Skip to main content
Log in

Elucidating and manipulating pressure-induced water intrusion–extrusion in tunable hydrophobic Co/Zn bimetallic ZIFs: Roles of pore size and hydrogen bond

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous heterogeneous lyophobic systems (HLSs) find potential applications in energy restoring, dissipating, and absorbing. However, the development of controllable HLSs still lacks rational structure design of nanoporous materials matching the molecular sizes of adopted liquids. Besides that, thoroughly understanding the underlying transportation mechanism in the confined nano channels is greatly challenging. In this work, a series of Co/Zn bimetallic zeolitic imidazolate frameworks (ZIFs) with tunable structures were synthesized via regulating the Co to Zn ratios and employed to investigate the intrusion–extrusion of liquid water in confined nanopores. Structural characterizations confirm the heterometallic coordination in the Co/Zn-doped frameworks. Water intrusion–extrusion experiments unlock the relationship between the intrusion pressure and the nanopore size and realize the evolution of the HLSs between molecular spring and shock-absorber. In addition, cycling tests indicate the reversible structure change of Co/Zn ZIFs encountering pressure-induced water intrusion. In combination with molecular dynamics simulations, we present that the water multimers intrude into nanopores of ZIFs in chain-like forms along with dissociation of hydrogen bonds (HBs). Water molecules in the pre-intrusion state exhibit reduced HBs in response to the increase of pressure and linear structure with 1.6–3.0 HBs on average. After transition to the post-intrusion situation, the associative configuration of water tends to exhibit the tetrahedral structure. Herein, we highlight the roles of pore size and HB in synergically dominating the pressure-induced intrusion–extrusion of liquid water in hydrophobic nanopores. Furthermore, the present work can also guide the development of functional guest–host systems based on porous architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goeminne, R.; Krause, S.; Kaskel, S.; Verstraelen, T.; Evans, J. D. Charting the complete thermodynamic landscape of gas adsorption for a responsive metal-organic framework. J. Am. Chem. Soc. 2021, 143, 4143–4147.

    Article  CAS  Google Scholar 

  2. Yang, Y. B.; Yang, X. D.; Liang, L.; Gao, Y. Y.; Cheng, H. Y.; Li, X. M.; Zou, M. C.; Ma, R. Z.; Yuan, Q. Duan, X. F. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 2019, 364, 1057–1062.

    Article  CAS  Google Scholar 

  3. Fang, W.; Wang, C. T.; Liu, Z. Q.; Wang, L.; Liu, L.; Li, H. J.; Xu, S. D.; Zheng, A. M.; Qin, X. D.; Liu, L. J. et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science 2022, 377, 406–410.

    Article  CAS  Google Scholar 

  4. Zhang, W. Y.; Wei, S.; Wu, Y. N.; Wang, Y. L.; Zhang, M.; Roy, D.; Wang, H.; Yuan, J. Y.; Zhao, Q. Poly(ionic liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage. ACS Nano 2019, 13, 10261–10271.

    Article  CAS  Google Scholar 

  5. Lee, A.; Hudson, A. R.; Shiwarski, D. J.; Tashman, J. W.; Hinton, T. J.; Yerneni, S.; Bliley, J. M.; Campbell, P. G.; Feinberg, A. W. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019, 365, 482–487.

    Article  CAS  Google Scholar 

  6. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  CAS  Google Scholar 

  7. Eroshenko, V.; Regis, R. C.; Soulard, M.; Patarin, J. Energetics: A new field of applications for hydrophobic zeolites. J. Am. Chem. Soc. 2001, 123, 8129–8130.

    Article  CAS  Google Scholar 

  8. Yu, M. C.; Chen, Q.; Gao, X. Theoretical and experimental investigation of molecular spring isolator. Microsyst. Technol. 2017, 23, 285–292.

    Article  Google Scholar 

  9. Zhou, X.; Miao, Y. R.; Shaw, W. L.; Suslick, K. S.; Dlott, D. D. Shock wave energy absorption in metal-organic framework. J. Am. Chem. Soc. 2019, 141, 2220–2223.

    Article  CAS  Google Scholar 

  10. Tinti, A.; Giacomello, A.; Grosu, Y.; Casciola, C. M. Intrusion and extrusion of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 2017, 114, E10266–E10273.

    Article  CAS  Google Scholar 

  11. Fraux, G.; Coudert, F. X.; Boutin, A.; Fuchs, A. H. Forced intrusion of water and aqueous solutions in microporous materials: From fundamental thermodynamics to energy storage devices. Chem. Soc. Rev. 2017, 46, 7421–7437.

    Article  CAS  Google Scholar 

  12. Liu, L.; Chen, X.; Lu, W. Y.; Han, A. J.; Qiao, Y. Infiltration of electrolytes in molecular-sized nanopores. Phys. Rev. Lett. 2009, 102, 184501.

    Article  Google Scholar 

  13. Zhao, J. B.; Culligan, P. J.; Germaine, J. T.; Chen, X. Experimental study on energy dissipation of electrolytes in nanopores. Langmuir 2009, 25, 12687–12696.

    Article  CAS  Google Scholar 

  14. Pillot, M.; Lebeau, B.; Nouali, H.; Daou, T. J.; Patarin, J.; Ryzhikov, A. High pressure intrusion of water and LiCl aqueous solutions in hydrophobic KIT-6 mesoporous silica: Influence of the grafted group nature. Micropor. Mesopor. Mater. 2019, 280, 248–255.

    Article  CAS  Google Scholar 

  15. Huve, J.; Daou, T. J.; Nouali, H.; Patarin, J.; Ryzhikov, A. The effect of nanostructures on high pressure intrusion-extrusion of water and electrolyte solutions in hierarchical nanoboxes of silicalite-1. New J. Chem. 2020, 44, 273–281.

    Article  CAS  Google Scholar 

  16. Isaac, C.; Confalonieri, G.; Nouali, H.; Paillaud, J. L.; Arletti, R.; Daou, T. J.; Ryzhikov, A. Unusual high-pressure intrusion-extrusion behavior of electrolyte solutions in Mu-26, a pure silica zeolite of topology STF. Micropor. Mesopor. Mater. 2020, 298, 110047.

    Article  CAS  Google Scholar 

  17. Trzpit, M.; Soulard, M.; Patarin, J. The pure silica Chabazite: A high volume molecular spring at low pressure for energy storage. Chem. Lett. 2007, 36, 980–981.

    Article  CAS  Google Scholar 

  18. Qiao, Y.; Punyamurtula, V. K.; Xian, G. J.; Karbhari, V. M.; Han, A. J. Conversion of mechanical work to interfacial tension in a nanoporous silica gel. Appl. Phys. Lett. 2008, 92, 063109.

    Article  Google Scholar 

  19. Chen, X.; Surani, F. B.; Kong, X. G.; Punyamurtula, V. K.; Qiao, Y. Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 2006, 89, 241918.

    Article  Google Scholar 

  20. Trzpit, M.; Rigolet, S.; Paillaud, J. L.; Marichal, C.; Soulard, M.; Patarin, J. Pure silica Chabazite molecular spring: A structural study on water intrusion-extrusion processes. J. Phys. Chem. B 2008, 112, 7257–7266.

    Article  CAS  Google Scholar 

  21. Tzanis, L.; Trzpit, M.; Soulard, M.; Patarin, J. Energetic performances of channel and cage-type zeosils. J. Phys. Chem. C 2012, 116, 20389–20395.

    Article  CAS  Google Scholar 

  22. Tzanis, L.; Trzpit, M.; Soulard, M.; Patarin, J. High pressure water intrusion investigation of pure silica 1D channel AFI, MTW and TON-type zeolites. Micropor. Mesopor. Mater. 2011, 146, 119–126.

    Article  CAS  Google Scholar 

  23. Khay, I.; Tzanis, L.; Daou, T. J.; Nouali, H.; Ryzhikov, A.; Patarin, J. Energetic behavior of the pure silica ITQ-12 (ITW) zeolite under high pressure water intrusion. Phys. Chem. Chem. Phys. 2013, 15, 20320–20325.

    Article  CAS  Google Scholar 

  24. Grosu, Y.; Li, M.; Peng, Y. L.; Luo, D.; Li, D.; Faik, A.; Nedelec, J. M.; Grolier, J. P. A highly stable nonhysteretic {Cu2(tebpz) MOF+water} molecular spring. ChemPhysChem 2016, 17, 3359–3364.

    Article  CAS  Google Scholar 

  25. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  CAS  Google Scholar 

  26. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

    Article  CAS  Google Scholar 

  27. Ortiz, G.; Nouali, H.; Marichal, C.; Chaplais, G.; Patarin, J. Energetic performances of the metal-organic framework ZIF-8 obtained using high pressure water intrusion-extrusion experiments. Phys. Chem. Chem. Phys. 2013, 15, 4888–4891.

    Article  CAS  Google Scholar 

  28. Sun, Y. T.; Li, Y. B.; Tan, J. C. Framework flexibility of ZIF-8 under liquid intrusion: Discovering time-dependent mechanical response and structural relaxation. Phys. Chem. Chem. Phys. 2018, 20, 10108–10113.

    Article  CAS  Google Scholar 

  29. Hu, Y.; Kazemian, H.; Rohani, S.; Huang, Y. N.; Song, Y. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem. Commun. 2011, 47, 12694–12696.

    Article  CAS  Google Scholar 

  30. Chen, S. L.; Li, X.; Dong, E. L.; Lv, H.; Yang, X. B.; Liu, R.; Liu, B. B. Intrinsic and extrinsic responses of ZIF-8 under high pressure: A combined Raman and X-ray diffraction investigation. J. Phys. Chem. C 2019, 123, 29693–29707.

    Article  CAS  Google Scholar 

  31. Tortora, M.; Zajdel, P.; Lowe, A. R.; Chorążewski, M.; Leão, J. B.; Jensen, G. V.; Bleuel, M.; Giacomello, A.; Casciola, C. M.; Meloni, S. et al. Giant negative compressibility by liquid intrusion into superhydrophobic flexible nanoporous frameworks. Nano Lett. 2021, 21, 2848–2853.

    Article  CAS  Google Scholar 

  32. Zajdel, P.; Madden, D. G.; Babu, R.; Tortora, M.; Mirani, D.; Tsyrin, N. N.; Bartolomé, L.; Amayuelas, E.; Fairen-Jimenez, D.; Lowe, A. R. et al. Turning molecular springs into Nano-shock absorbers: The effect of macroscopic morphology and crystal size on the dynamic hysteresis of water intrusion-extrusion into-from hydrophobic nanopores. ACS Appl. Mater. Interfaces 2022, 14, 26699–26713.

    Article  CAS  Google Scholar 

  33. Sun, Y. T.; Rogge, S. M. J.; Lamaire, A.; Vandenbrande, S.; Wieme, J.; Siviour, C. R.; Van Speybroeck, V.; Tan, J. C. High-rate nanofluidic energy absorption in porous zeolitic frameworks. Nat. Mater. 2021, 20, 1015–1023.

    Article  CAS  Google Scholar 

  34. Borjigin, T.; Sun, F. X.; Zhang, J. L.; Cai, K.; Ren, H.; Zhu, G. S. A microporous metal-organic framework with high stability for GC separation of alcohols from water. Chem. Commun. 2012, 48, 7613–7615.

    Article  CAS  Google Scholar 

  35. Sun, Y. T.; Li, Y. B.; Tan, J. C. Liquid intrusion into zeolitic imidazolate framework-7 nanocrystals: Exposing the roles of phase transition and gate opening to enable energy absorption applications. ACS Appl. Mater. Interfaces 2018, 10, 41831–41838.

    Article  CAS  Google Scholar 

  36. Chakraborty, S.; Kumar, H.; Dasgupta, C.; Maiti, P. K. Confined water: Structure, dynamics, and thermodynamics. Acc. Chem. Res. 2017, 50, 2139–2146.

    Article  CAS  Google Scholar 

  37. Zhou, T. C.; Bai, P.; Siepmann, J. I.; Clark, A. E. Deconstructing the confinement effect upon the organization and dynamics of water in hydrophobic nanoporous materials: Lessons learned from zeolites. J. Phys. Chem. C 2017, 121, 22015–22024.

    Article  CAS  Google Scholar 

  38. Paulo, G.; Gubbiotti, A.; Grosu, Y.; Meloni, S.; Giacomello, A. The impact of secondary channels on the wetting properties of interconnected hydrophobic nanopores. Commun. Phys. 2023, 6, 21.

    Article  CAS  Google Scholar 

  39. Bushuev, Y. G.; Grosu, Y.; Chorążewski, M. A.; Meloni, S. Subnanometer topological tuning of the liquid intrusion/extrusion characteristics of hydrophobic micropores. Nano Lett. 2022, 22, 2164–2169.

    Article  CAS  Google Scholar 

  40. Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.

    Article  CAS  Google Scholar 

  41. Cai, H. D.; Zhang, L. L.; Xu, J. S.; Huang, J. H.; Wei, X. L.; Wang, L.; Song, Z. Y.; Long, W. Cobalt-free La0.5Sr0.5Fe0.9Mo0.1O3−δ electrode for symmetrical SOFC running on H2 and CO fuels. Electrochim. Acta. 2019, 320, 134642.

    Article  CAS  Google Scholar 

  42. Xu, X. L.; Zhang, X. M.; Xia, Z. X.; Sun, R. L.; Li, H. Q.; Wang, J. H.; Yu, S. S.; Wang, S. L.; Sun, G. Q. Solid phase microwave-assisted fabrication of Fe-doped ZIF-8 for single-atom Fe−N−C electrocatalysts on oxygen reduction. J. Energy Chem. 2021, 54, 579–586.

    Article  CAS  Google Scholar 

  43. Benzaqui, M.; Semino, R.; Menguy, N.; Carn, F.; Kundu, T.; Guigner, J. M.; McKeown, N. B.; Msayib, K. J.; Carta, M.; Malpass-Evans, R. et al. Toward an understanding of the microstructure and interfacial properties of PIMs/ZIF-8 mixed matrix membranes. ACS Appl. Mater. Interfaces 2016, 8, 27311–27321.

    Article  CAS  Google Scholar 

  44. Gao, M. Z.; Wang, J.; Rong, Z. H.; Shi, Q.; Dong, J. X. A combined experimental-computational investigation on water adsorption in various ZIFs with the SOD and RHO topologies. RSC Adv. 2018, 8, 39627–39634.

    Article  CAS  Google Scholar 

  45. Skarmoutsos, I.; Eddaoudi, M.; Maurin, G. Highly efficient rare-earth-based metal-organic frameworks for water adsorption: A molecular modeling approach. J. Phys. Chem. C 2019, 123, 26989–26999.

    Article  CAS  Google Scholar 

  46. Zhang, H.; Singer, S. J. Analysis of the subcritical carbon dioxide-water interface. J. Phys. Chem. A 2011, 115, 6285–6296.

    Article  CAS  Google Scholar 

  47. Tang, Y. B.; Xie, S. J. Structure and dynamics of a water/methanol mixture confined in zeolitic imidazolate framework ZIF-8 from atomistic simulations. Phys. Chem. Chem. Phys. 2022, 24, 5220–5232.

    Article  CAS  Google Scholar 

  48. Li, Z.; Zeng, H. C. Surface and bulk integrations of single-layered Au or Ag nanoparticles onto designated crystal planes {110} or {100} of ZIF-8. Chem. Mater. 2013, 25, 1761–1768.

    Article  CAS  Google Scholar 

  49. Wang, M.; Liu, J. X.; Guo, C. M.; Gao, X. S.; Gong, C. H.; Wang, Y.; Liu, B.; Li, X. X.; Gurzadyan, G. G.; Sun, L. C. Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect. J. Mater. Chem. A 2018, 6, 4768–4775.

    Article  CAS  Google Scholar 

  50. Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

    Article  CAS  Google Scholar 

  51. Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. W. et al. Ordered macromicroporous metal-organic framework single crystals. Science 2018, 359, 206–210.

    Article  CAS  Google Scholar 

  52. James, J. B.; Lin, Y. S. Kinetics of ZIF-8 Thermal decomposition in inert, oxidizing, and reducing environments. J. Phys. Chem. C 2016, 120, 14015–14026.

    Article  CAS  Google Scholar 

  53. Zhu, R. M.; Ding, J. W.; Yang, J. P.; Pang, H.; Xu, Q.; Zhang, D. L.; Braunstein, P. Quasi-ZIF-67 for boosted oxygen evolution reaction catalytic activity via a low temperature calcination. ACS Appl. Mater. Interfaces 2020, 12, 25037–25041.

    Article  CAS  Google Scholar 

  54. Zhao, Y. L.; Wei, Y. Y.; Lyu, L.; Hou, Q. Q.; Caro, J.; Wang, H. H. Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation. J. Am. Chem. Soc. 2020, 142, 20915–20919.

    Article  CAS  Google Scholar 

  55. Mor, J.; Sharma, S. K.; Utpalla, P.; Bahadur, J.; Prakash, J.; Kumar, A.; Pujari, P. K. Pore architecture evolution and OER catalytic activity of hollow Co/Zn zeolitic imidazolate frameworks. Micropor. Mesopor. Mater. 2022, 335, 111814.

    Article  CAS  Google Scholar 

  56. Ordoñez, M. J. C.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. Molecular sieving realized with ZIF-8/matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37.

    Article  Google Scholar 

  57. Tanaka, S.; Tanaka, Y. A simple step toward enhancing hydrothermal stability of ZIF-8. ACS Omega 2019, 4, 19905–19912.

    Article  CAS  Google Scholar 

  58. Wu, C. H.; Xie, D. G.; Mei, Y. J.; Xiu, Z. F.; Poduska, K. M.; Li, D. C.; Xu, B.; Sun, D. F. Unveiling the thermolysis natures of ZIF-8 and ZIF-67 by employing in situ structural characterization studies. Phys. Chem. Chem. Phys. 2019, 21, 17571–17577.

    Article  CAS  Google Scholar 

  59. Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 2012, 149, 134–141.

    Article  CAS  Google Scholar 

  60. Calero, S.; Gómez-Álvarez, P. Underlying adsorption mechanisms of water in hydrophobic and hydrophilic zeolite imidazolate frameworks: ZIF-71 and ZIF-90. J. Phys. Chem. C 2015, 119, 23774–23780.

    Article  CAS  Google Scholar 

  61. Jayachandrababu, K. C.; Sholl, D. S.; Nair, S. Structural and mechanistic differences in mixed-linker zeolitic imidazolate framework synthesis by solvent assisted linker exchange and de novo routes. J. Am. Chem. Soc. 2017, 139, 5906–5915.

    Article  CAS  Google Scholar 

  62. Krishna, R.; Van Baten, J. M. Water/alcohol mixture adsorption in hydrophobic materials: Enhanced water ingress caused by hydrogen bonding. ACS Omega 2020, 5, 28393–28402.

    Article  CAS  Google Scholar 

  63. Mortada, B.; Chaplais, G.; Nouali, H.; Marichal, C.; Patarin, J. Phase transformations of metal-organic frameworks MAF-6 and ZIF-71 during intrusion-extrusion experiments. J. Phys. Chem. C 2019, 123, 4319–4328.

    Article  CAS  Google Scholar 

  64. Gao, Y.; Li, M. Z.; Zhang, Y.; Lu, W. Y.; Xu, B. X. Spontaneous outflow efficiency of confined liquid in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 2020, 117, 25246–25253.

    Article  CAS  Google Scholar 

  65. Mortada, B.; Chaplais, G.; Veremeienko, V.; Nouali, H.; Marichal, C.; Patarin, J. Energetic performances of ZIF-8 derivatives: Impact of the substitution (Me, Cl, or Br) on imidazolate linker. J. Phys. Chem. C 2018, 122, 3846–3855.

    Article  CAS  Google Scholar 

  66. Desbiens, N.; Demachy, I.; Fuchs, A. H.; Kirsch-Rodeschini, H.; Soulard, M.; Patarin, J. Water condensation in hydrophobic nanopores. Angew. Chem., Int. Ed. 2005, 44, 5310–5313.

    Article  CAS  Google Scholar 

  67. Ortiz, G.; Nouali, H.; Marichal, C.; Chaplais, G.; Patarin, J. Energetic performances of “ZIF-71-aqueous solution” systems: A perfect shock-absorber with water. J. Phys. Chem. C 2014, 118, 21316–21322.

    Article  CAS  Google Scholar 

  68. Ortiz, G.; Nouali, H.; Marichal, C.; Chaplais, G.; Patarin, J. Versatile energetic behavior of ZIF-8 upon high pressure intrusion-extrusion of aqueous electrolyte solutions. J. Phys. Chem. C 2014, 118, 7321–7328.

    Article  CAS  Google Scholar 

  69. Sharma, M.; Wu, Y. D.; Car, R. Ab initio molecular dynamics with maximally localized wannier functions. Int. J. Quantum Chem. 2003, 95, 821–829.

    Article  CAS  Google Scholar 

  70. Soper, A. K.; Ricci, M. A. Structures of high-density and low-density water. Phys. Rev. Lett. 2000, 84, 2881–2884.

    Article  CAS  Google Scholar 

  71. Zhang, L.; Zheng, B.; Gao, Y.; Wang, L. L.; Wang, J. L.; Duan, X. B. Confined water vapor in ZIF-8 nanopores. ACS Omega 2022, 7, 64–69.

    Article  CAS  Google Scholar 

  72. Tang, F. J.; Li, Z. L.; Zhang, C. Y.; Louie, S. G.; Car, R.; Qiu, D. Y.; Wu, X. F. Many-body effects in the X-ray absorption spectra of liquid water. Proc. Natl. Acad. Sci. USA 2022, 119, e2201258119.

    Article  CAS  Google Scholar 

  73. Calero, S.; Gómez-Álvarez, P. Effect of the confinement and presence of cations on hydrogen bonding of water in LTA-type zeolite. J. Phys. Chem. C 2014, 118, 9056–9065.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22178109 and 21878097) and the Natural Science Foundation of Shanghai (No. 21ZR1417700). D. W. acknowledges the institutional funds from the Gene and Linda Voiland School of Chemical Engineering and Bioengineering, and the Alexandra Navrotsky Institute for Experimental Thermodynamics at Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Sun.

Electronic Supplementary Material

12274_2023_5967_MOESM1_ESM.pdf

Elucidating and manipulating pressure-induced water intrusion–extrusion in tunable hydrophobic Co/Zn bimetallic ZIFs: Roles of pore size and hydrogen bond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, D., Liu, C., Chen, Y. et al. Elucidating and manipulating pressure-induced water intrusion–extrusion in tunable hydrophobic Co/Zn bimetallic ZIFs: Roles of pore size and hydrogen bond. Nano Res. 17, 344–353 (2024). https://doi.org/10.1007/s12274-023-5967-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5967-5

Keywords

Navigation