Skip to main content
Log in

Laser irradiation constructing all-in-one defective graphene-polyimide separator for effective restraint of lithium dendrites and shuttle effect

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The commercializaton of lithium-sulfur (Li-S) batteries faces several bottlenecks, and the major two of which are the shuttle effect of polysulfides and the wild growth of Li dendrites, responsible for fast capacity decay and severe safety issues. As an essential component of Li-S batteries, the structure and properties of the separators are closely related to the above problems, and the exploration of multifunctional separators is highly sought-after. Herein, an integrated separator composited of defective graphene and polyimide (DG-PI) was innovatively fabricated by electrospinning combined with the laser-induced carbonization strategy. The all-in-one compact architecture with well-interconnected channels shows superior mechanical and thermal stability and wettability. More importantly, the PI nanofibers containing N–/O–functional groups can induce the uniform deposition of lithium on the anode surface, while the DG framework with abundant pentagonal/heptagonal rings and vacancies can strongly trap polysulfides and accelerate polysulfide transformation on the cathode side. The strong chemical interaction between the insulative PI layer and the conductive DG layer modulates the surface charge distribution of each other, leading to more prominent contributions to restraining lithium dendrites and shuttle effect. Therefore, the Li-S batteries based on the integrated DG-PI separators afford an excellent performance in protecting lithium anode (stable cycles of 200 h at 5 mA·cm−2) and good cycling stability with a low capacity decay of 0.05% per cycle after 700 cycles at 1 C. This work offers a new design concept of multifunctional Li-S battery separators and broadens the application scope of laser micro-nano fabrication technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, G. M.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319.

    Article  CAS  Google Scholar 

  2. Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, 969.

    Google Scholar 

  3. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    CAS  Google Scholar 

  4. Li, Y. G.; Chen, F. J. Li-S batteries: Firing for compactness. Nat. Energy 2017, 2, 17096.

    Google Scholar 

  5. Yang, H.; Feng, Z. X.; Teng, X. L.; Guan, L.; Hu, H.; Wu, M. B. Three-dimensional printing of high-mass loading electrodes for energy storage applications. InfoMat 2021, 3, 631–647.

    CAS  Google Scholar 

  6. Zhang, M. D.; Chen, B.; Wu, M. B. Research progress in graphene as sulfur hosts in lithium-sulfur batteries. Acta Phys. Chim. Sin. 2022, 38, 2101001.

    Google Scholar 

  7. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Google Scholar 

  8. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.

    Google Scholar 

  9. Shao, Q. J.; Zhu, S. D.; Chen, J. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Res., in press, https://doi.org/10.1007/s12274-022-5227-0.

  10. Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.

    CAS  Google Scholar 

  11. Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Carbon materials for Li-S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.

    Google Scholar 

  12. Yin, L. C.; Liang, J.; Zhou, G. M.; Li, F.; Saito, R.; Cheng, H. M. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 2016, 25, 203–210.

    CAS  Google Scholar 

  13. Feng, S.; Liu, J.; Zhang, X. H.; Shi, L. L.; Anderson, C.; Lin, Y. H.; Song, M. K.; Liu, J.; Xiao, J.; Lu, D. P. Rationalizing nitrogen-doped secondary carbon particles for practical lithium-sulfur batteries. Nano Energy 2022, 103, 107794.

    CAS  Google Scholar 

  14. Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632–640.

    CAS  Google Scholar 

  15. Zhang, L. L.; Wan, F.; Wang, X. Y.; Cao, H. M.; Dai, X.; Niu, Z. Q.; Wang, Y. J.; Chen, J. Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 5594–5602.

    CAS  Google Scholar 

  16. Yang, J.; Chen, F.; Li, C.; Bai, T.; Long, B.; Zhou, X. Y. A freestanding sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 14324–14333.

    CAS  Google Scholar 

  17. Liang, Z. W.; Shen, J. D.; Xu, X. J.; Li, F. K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 2022, 34, 2200102.

    CAS  Google Scholar 

  18. Wang, Z. W.; Cheng, Y. W.; Wang, S. Y.; Xu, J.; Peng, B.; Luo, D.; Ma, L. B. Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-023-5557-6.

  19. Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

    CAS  Google Scholar 

  20. Guan, L.; Hu, H.; Li, L. Q.; Pan, Y. Y.; Zhu, Y. F.; Li, Q.; Guo, H. L.; Wang, K.; Huang, Y. C.; Zhang, M. D. et al. Intrinsic defect-rich hierarchically porous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides. ACS Nano 2020, 14, 6222–6231.

    CAS  Google Scholar 

  21. Zhang, Y. G.; Li, G. R.; Wang, J. Y.; Luo, D.; Sun, Z. H.; Zhao, Y.; Yu, A. P.; Wang, X.; Chen, Z. W. “Suuna” activation toward intrinsic lattice deficiency in carbon nanotube microspheres for high-energy and long-lasting lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2100497.

    CAS  Google Scholar 

  22. Jiang, J. C.; Fan, Q. N.; Zheng, Z.; Kaiser, M. R.; Chou, S. L.; Konstantinov, K.; Liu, H. K.; Lin, L. X.; Wang, J. Z. The dual functions of defect-rich carbon nanotubes as both conductive matrix and efficient mediator for Li-S batteries. Small 2021, 17, 2103535.

    CAS  Google Scholar 

  23. Li, C.; Liu, R.; Xiao, Y.; Cao, F. F.; Zhang, H. Recent progress of separators in lithium-sulfur batteries. Energy Storage Mater. 2021, 40, 439–460.

    Google Scholar 

  24. Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 361–386.

  25. Li, Y. J.; Wang, W. Y.; Liu, X. X.; Mao, E. Y.; Wang, M. T.; Li, G. C.; Fu, L.; Li, Z.; Eng, A. Y. S.; Seh, Z. W. et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Mater. 2019, 23, 261–268.

    Google Scholar 

  26. Wang, Q. J.; Song, W. L.; Fan, L. Z.; Song, Y. Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries. J. Membr. Sci. 2015, 486, 21–28.

    CAS  Google Scholar 

  27. He, Q.; Yu, B.; Wang, H.; Rana, M.; Liao, X. B.; Zhao, Y. Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design. Nano Res. 2020, 13, 2299–2307.

    CAS  Google Scholar 

  28. Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene. Acc. Chem. Res. 2018, 51, 1609–1620.

    CAS  Google Scholar 

  29. Dong, Y.; Rismiller, S. C.; Lin, J. Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon 2016, 104, 47–55.

    CAS  Google Scholar 

  30. Bai, S. G.; Tang, Y.; Lin, L. H.; Ruan, L. Y.; Song, R. X.; Chen, H. J.; Du, Y.; Lin, H. Y.; Shan, Y. F.; Tang, Y. R. Investigation of micro/nano formation mechanism of porous graphene induced by CO2 laser processing on polyimide film. J. Manuf. Process 2022, 84, 555–564.

    Google Scholar 

  31. Vashisth, A.; Kowalik, M.; Gerringer, J. C.; Ashraf, C.; Van Duin, A. C. T.; Green, M. J. Reaxff simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl. Nano Mater. 2020, 3, 1881–1890.

    CAS  Google Scholar 

  32. Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

    CAS  Google Scholar 

  33. Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.

    CAS  Google Scholar 

  34. Song, Y. Z.; Gao, H.; Wang, M. L.; Chen, L.; Cao, X.; Song, L. X.; Liu, X. H.; Cai, W. L.; Sun, J. Y.; Zhang, W. Deciphering the defect micro-environment of graphene for highly efficient Li-S redox reactions. EcoMat 2022, 4, e12182.

    CAS  Google Scholar 

  35. Luo, X.; Lu, X. B.; Zhou, G. Y.; Zhao, X. Y.; Ouyang, Y.; Zhu, X. B.; Miao, Y. E.; Liu, T. X. Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42198–42206.

    CAS  Google Scholar 

  36. Zhan, H. C.; Zou, P. C.; Yao, W. T.; Qian, L.; Liu, K. W.; Hu, S. Y.; Zhu, H. J.; He, Y. B.; Kang, F. Y.; Yang, C. Toward real-time monitoring of lithium metal growth and dendrite formation surveillance for safe lithium metal batteries. J. Mater. Chem. A 2020, 8, 7090–7099.

    CAS  Google Scholar 

  37. Xu, T.; Qu, R. J.; Zhang, Y.; Sun, C. M.; Wang, Y.; Kong, X. Y.; Geng, X.; Ji, C. N. Preparation of bifunctional polysilsesquioxane/carbon nanotube magnetic composites and their adsorption properties for Au(III). Chem. Eng. J. 2021, 410, 128225.

    CAS  Google Scholar 

  38. Zhang, M. D.; Yu, C.; Zhao, C. T.; Song, X. D.; Han, X. T.; Liu, S. H.; Hao, C.; Qiu, J. S. Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium-sulfur battery. Energy Storage Mater. 2016, 5, 223–229.

    CAS  Google Scholar 

  39. Zhang, M. D.; Yu, C.; Yang, J.; Zhao, C. T.; Ling, Z.; Qiu, J. S. Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. J. Mater. Chem. A 2017, 5, 10380–10386.

    CAS  Google Scholar 

  40. Zhang, M. D.; Mu, J. W.; Li, Y. N.; Pan, Y. Y.; Dong, Z. L.; Chen, B.; Guo, S. W.; Yuan, W. H.; Fang, H. Q.; Hu, H. et al. Propelling polysulfide redox by Fe3C-FeN heterostructure@nitrogen-doped carbon framework towards high-efficiency Li-S batteries. J. Energy Chem. 2023, 78, 105–114.

    CAS  Google Scholar 

  41. Yang, H.; Wan, Y.; Sun, K.; Zhang, M. D.; Wang, C. Z.; He, Z. Q.; Li, Q.; Wang, N.; Zhang, Y. L.; Hu, H. et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202215076.

  42. Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

    CAS  Google Scholar 

  43. Sha, J. W.; Li, Y. L.; Salvatierra, R. V.; Wang, T.; Dong, P.; Ji, Y.; Lee, S. K.; Zhang, C. H.; Zhang, J. B.; Smith, R. H. et al. Three-dimensional printed graphene foams. ACS Nano 2017, 11, 6860–6867.

    CAS  Google Scholar 

  44. Zhou, T. H.; Zhao, Y.; Choi, J. W.; Coskun, A. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 22791–22796.

    CAS  Google Scholar 

  45. Kim, D. W.; Senthil, C.; Jung, S. M.; Kim, S. S.; Kim, H. S.; Hong, J. W.; Ahn, J. H.; Jung, H. Y. Selective ion transport of catalytic hybrid aerofilm interlayer for long-stable Li-S batteries. Energy Storage Mater. 2022, 47, 472–481.

    Google Scholar 

  46. Wang, Z. Q.; Huang, W. Y.; Hua, J. C.; Wang, Y. D.; Yi, H. C.; Zhao, W. G.; Zhao, Q. H.; Jia, H.; Fei, B.; Pan, F. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small Methods 2020, 4, 2000082.

    CAS  Google Scholar 

  47. Pan, D.; Zhao, C. L.; Qi, X. G.; Liu, L. L.; Rong, X. H.; Sun, S. W.; Lu, Y. X.; Bai, Y.; Hu, Y. S. Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Mater. 2022, 50, 407–416.

    Google Scholar 

  48. Yang, S.; Xiao, R.; Hu, T. Z.; Fan, X. L.; Xu, R. G.; Sun, Z. H.; Zhong, B. H.; Guo, X. D.; Li, F. Ni2P electrocatalysts decorated hollow carbon spheres as bi-functional mediator against shuttle effect and Li dendrite for Li-S batteries. Nano Energy 2021, 90, 106584.

    CAS  Google Scholar 

  49. Li, Y. C.; Zhou, Z. F.; Li, Y.; Zhang, Z. H.; Guo, X. S.; Liu, J.; Mao, C. M.; Li, Z. J.; Li, G. C. Selenium vacancies enable efficient immobilization and bidirectional conversion acceleration of lithium polysulfides for advanced Li-S batteries. Nano Res. 2022, 15, 7234–7246.

    CAS  Google Scholar 

  50. Yu, M. L.; Zhou, S.; Wang, Z. Y.; Wang, Y. W.; Zhang, N.; Wang, S.; Zhao, J. J.; Qiu, J. S. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater. 2019, 20, 98–107.

    Google Scholar 

  51. Liu, X. F.; Wang, Y. R.; Chen, H.; Li, B.; Zang, S. Q. Conducting polymer-functionalized mesoporous metal-organic frameworks for high-performance Li-S battery. Nano Res. 2023, 16, 4867–4873.

    CAS  Google Scholar 

  52. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9001–9004.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22005341 and 22138013), the Shandong Provincial Natural Science Foundation (Nos. ZR2020QB128 and ZR2020ZD08), the Taishan Scholar Project (No. tsqnz20221121), the Major Scientific and Technological Innovation Project of Shandong Province (No. 2020CXGC010402), and the Independent Innovation Research Project of China University of Petroleum (No. 22CX06026A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengdi Zhang or Mingbo Wu.

Electronic Supplementary Material

12274_2023_5947_MOESM1_ESM.pdf

Laser irradiation constructing all-in-one defective graphene-polyimide separator for effective restraint of lithium dendrites and shuttle effect

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, J., Zhang, M., Li, Y. et al. Laser irradiation constructing all-in-one defective graphene-polyimide separator for effective restraint of lithium dendrites and shuttle effect. Nano Res. 16, 12304–12314 (2023). https://doi.org/10.1007/s12274-023-5947-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5947-9

Keywords

Navigation