Skip to main content
Log in

Vacancy-engineering-mediated activation of excitonic transition for boosting visible-light-driven photocatalytic oxidative coupling of amines

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The light absorption properties of semiconductor-based photocatalysts to a large extent determine the relevant catalytic performance. Traditional strategies in broadening the light absorption range are usually accompanied with unfavorable changes in redox ability and dynamics of photoinduced species that would confuse the comprehensive optimization. In this work, we propose a nontrivial excitonic transition regulation strategy for gaining sub-bandgap light absorption in low-dimensional semiconductor-based photocatalysts. Using bismuth oxybromide (BiOBr) as a model system, we highlight that the light absorption cut-off edge could be effectively extended up to 500 nm by introducing Bi vacancies. On the basis of theoretical simulations and spectroscopic analyses, we attributed the broadening of light absorption to the promotion of excitonic transition that is generally forbidden in pristine BiOBr system, associated with Bi-vacancy-induced excited-state symmetry breaking. In addition, Bi vacancy was demonstrated to implement negligible effects on other photoexcitation properties like excited-state energy-level profiles and kinetics. Benefiting from these features, the defective sample exhibits a notable advantage in gaining visible-light-driven photocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Z. Research progress of semiconductor photocatalysis applied to environmental governance. IOP Conf. Seri. Earth Environ. Sci. 2021, 631, 012022.

    Article  Google Scholar 

  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  CAS  Google Scholar 

  3. Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 108, 1–35.

    Article  CAS  Google Scholar 

  4. Serpone, N.; Emeline, A. V. Semiconductor photocatalysis—Past, present, and future outlook. J. Phys. Chem. Lett. 2012, 3, 673–677.

    Article  CAS  Google Scholar 

  5. Banerjee, T.; Podjaski, F.; Kröger, J.; Biswal, B. P.; Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 2021, 6, 168–190.

    Article  CAS  Google Scholar 

  6. Wang, F. F.; Li, Q.; Xu, D. S. Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater. 2017, 7, 1700529.

    Article  Google Scholar 

  7. Liu, Y. Q.; Cheng, P.; Li, T. F.; Wang, R.; Li, Y. W.; Chang, S. Y.; Zhu, Y.; Cheng, H. W.; Wei, K. H.; Zhan, X. W. et al. Unraveling sunlight by transparent organic semiconductors toward photovoltaic and photosynthesis. ACS Nano 2019, 13, 1071–1077.

    Article  CAS  Google Scholar 

  8. Hu, W. Y.; Li, Q. Y.; Xu, D.; Zhai, G. Y.; Zhang, S. N.; Li, D.; He, X. X.; Jia, J. P.; Chen, J. S.; Li, X. H. Rapidly and mildly transferring anatase phase of graphene-activated TiO2 to rutile with elevated Schottky barrier: Facilitating interfacial hot electron injection for vis-NIR driven photocatalysis. Nano Res. 2022, 15, 10142–10147.

    Article  CAS  Google Scholar 

  9. Hu, W. Y.; Li, Q. Y.; Zhai, G. Y.; Lin, Y. X.; Li, D.; He, X. X.; Lin, X.; Xu, D.; Sun, L. H.; Zhang, S. N. et al. Facilitating hot electron injection from graphene to semiconductor by rectifying contact for vis–NIR-driven H2O2 production. Small. 2022, 18, 2200885.

    Article  CAS  Google Scholar 

  10. Zhang, L. W.; Man, Y.; Zhu, Y. F. Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal. 2011, 1, 841–848.

    Article  CAS  Google Scholar 

  11. Sun, X. S.; Luo, X.; Zhang, X. D.; Xie, J. F.; Jin, S.; Wang, H.; Zheng, X. S.; Wu, X. J.; Xie, Y. Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 2019, 141, 3797–3801.

    Article  CAS  Google Scholar 

  12. Garfield, D. J.; Borys, N. J.; Hamed, S. M.; Torquato, N. A.; Tajon, C. A.; Tian, B. N.; Shevitski, B.; Barnard, E. S.; Suh, Y. D.; Aloni, S. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photon. 2018, 12, 402–407.

    Article  CAS  Google Scholar 

  13. Sun, D. F.; Huang, L.; Li, L.; Yu, Y.; Du, G. H.; Xu, B. S. Plasma enhanced Bi/Bi2O2CO3 heterojunction photocatalyst via a novel in-situ method. J. Colloid Interface Sci. 2020, 571, 80–89.

    Article  CAS  Google Scholar 

  14. Jiang, J.; Ling, C. Y.; Xu, T.; Wang, W. H.; Niu, X. H.; Zafar, A.; Yan, Z. Z.; Wang, X. M.; You, Y. M.; Sun, L. T. et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332.

    Article  Google Scholar 

  15. Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796.

    Article  CAS  Google Scholar 

  16. Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2, 0105.

    Article  CAS  Google Scholar 

  17. Zhang, K. X.; Su, H.; Wang, H. H.; Zhang, J. J.; Zhao, S. Y.; Lei, W. W.; Wei, X.; Li, X. H.; Chen, J. S. Atomic-scale Mott–Schottky heterojunctions of boron nitride monolayer and graphene as metalfree photocatalysts for artificial photosynthesis. Adv. Sci. 2018, 5, 1800062.

    Article  Google Scholar 

  18. Mongin, C.; Garakyaraghi, S.; Razgoniaeva, N.; Zamkov, M.; Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science. 2016, 351, 369–372.

    Article  CAS  Google Scholar 

  19. Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; Da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

    Article  CAS  Google Scholar 

  20. Luo, X.; Liang, G. J.; Han, Y. Y.; Li, Y. L.; Ding, T.; He, S.; Liu, X.; Wu, K. F. Triplet energy transfer from perovskite nanocrystals mediated by electron transfer. J. Am. Chem. Soc. 2020, 142, 11270–11278.

    Article  CAS  Google Scholar 

  21. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  CAS  Google Scholar 

  22. Chen, C. C.; Ma, W. H.; Zhao, J. C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219.

    Article  CAS  Google Scholar 

  23. Sun, H. L.; Wei, K.; Wu, D.; Jiang, Z. F.; Zhao, H.; Wang, T. Q.; Zhang, Q.; Wong, P. K. Structure defects promoted exciton dissociation and carrier separation for enhancing photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 264, 118480.

    Article  Google Scholar 

  24. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Article  Google Scholar 

  25. Wang, H.; Chen, S. C.; Yong, D. Y.; Zhang, X. D.; Li, S.; Shao, W.; Sun, X. S.; Pan, B. C.; Xie, Y. Giant electron–hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 2017, 139, 4737–4742.

    Article  CAS  Google Scholar 

  26. Wang, H.; Yong, D. Y.; Chen, S. C.; Jiang, S. L.; Zhang, X. D.; Shao, W.; Zhang, Q.; Yan, W. S.; Pan, B. C.; Xie, Y. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 2011, 140, 1760–1766.

    Article  Google Scholar 

  27. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  28. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  29. Kresse, G.; Furthmüller, J.; Hafner, J. Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation. Phys. Rev. B 1994, 50, 13181–13185.

    Article  CAS  Google Scholar 

  30. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  31. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  32. Wang, D. J.; Shen, H. D.; Guo, L.; Wang, C.; Fu, F. Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue. ACS Omega 2016, 1, 566–577.

    Article  CAS  Google Scholar 

  33. Qu, D. S.; Liu, X. C.; Huang, M.; Lee, C.; Ahmed, F.; Kim, H.; Ruoff, R. S.; Hone, J.; Yoo, W. J. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 2017, 29, 1606433.

    Article  Google Scholar 

  34. Park, C. S.; Lee, C. J.; Kim, E. K. Stable p-type properties of single walled carbon nanotubes by electrochemical doping. Phys. Chem. Chem. Phys. 2015, 17, 16243–16245.

    Article  CAS  Google Scholar 

  35. Petravic, M.; Gao, Q.; Llewellyn, D.; Deenapanray, P. N. K.; Macdonald, D.; Crotti, C. Broadening of vibrational levels in X-ray absorption spectroscopy of molecular nitrogen in compound semiconductors. Chem. Phys. Lett. 2006, 425, 262–266.

    Article  CAS  Google Scholar 

  36. Su, Y. Q.; Zhu, Y.; Yong, D. Y.; Chen, M. M.; Su, L. X.; Chen, A. Q.; Wu, Y. Y.; Pan, B. C.; Tang, Z. K. Enhanced exciton binding energy of ZnO by long-distance perturbation of doped Be atoms. J. Phys. Chem. Lett. 2016, 7, 1484–1489.

    Article  CAS  Google Scholar 

  37. Sun, J. J.; Li, X. Y.; Zhao, Q. D.; Liu, B. J. Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed {001} facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene. Appl. Catal. B Environ. 2021, 281, 119478.

    Article  CAS  Google Scholar 

  38. Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

    Article  CAS  Google Scholar 

  39. Mongin, C.; Moroz, P.; Zamkov, M.; Castellano, F. N. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 2018, 10, 225–230.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2022YFA1502903 and 2021YFA1501502), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB36000000 and XDB0450102), the National Natural Science Foundation of China (Nos. 92163105, T2122004, 21890754, U2032212, U2032160, and 22275179), the Anhui Provincial Key Research and Development Program (No. 2022a05020054), the Youth Innovation Promotion Association of CAS (No. Y2021123), and the Fundamental Research Funds for the Central Universities (No. WK2060000039). A portion of this work was performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China. The authors thank MCD-B (Soochow Beamline for Energy Materials) at NSRL for the synchrotron beamtime.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang, Xiaodong Zhang or Yi Xie.

Electronic Supplementary Material

12274_2023_5941_MOESM1_ESM.pdf

Vacancy-engineering-mediated activation of excitonic transition for boosting visible-light-driven photocatalytic oxidative coupling of amines

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, L., Zhang, P. et al. Vacancy-engineering-mediated activation of excitonic transition for boosting visible-light-driven photocatalytic oxidative coupling of amines. Nano Res. 16, 12655–12661 (2023). https://doi.org/10.1007/s12274-023-5941-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5941-2

Keywords

Navigation