 8, 67–72.

    Article  CAS  PubMed  Google Scholar 

  20. Liang, J.; Han, X.; Yang, J. H.; Zhang, B. Y.; Fang, Q. Y.; Zhang, J.; Ai, Q.; Ogle, M. M.; Terlier, T.; Martí, A. A. et al. Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells. Adv. Mater. 2019, 31, 1903448.

    Article  CAS  Google Scholar 

  21. Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

    Article  Google Scholar 

  22. Liang, J.; Liu, J.; Jin, Z. All-inorganic halide perovskites for optoelectronics: Progress and prospects. Sol. RRL 2017, 1, 1700086.

    Article  Google Scholar 

  23. Liu, C.; Li, W. Z.; Zhang, C. L.; Ma, Y. P.; Fan, J. D.; Mai, Y. H. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828.

    Article  CAS  PubMed  Google Scholar 

  24. Sun, H. R.; Zhang, J.; Gan, X. L.; Yu, L. T.; Yuan, H. B.; Shang, M. H.; Lu, C. J.; Hou, D. G.; Hu, Z. Y.; Zhu, Y. J. et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900896.

    Article  Google Scholar 

  25. Lau, C. F. J.; Zhang, M.; Deng, X. F.; Zheng, J. H.; Bing, J. M.; Ma, Q. S.; Kim, J.; Hu, L.; Green, M. A.; Huang, S. J. et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett. 2017, 2, 2319–2325.

    Article  CAS  Google Scholar 

  26. Liang, J.; Liu, Z. H.; Qiu, L. B.; Hawash, Z.; Meng, L. Q.; Wu, Z. F.; Jiang, Y.; Ono, L. K.; Qi, Y. B. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 2018, 8, 1800504.

    Article  Google Scholar 

  27. Liu, C.; Li, W. Z.; Li, H. Y.; Wang, H. M.; Zhang, C. L.; Yang, Y. G.; Gao, X. Y.; Xue, Q. F.; Yip, H. L.; Fan, J. D. et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803572.

    Article  Google Scholar 

  28. Yuan, H. W.; Zhao, Y. Y.; Duan, J. L.; Wang, Y. D.; Yang, X. Y.; Tang, Q. W. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 2018, 6, 24324–24329.

    Article  CAS  Google Scholar 

  29. Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

    Article  CAS  PubMed  Google Scholar 

  30. Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Christodoulou, S.; Di Stasio, F.; Pradhan, S.; Stavrinadis, A.; Konstantatos, G. High-open-circuit-voltage solar cells based on bright mixed-halide CsPbBrI2 perovskite nanocrystals synthesized under ambient air conditions. J. Phys. Chem. C 2018, 122, 7621–7626.

    Article  CAS  Google Scholar 

  32. Kim, M.; Kim, G. H.; Oh, K. S.; Jo, Y.; Yoon, H.; Kim, K. H.; Lee, H.; Kim, J. Y.; Kim, D. S. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells. ACS Nano 2017, 11, 6057–6064.

    Article  CAS  PubMed  Google Scholar 

  33. Chai, W. M.; Zhu, W. D.; Zhang, Z. Y.; Liu, D. W.; Ni, Y. F.; Song, Z. C.; Dong, P.; Chen, D. Z.; Zhang, J. C.; Zhang, C. F. et al. CsPbBr3 seeds improve crystallization and energy level alignment for highly efficient CsPbI3 perovskite solar cells. Chem. Eng. J. 2023, 452, 139292.

    Article  CAS  Google Scholar 

  34. Lau, C. F. J.; Deng, X. F.; Zheng, J. H.; Kim, J.; Zhang, Z. L.; Zhang, M.; Bing, J. M.; Wilkinson, B.; Hu, L.; Patterson, R. et al. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J. Mater. Chem. A 2018, 6, 5580–5586.

    Article  CAS  Google Scholar 

  35. Chung, I.; Lee, B.; He, J. Q.; Chang, R. P. H.; Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Zhang, J.; Shang, M. H.; Wang, P.; Huang, X. K.; Xu, J.; Hu, Z. Y.; Zhu, Y. J.; Han, L. Y. n-Type doping and energy states tuning in CH3NH3Pb1−xSb2x/3I3 perovskite solar cells. ACS Energy Lett. 2016, 1, 535–541.

    Article  CAS  Google Scholar 

  37. Xiang, S. S.; Li, W. P.; Wei, Y.; Liu, J. M.; Liu, H. C.; Zhu, L. Q.; Chen, H. N. The synergistic effect of non-stoichiometry and Sb-doping on air-stable alpha-CsPbI3 for efficient carbon-based perovskite solar cells. Nanoscale 2018, 10, 9996–10004.

    Article  CAS  PubMed  Google Scholar 

  38. Brandt, R. E.; Stevanović, V.; Ginley, D. S.; Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 2015, 5, 265–275.

    Article  CAS  Google Scholar 

  39. Xia, Y. R.; Zhao, C.; Zhao, P. Y.; Mao, L. Y.; Ding, Y. C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. J. Power Sources 2021, 494, 229781.

    Article  CAS  Google Scholar 

  40. Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J. et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858.

    Article  CAS  ADS  Google Scholar 

  41. Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

    Article  Google Scholar 

  42. Xia, Y. R.; Zhu, M. F.; Qin, L. N.; Zhao, C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells. Energy Mater. 2023, 3, 300004.

    Article  CAS  Google Scholar 

  43. Lee, J. W.; Kim, S. G.; Bae, S. H.; Lee, D. K.; Lin, O.; Yang, Y.; Park, N. G. The interplay between trap density and hysteresis in planar heterojunction perovskite solar cells. Nano. Lett. 2017, 17, 4270–4276.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Ma, J. J.; Yang, G.; Qin, M. C.; Zheng, X. L.; Lei, H. W.; Chen, C.; Chen, Z. L.; Guo, Y. X.; Han, H. W.; Zhao, X. Z. et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells. Adv. Sci. 2017, 4, 1700031.

    Article  Google Scholar 

  45. Yang, F.; Hirotani, D.; Kapil, G.; Kamarudin, M. A.; Ng, C. H.; Zhang, Y. H.; Shen, Q.; Hayase, S. All-inorganic CsPb1−xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angew. Chem., Int. Ed. 2018, 57, 12745–12749.

    Article  CAS  Google Scholar 

  46. Guo, Z. L.; Zhao, S.; Liu, A. M.; Kamata, Y.; Teo, S.; Yang, S. Z.; Xu, Z. H.; Hayase, S.; Ma, T. L. Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 19994–20003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of the National Key R&D Program of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22022505 and 21872069), the Fundamental Research Funds for the Central Universities (Nos. 020514380266, 020514380272, and 020514380274), the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (No. BK20220008), the Nanjing International Collaboration Research Program (Nos. 202201007 and 2022SX00000955), and the Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District (No. ZXL2021273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuoxiu Tie or Zhong Jin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Qin, L., Xia, Y. et al. Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells. Nano Res. 17, 1508–1515 (2024). https://doi.org/10.1007/s12274-023-5981-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5981-7

Keywords

Navigation