Skip to main content
Log in

Applying heteroatom co-doped carbon nanotube for manifesting high performance in the electrochemical reduction of aqueous nitrogen oxide by gold nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical NO-to-NH3 under ambient conditions could be a viable alternative having advantages in terms of energy consumption and exhaust gas recycling of NO, replacing a traditional ammonia synthesis method of the Haber–Bosch process. In synthesizing boron (B-) and nitrogen (N-) co-doped carbon nanotube (CNT) based gold (Au) catalysts, B-dopants elevate the conductivity of carbon nanotube by sp2 hybridization on graphene and implant B–N domains within the graphene layer, and result in facilitating the embedding amount of Au accompanied by high dispersibility with low particle size. Theoretical density functional theory (DFT) calculations elucidate that the electron cloud transmitted from B-dopant to the active site of Au induces the Lewis acidic site, and the O-distal pathway occurs following a spontaneous reaction. Increment of the electron-deficient B-doping area accompanied by N-defects and B–O edges retains the major valence state of Au as Auδ+, and suppresses hydrogen evolution reaction (HER) by repulsing the hindrance of H. This record exhibits the highest faradaic efficiency (FE) of 94.7%, and NH3 yield rate of 1877.4 µg·h−1·mgcat−1, which is the optimal yield over energy consumption in the field of the ambient reduction of aqueous NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, B.; Jeong, B.; Lee, M. J.; Kim, T. H.; Park, S. S.; Jung, J.; Lee, S.; Kim, H. D. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: Stationary sources. Nano Converg. 2022, 9, 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, T.; Bai, H. Low temperature selective catalytic reduction of NOX with NH3 over Mn-based catalyst: A review. AIMS Environmen. Sci. 2016, 3, 261–289.

    Article  CAS  Google Scholar 

  3. Liang, J.; Chen, H. Y.; Mou, T.; Zhang, L. C.; Lin, Y. T.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A. et al. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. J. Mater. Chem. A 2022, 10, 6454–6462.

    Article  CAS  Google Scholar 

  4. Alves, L.; Holz, L. I. V.; Fernandes, C.; Ribeirinha, P.; Mendes, D.; Fagg, D. P.; Mendes, A. A comprehensive review of NOx and N2O mitigation from industrial streams. Renew. Sust. Energy Rev. 2022, 155, 111916.

    Article  CAS  Google Scholar 

  5. Koebel, M.; Madia, G.; Elsener, M. Selective catalytic reduction of NO and NO2 at low temperatures. Catal. Today 2002, 73, 239–247.

    Article  CAS  Google Scholar 

  6. Sharif, H. M. A.; Mahmood, N.; Wang, S. Y.; Hussain, I.; Hou, Y. N.; Yang, L. H.; Zhao, X.; Yang, B. Recent advances in hybrid wet scrubbing techniques for NOx and SO2 removal: State of the art and future research. Chemosphere 2021, 273, 129695.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y. Y.; Cao, G. J.; Yang, X. Advances in De-NOx methods and catalysts for direct catalytic decomposition of NO: A review. Energy Fuels 2021, 35, 6443–6464.

    Article  CAS  Google Scholar 

  8. Chen, H. H.; Zhang, C. Q.; Sheng, L.; Wang, M. M.; Fu, W.; Gao, S.; Zhang, Z. R.; Chen, S. Q.; Si, R.; Wang, L. Z. et al. Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion. J. Hazard. Mater. 2022, 434, 128892.

    Article  CAS  PubMed  Google Scholar 

  9. Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Galloway, J. N.; Townsend, A. R.; Erisman, J. W.; Bekunda, M.; Cai, Z. C.; Freney, J. R.; Martinelli, L. A.; Seitzinger, S. P.; Sutton, M. A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lv, C. D.; Liu, J. W.; Lee, C.; Zhu, Q.; Xu, J. W.; Pan, H. G.; Xue, C.; Yan, Q. Y. Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 2022, 16, 15512–15527.

    Article  CAS  PubMed  Google Scholar 

  13. van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

    Article  CAS  PubMed  Google Scholar 

  14. Wu, T. T.; Fan, W. J.; Zhang, Y.; Zhang, F. X. Electrochemical synthesis of ammonia: Progress and challenges. Mater. Today Phys. 2021, 16, 100310.

    Article  CAS  Google Scholar 

  15. Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, H. J.; Liang, J.; Li, L.; Zheng, B. Z.; Feng, Z. S.; Xu, Z. Q.; Luo, Y. L.; Liu, Q.; Shi, X. F.; Liu, Y. et al. Ti2O3 nanoparticles with Ti3+ sites toward efficient NH3 electrosynthesis under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 41715–41722.

    Article  CAS  PubMed  Google Scholar 

  17. Li, S. X.; Wu, Y. M.; Liu, Q.; Li, B. H.; Li, T. S.; Zhao, H. T.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Li, L. et al. CuS concave polyhedral superstructures enabled efficient N2 electroreduction to NH3 at ambient conditions. Inorg. Chem. Front. 2021, 8, 3105–3110.

    Article  CAS  Google Scholar 

  18. Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

    Article  CAS  Google Scholar 

  19. Yang, B.; Ding, W. L.; Zhang, H. H.; Zhang, S. J. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687.

    Article  CAS  Google Scholar 

  20. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    Article  CAS  Google Scholar 

  21. Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S. Z.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

    Article  CAS  Google Scholar 

  22. Yang, J.; Qi, H. F.; Li, A. Q.; Liu, X. Y.; Yang, X. F.; Zhang, S. X.; Zhao, Q.; Jiang, Q. K.; Su, Y.; Zhang, L. L. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.

    Article  CAS  PubMed  Google Scholar 

  23. Cheon, S.; Kim, W. J.; Kim, D. Y.; Kwon, Y.; Han, J. I. Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode. ACS Energy Lett. 2022, 7, 958–965.

    Article  CAS  Google Scholar 

  24. Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

    Article  CAS  Google Scholar 

  25. Ko, B. H.; Hasa, B.; Shin, H.; Zhao, Y. R.; Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 2022, 144, 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  26. Rhimi, B.; Padervand, M.; Jouini, H.; Ghasemi, S.; Bahnemann, D. W.; Wang, C. Recent progress in NOx photocatalytic removal: Surface/interface engineering and mechanistic understanding. J. Environ. Chem. Eng. 2022, 1, 108566.

    Article  Google Scholar 

  27. Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321, 1331–1335.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Rosca, V.; Beltramo, G. L.; Koper, M. T. Reduction of NO adlayers on Pt (110) and Pt (111) in acidic media: Evidence for adsorption site-specific reduction. Langmuir 2005, 21, 1448–1456.

    Article  CAS  PubMed  Google Scholar 

  29. Rosca, V.; Koper, M. T. M. Mechanism of electrocatalytic reduction of nitric oxide on Pt (100). J. Phys. Chem. B 2005, 109, 16750–16759.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, H.; Xiang, K. S.; Yang, B. T.; Xie, X. F.; Wang, D. L.; Zhang, C.; Liu, Z. L.; Yang, S.; Liu, C.; Zou, J. P. et al. The electrochemical selective reduction of NO using CoSe2@CNTs hybrid. Environ. Sci. Pollut. Res. 2017, 24, 14249–14258.

    Article  CAS  Google Scholar 

  31. Kim, D. H.; Ringe, S.; Kim, H.; Kim, S.; Kim, B.; Bae, G.; Oh, H. S.; Jaouen, F.; Kim, W.; Kim, H. et al. Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst. Nat. Commun. 2021, 12, 1856.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, J. C.; Li, M.; An, N.; Zhang, S.; Song, Q. N.; Yang, Y. L.; Li, J.; Liu, X. Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc. Natl. Acad. Sci. USA 2022, 119, e2123450119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, Q.; Wang, H.; Shen, S. Y.; Huang, B. B.; Dai, Y.; Ma, Y. D. Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst. J. Mater. Chem. A 2021, 9, 5434–5441.

    Article  CAS  Google Scholar 

  34. Sa, Y. J.; Park, C.; Jeong, H. Y.; Park, S. H.; Lee, Z.; Kim, K. T.; Park, G. G.; Joo, S. H. Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells. Angew. Chem. 2014, 126, 4186–4190.

    Article  ADS  Google Scholar 

  35. Choe, J.; Sun, W. T.; Ombrello, T.; Carter, C. Plasma assisted ammonia combustion: Simultaneous NOx reduction and flame enhancement. Combust. Flame 2021, 228, 430–432.

    Article  ADS  CAS  Google Scholar 

  36. Ren, Z. B.; Zhang, H. N.; Wang, S. H.; Huang, B. B.; Dai, Y.; Wei, W. Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. J. Mater. Chem. A 2022, 10, 8568–8577.

    Article  CAS  Google Scholar 

  37. Chen, R.; Fang, X.; Li, Z.; Liu, Z. Selective catalytic reduction of NO, with NH3 over a novel MOF-derived MnOx catalyst. Appl. Catal. A: Gen. 2022, 643, 118754.

    Article  CAS  Google Scholar 

  38. Tabassum, H.; Guo, W. H.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q. F.; Zou, R. Q. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater. 2017, 7, 1601671.

    Article  Google Scholar 

  39. Cui, C. X.; Gao, Y.; Li, J.; Yang, C.; Liu, M.; Jin, H. L.; Xia, Z. H.; Dai, L. M.; Lei, Y.; Wang, J. C. et al. Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. 2020, 132, 8002–8007.

    Article  ADS  Google Scholar 

  40. Yan, D. F.; Dou, S.; Tao, L.; Liu, Z. J.; Liu, Z. G.; Huo, J.; Wang, S. Y. Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 13726–13730.

    Article  CAS  Google Scholar 

  41. Tabassum, H.; Zou, R. Q.; Mahmood, A.; Liang, Z. B.; Guo, S. J. A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts. J. Mater. Chem. A 2016, 4, 16469–16475.

    Article  CAS  Google Scholar 

  42. Chen, Z. P.; Mitchell, S.; Vorobyeva, E.; Leary, R. K.; Hauert, R.; Furnival, T.; Ramasse, Q. M.; Thomas, J. M.; Midgley, P. A.; Dontsova, D. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 2017, 27, 1605785.

    Article  Google Scholar 

  43. Zhang, X. F.; Yan, P. Q.; Xu, J. K.; Li, F.; Herold, F.; Etzold, B. J. M.; Wang, P.; Su, D. S.; Lin, S.; Qi, W. et al. Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Sci. Adv. 2020, 6, eaba5778.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metalfree electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

    Article  CAS  Google Scholar 

  45. Wang, W. L.; Bai, X. D.; Liu, K. H.; Xu, Z.; Golberg, D.; Bando, Y.; Wang, E. G. Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. J. Am. Chem. Soc. 2006, 128, 6530–6531.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. 2013, 125, 3192–3198.

    Article  ADS  Google Scholar 

  47. Shi, L.; Yin, Y.; Wang, S. B.; Sun, H. Q. Rational catalyst design for N2 reduction under ambient conditions: Strategies toward enhanced conversion efficiency. ACS Catal. 2020, 10, 6870–6899.

    Article  CAS  Google Scholar 

  48. Tabassum, H.; Qu, C.; Cai, K. T.; Aftab, W.; Liang, Z. B.; Qiu, T. J.; Mahmood, A.; Meng, W.; Zou, R. Q. Large-scale fabrication of BCN nanotube architecture entangled on a three-dimensional carbon skeleton for energy storage. J. Mater. Chem. A 2018, 6, 21225–21230.

    Article  CAS  Google Scholar 

  49. Choi, C. H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091.

    Article  CAS  PubMed  Google Scholar 

  50. Guo, F. S.; Yang, P. J.; Pan, Z. M.; Cao, X. N.; Xie, Z. L.; Wang, X. C. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene. Angew. Chem. 2017, 129, 8343–8347.

    Article  ADS  Google Scholar 

  51. Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

    Article  ADS  PubMed  Google Scholar 

  52. Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

    Article  CAS  Google Scholar 

  53. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730.

    Article  CAS  Google Scholar 

  55. Lu, Z. S.; Lv, P.; Yang, Z. X.; Li, S.; Ma, D. W.; Wu, R. Q. A promising single atom catalyst for CO oxidation: Ag on boron vacancies of h-BN sheets. Phys. Chem. Chem. Phys. 2017, 19, 16795–16805.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Z. M.; Gao, D. Z.; Hu, L. N.; Liu, F.; Liu, H.; Li, Y.; Zhang, J.; Xue, Y. M.; Tang, C. C. Metal-free boron-rich borocarbonitride catalysts for high-efficient oxygen reduction to produce hydrogen peroxide. ChemistrySelect 2022, 7, e202104203.

    Article  CAS  Google Scholar 

  57. Feng, Y.; Yao, J. F. Design of melamine sponge-based three-dimensional porous materials toward applications. Ind. Eng. Chem. Res. 2018, 57, 7322–7330.

    Article  CAS  Google Scholar 

  58. Chen, X.; Liu, Y.; Ke, X. X.; Weerasooriya, R.; Li, H.; Wang, L. C.; Wu, Y. C. A green method to synthesize AuNPs/mpg-C3N4 nanocomposites for constructing anti-interference electrochemical sensing interface toward methylmercury. J. Alloys Compd. 2021, 853, 157365.

    Article  CAS  Google Scholar 

  59. B. V.; Usachov, D. Y.; Fedorov, A. V.; Marangoni, T.; Haberer, D.; Tresca, C.; Profeta, G.; Caciuc, V.; Tsukamoto, S.; Atodiresei, N. et al. Boron-doped graphene nanoribbons: Electronic structure and Raman fingerprint. ACS Nano 2018, 12, 7571–7582.

    Article  Google Scholar 

  60. Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

    Article  Google Scholar 

  61. He, H. M.; Zhu, Q. Q.; Yan, Y.; Zhang, H. W.; Han, Z. Y.; Sun, H. M.; Chen, J.; Li, C. P.; Zhang, Z. H.; Du, M. Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3. Appl. Catal. B:Environ. 2022, 302, 120840.

    Article  CAS  Google Scholar 

  62. Zhao, X.; Yang, Z. Q.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Zhou, X. H.; Zhang, H. B. Efficient ambient electrocatalytic ammonia synthesis by nanogold triggered via boron clusters combined with carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 42821–42831.

    Article  CAS  PubMed  Google Scholar 

  63. Li, W. Y.; Zhang, C.; Han, M. M.; Ye, Y. X.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Liang, C. H.; Zhang, H. M. Ambient electrosynthesis of ammonia using core-shell structured Au@C catalyst fabricated by one-step laser ablation technique. ACS Appl. Mater. Interfaces 2019, 11, 44186–44195.

    Article  CAS  PubMed  Google Scholar 

  64. Deshpande, S.; Greeley, J. First-principles analysis of coverage, ensemble, and solvation effects on selectivity trends in NO electroreduction on Pt3Sn alloys. ACS Catal. 2020, 10, 9320–9327.

    Article  CAS  Google Scholar 

  65. Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Kuai, C. G.; Guo, Y. Z. A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH3 conversion. Small 2021, 17, 2102396.

    Article  CAS  Google Scholar 

  66. Xiong, Y. H.; Li, Y. T.; Wan, S. P.; Yu, Y.; Zhang, S. L.; Zhong, Q. Ferrous-based electrolyte for simultaneous NO absorption and electroreduction to NH3 using Au/rGO electrode. J. Hazard. Mater. 2022, 430, 128451.

    Article  CAS  PubMed  Google Scholar 

  67. Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

    Article  Google Scholar 

  68. Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.

    Article  CAS  Google Scholar 

  69. de Vooys, A. C. A.; Koper, M. T. M.; van Santen, R. A.; van Veen, J. A. R. Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes. J. Catal. 2001, 202, 387–394.

    Article  CAS  Google Scholar 

  70. Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.

    Article  Google Scholar 

  71. Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.

    Article  CAS  PubMed  Google Scholar 

  72. Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  73. Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

    Article  CAS  PubMed  Google Scholar 

  74. Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on Titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, H.; Zhou, Y.; Li, C. G.; Chen, S. L.; Liu, L.; Liu, S. W.; Yao, H. M.; Hou, H. Q. Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. Carbon 2015, 95, 388–395.

    Article  CAS  Google Scholar 

  77. Chen, J. Z.; Xu, J. L.; Zhou, S.; Zhao, N.; Wong, C. P. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 2016, 25, 193–202.

    Article  CAS  Google Scholar 

  78. Chen, L.; Du, R.; Zhu, J. H.; Mao, Y. Y.; Xue, C.; Zhang, N.; Hou, Y. L.; Zhang, J.; Yi, T. Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. Small 2015, 11, 1423–1429.

    Article  CAS  PubMed  Google Scholar 

  79. Pang, Y. Y.; Wang, K.; Xie, H.; Sun, Y.; Titirici, M. M.; Chai, G. L. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes. ACS Catal. 2020, 10, 7434–7442.

    Article  CAS  Google Scholar 

  80. Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W.; Higgins, D.; Sinclair, R. et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 2018, 6, 311–317.

    Article  CAS  Google Scholar 

  81. Yin, H. B.; Chen, Z.; Xiong, S. C.; Chen, J. J.; Wang, C. Z.; Wang, R.; Kuwahara, Y.; Luo, J. S.; Yamashita, H.; Peng, Y. et al. Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem Catal. 2021, 1, 1088–1103.

    Article  CAS  Google Scholar 

  82. Zhang, L. C.; Zhou, Q.; Liang, J.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Gong, F. et al. Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 2022, 61, 8096–8102.

    Article  CAS  PubMed  Google Scholar 

  83. Frear, D. S.; Burrell, R. C. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal. Chem. 1955, 27, 1664–1665.

    Article  CAS  Google Scholar 

  84. Ye, S. H.; Luo, F. Y.; Xu, T. T.; Zhang, P. Y.; Shi, H. D.; Qin, S. Q.; Wu, J. P.; He, C. X.; Ouyang, X. P.; Zhang, Q. L. et al. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.

    Article  CAS  Google Scholar 

  85. Mannan, A.; Hirano, Y.; Quitain, A. T.; Koinuma, M.; Kida, T. Graphene oxide to B, N co-doped graphene through tris-dimethylaminoborane complex by hydrothermal implantation. Am. J. Mater. Sci. 2019, 9, 22–28.

    Google Scholar 

  86. Fedoseeva, Y. V.; Lobiak, E. V.; Shlyakhova, E. V.; Kovalenko, K. A.; Kuznetsova, V. R.; Vorfolomeeva, A. A.; Grebenkina, M. A.; Nishchakova, A. D.; Makarova, A. A.; Bulusheva, L. G. et al. Hydrothermal activation of porous nitrogen-doped carbon materials for electrochemical capacitors and sodium-ion batteries. Nanomaterials 2020, 10, 2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Domnich, V.; Reynaud, S.; Haber, R. A.; Chhowalla, M. Boron carbide: Structure, properties, and stability under stress. J. Am Ceram Soc. 2011, 94, 3605–3628.

    Article  CAS  Google Scholar 

  88. Chakrabarty, K.; Chen, W. C.; Baker, P. A.; Vijayan, V. M.; Chen, C. C.; Catledge, S. A. Superhard boron-rich boron carbide with controlled degree of crystallinity. Materials 2020, 13, 3622.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Werheit, H.; Au, T.; Schmechel, R.; Shalamberidze, S. O.; Kalandadze, G. I.; Eristavi, A. M. IR-active phonons and structure elements of isotope-enriched boron carbide. J. Solid State Chem. 2000, 154, 79–86.

    Article  ADS  CAS  Google Scholar 

  90. He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H. et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 2020, 32, 2003577.

    Article  CAS  Google Scholar 

  91. Lin, W. W.; Chen, H.; Lin, G. B.; Yao, S. Y.; Zhang, Z. H.; Qi, J. Z.; Jing, M. Z.; Song, W. Y.; Li, J.; Liu, X. et al. Creating frustrated lewis pairs in defective boron carbon nitride for electrocatalytic nitrogen reduction to ammonia. Angew. Chem., Int. Ed. 2022, 61, e202207807.

    Article  ADS  CAS  Google Scholar 

  92. Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. 2012, 124, 10292–10296.

    Article  ADS  Google Scholar 

  93. Yang, Y. T.; Wang, Y.; Wang, X.; Chen, S. Q.; Duan, L. M.; Zhang, W.; Li, W. F.; Liu, J. H. Tailoring electron-riched boron sites in BCN for nitrogen fixation via alternate mechanism. Adv. Mater. Interfaces 2022, 9, 2101842.

    Article  CAS  Google Scholar 

  94. Huang, C. J.; Chen, C.; Zhang, M. W.; Lin, L. H.; Ye, X. X.; Lin, S.; Antonietti, M.; Wang, X. C. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 2015, 6, 7698.

    Article  ADS  PubMed  Google Scholar 

  95. Tabbal, M.; Christidis, T.; Isber, S.; Mérel, P.; El Khakani, M. A.; Chaker, M.; Amassian, A.; Martinu, L. Correlation between the sp2-phase nanostructure and the physical properties of unhydrogenated carbon nitride. J. Appl. Phys. 2005, 98, 044310.

    Article  ADS  Google Scholar 

  96. Zhang, J. S.; Zhang, G. G.; Chen, X. F.; Lin, S.; Möhlmann, L.; Dolega, G., Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X. C. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem., Int. Ed. 2012, 51, 3183–3187.

    Article  CAS  Google Scholar 

  97. Zhao, J.; Lin, B. N.; Zhu, Y. F.; Zhou, Y. H.; Liu, H. Y. Phosphor-doped hexagonal boron nitride nanosheets as effective acid-base bifunctional catalysts for one-pot deacetalization-Knoevenagel cascade reactions. Catal. Sci. Technol. 2018, 8, 5900–5905.

    Article  CAS  Google Scholar 

  98. Zhang, S.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem 2019, 1, 100013.

    Article  Google Scholar 

  99. Nakata, K.; Ozaki, T.; Terashima, C.; Fujishima, A.; Einaga, Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem., Int. Ed. 2014, 53, 871–874.

    Article  CAS  Google Scholar 

  100. Stephan, D. W.; Erker, G. Frustrated Lewis pairs: Metal-free hydrogen activation and more. Angew. Chem., Int. Ed. 2010, 49, 46–76.

    Article  CAS  Google Scholar 

  101. Stephan, D. W.; Erker, G. Frustrated Lewis pair chemistry of carbon, nitrogen and sulfur oxides. Chem. Sci. 2014, 5, 2625–2641.

    Article  CAS  Google Scholar 

  102. Mömming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew. Chem., Int. Ed. 2009, 48, 6643–6646.

    Article  Google Scholar 

  103. Woinska1, M.; Milowska, K. Z.; Majewski, J. A. Electronic structure of graphene functionalized with boron and nitrogen. Phys. Status Solidi (C) 2013, 10, 1167–1171.

    Article  ADS  Google Scholar 

  104. Shi, P. H.; Su, R. J.; Wan, F. Z.; Zhu, M. C.; Li, D. X.; Xu, S. H. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Appl. Catal. B: Environ. 2012, 123–124, 265–272.

    Article  Google Scholar 

  105. Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for highperformance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11, 2472–2477.

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790–1798.

    Article  CAS  PubMed  Google Scholar 

  107. Bepete, G.; Voiry, D.; Chhowalla, M.; Chiguvare, Z.; Coville, N. J. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale 2013, 5, 6552–6557.

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Chen, X.; Qiao, Q. A.; An, L.; Xia, D. G. Why do boron and nitrogen doped a-and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study. J. Phys. Chem. C 2015, 119, 11493–11498.

    Article  CAS  Google Scholar 

  109. Q.; Su, J. C.; Chen, H. L.; Wang, D. Q.; Tian, X. Y.; Zhang, Y. J.; Feng, X.; Wang, S.; Li, J.; Jin, H. L. Highly conductive nitrogen-doped sp2/sp3 hybrid carbon as a conductor-free charge storage host. Adv. Funct. Mater. 2022, 32, 2209201.

    Article  Google Scholar 

  110. Steiner, U. B.; Caseri, W. R.; Suter, U. W.; Rehahn, M.; Schmitz, L. Ultrathin layers of low-and high-molecular-weight imides on gold and copper. Langmuir 1993, 9, 3245–3254.

    Article  CAS  Google Scholar 

  111. Zeng, L.; Dai, C. H.; Liu, B.; Xue, C. Oxygen-assisted stabilization of single-atom Au during photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 24217–24221.

    Article  CAS  Google Scholar 

  112. Duan, X. P.; Tian, X. L.; Ke, J. H.; Yin, Y.; Zheng, J. W.; Chen, J.; Cao, Z. M.; Xie, Z. X.; Yuan, Y. Z. Size controllable redispersion of sintered Au nanoparticles by using iodohydrocarbon and its implications. Chem. Sci. 2016, 7, 3181–3187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim, D.; Shin, D.; Heo, J.; Lim, H.; Lim, J. A.; Jeong, H. M.; Kim, B. S.; Heo, I.; Oh, I.; Lee, B. et al. Unveiling electrode-electrolyte design-based NO reduction for NH3 synthesis. ACS Energy Lett. 2020, 5, 3647–3656.

    Article  CAS  Google Scholar 

  114. Zhou, Q.; Gong, F.; Xie, Y. L.; Xia, D. W.; Hu, Z. G.; Wang, S. J.; Liu, L. S.; Xiao, R. A general strategy for designing metal-free catalysts for highly-efficient nitric oxide reduction to ammonia. Fuel 2022, 310, 122442.

    Article  CAS  Google Scholar 

  115. Luo, Y. J.; Chen, K.; Shen, P.; Li, X. C.; Li, X. T.; Li, Y. H.; Chu, K. B-doped MoS2 for nitrate electroreduction to ammonia. J. Colloid Interf. Sci. 2023, 629, 950–957.

    Article  ADS  CAS  Google Scholar 

  116. Yang, C. H.; Zhu, Y. T.; Liu, J. Q.; Qin, Y. C.; Wang, H. Q.; Liu, H. L.; Chen, Y. N.; Zhang, Z. C.; Hu, W. P. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 2020, 77, 105126.

    Article  CAS  Google Scholar 

  117. Ouyang, W. C.; Zhi, Q. M.; Gong, L. L.; Sun, H.; Liu, M. H.; Zhang, J.; Han, X.; Xia, Z. H.; Zhang, L. P. Rational design of boron-containing co-doped graphene as highly efficient electro-catalysts for the nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 24590–24599.

    Article  CAS  Google Scholar 

  118. Jiao, J. Q.; Wei, Y. C.; Zhao, Z.; Zhong, W. J.; Liu, J.; Li, J. M.; Duan, A. J.; Jiang, G. Y. Synthesis of 3D ordered macroporous TiO2-supported Au nanoparticle photocatalysts and their photocatalytic performances for the reduction of CO2 to methane. Catal. Today 2015, 258, 319–326.

    Article  CAS  Google Scholar 

  119. Margitfalvi, J. L.; Fási, A.; Hegedűs, M.; Lónyi, F.; Gőbölös, S.; Bogdanchikova, N. Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation. Catal. Today 2002, 72, 157–169.

    Article  CAS  Google Scholar 

  120. Veith, G. M.; Lupini, A. R.; Pennycook, S. J.; Ownby, G. W.; Dudney, N. J. Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering. J. Catal. 2005, 231, 151–158.

    Article  CAS  Google Scholar 

  121. Zhao, L. Y.; Levendorf, M.; Goncher, S.; Schiros, T.; Pálová, L.; Zabet-Khosousi, A.; Rim, K. T.; Gutiérrez, C.; Nordlund, D.; Jaye, C. et al. Local atomic and electronic structure of boron chemical doping in monolayer graphene. Nano Lett. 2013, 13, 4659–4665.

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Ferrighi, L.; Trioni, M. I.; Di Valentin, C. Boron-doped, nitrogen-doped, and codoped graphene on Cu (111): A DFT + vdW study. J. Phys. Chem. C 2015, 119, 6056–6064.

    Article  CAS  Google Scholar 

  123. Matkovich, V. I. Boron and Refractory Borides; Springer: Berlin, Heidelberg, 1977; pp 1–656.

    Book  Google Scholar 

  124. D. Y.; Jeon, W.; Tu, N. D. K.; Yeo, S. Y.; Lee, S. S.; Sung, B. J.; Chang, H.; Lim, J. A.; Kim, H. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties. Sci. Rep. 2015, 5, 9817.

    Article  Google Scholar 

  125. Wen, G. L.; Zhao, W.; Chen, X.; Liu, J. Q.; Wang, Y.; Zhang, Y.; Huang, Z. J.; Wu, Y. C. N-doped reduced graphene oxide/MnO2 nanocomposite for electrochemical detection of Hg2+ by square wave stripping voltammetry. Electrochim. Acta 2018, 291, 95–102.

    Article  CAS  Google Scholar 

  126. Zhao, Q.; Wu, W. X.; Wei, X. Y.; Jiang, S. L.; Zhou, T.; Li, Q.; Lu, Q. Graphitic carbon nitride as electrode sensing material for tetrabromobisphenol-A determination. Sensors Actuat. B: Chem. 2017, 248, 673–681.

    Article  CAS  Google Scholar 

  127. Kong, Y.; Li, Y.; Yang, B.; Li, Z. J.; Yao, Y.; Lu, J. G.; Lei, L. C.; Wen, Z. H.; Shao, M. H.; Hou, Y. Boron and nitrogen co-doped porous carbon nanofibers as metal-free electrocatalysts for highly efficient ammonia electrosynthesis. J. Mater. Chem. A 2019, 7, 26272–26278.

    Article  CAS  Google Scholar 

  128. Wan, H.; Bagger, A.; Rossmeisl, J. Electrochemical nitric oxide reduction on metal surfaces. Angew. Chem. 2021, 133, 22137–22143.

    Article  ADS  Google Scholar 

  129. Dong, W. F.; Zhang, N.; Li, S. X.; Min, S. X.; Peng, J.; Liu, W. Y.; Zhan, D. P.; Bai, H. C. A Mn single atom catalyst with Mn-N2O2 sites integrated into carbon nanosheets for efficient electrocatalytic CO2 reduction. J. Mater. Chem. A 2022, 10, 10892–10901.

    Article  CAS  Google Scholar 

  130. Yuan, M. L.; Zhang, H. H.; Xu, Y.; Liu, R. J.; Wang, R.; Zhao, T. K.; Zhang, J. X.; Liu, Z. J.; He, H. Y.; Yang, C. et al. Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem Catal. 2022, 2, 309–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22206096 and 21936005) and China Postdoctoral Science Foundation (Nos. 2020TQ0166 and 2021M691771).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Li.

Electronic Supplementary Material

12274_2023_5943_MOESM1_ESM.pdf

Applying heteroatom co-doped carbon nanotube for manifesting high performance in the electrochemical reduction of aqueous nitrogen oxide by gold nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, J., Yin, H., Wang, R. et al. Applying heteroatom co-doped carbon nanotube for manifesting high performance in the electrochemical reduction of aqueous nitrogen oxide by gold nanoparticles. Nano Res. 17, 1151–1164 (2024). https://doi.org/10.1007/s12274-023-5943-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5943-0

Keywords

Navigation